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INTRODUCTION

The sky above our heads is populated with stars, plan-
ets, the moon, the sun and other luminaries; they all
move over the celestial sphere day after day, year in year out,
from one century into the next, describing intricate inter-
lacing paths in the heavens. The complex movements of
celestial bodies are but the apparent reflection of their
yet more complicated actual motions through the endless
realms of the universe. And this earth of ours is likewise
a celestial object plying its way through space. :

How do the heavenly bodies move, and how are these
movements related to one another? What forces of nature
govern such motions? :

Today we can give rather complete answers to these
queries. We now know that the earth and planets move in
space about the sun forming what is known as the solar
system, that the sun itself is a member of a huge system of
stars called the Galaxy, and, together with other stars,
is in motion in space round the centre of this system. We
now know that the motions of the earth, planets and sun
and stars are governed mainly by forces of mutual attrac-
tion. The law of this interaction—the law of universal grav-
ifation—was discovered in the seventeenth century by
the great English scientist Isaac Newton.

Utilizing the law of universal gravitation, celestial
mechanics—the science that treats of the motions of celes-
tial bodies—has achieved remarkable results. We now are
able to draw up exact “schedules” of the motions of heaven-
ly bodies with indications of where, in what part of the
sky, any given body will be at any given instant of time.
And true enmough, celestial objects arrive at the required
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“gtations” in the sky at exactly the prescribed time in
strict accord with our time-table, probably more exactly
than do the trains of a terrestrial railway line. The astral
time-table is drawn up not for a day or a year, but for
tens and hundreds of years in advance. In some cases we
can even draw the picture of heavenly movements that our
distant ancestors viewed millennia ago, and we can look
into a future so far off that generations will come and go be-
fore this picture comes to pass.

Naturally, celestial mechanics was not created overnight.
Long, centuries-long was the search for the truth, and on
the way were errors, delusions—and the struggle for
this truth was oft-times fierce, Even today we are far from
a complete knowledge of the motions of celestial bodies.
And not for all objects in the sky can we draw up a suffi-
ciently accurate “time-table” of their movements. Occa-
sionally our schedule goes awry—some bodies move too
fast, some fall behind. And we are not always in a posi-
tion to say exactly and definitely how a certain body moved
ages ago or will move in the distant future.

The aim of this book is to tell the reader how the law of
universal gravitation was discovered and how, on the ba-
sis of this law, the motions of celestial bodies are studied.
We will learn that the movements of the most distant stars
and the falling of bodies to the ground and the flight of
man-made satellites of the earth, and of cosmic rockets too,
are all subject to the same law of gravitation.

Towards the end we shall deal in brief with the nature
of gravitation.

1. ANCIENT CONCEPTIONS CONCERNING THE MOTIONS OF
THE SUN, MOON, PLANETS AND STARS

The movements of heavenly bodies began to be studied
long, long ago. During many centuries before our time
ancient peoples observed the positions and movements of
celestial objects in the sky and strived to. notice regulari-
ties in these motions. The stimulus that guided them was
primarily practical necessity. It was only by observing
the heavenly bodies that one could find his bearings in the
desert or at sea; or could measure time and predict the
season of the year. The demands of trade and agriculture
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and the migrations of nomads all required observations of
the stars. Thus it was that urgent practical demands engen-
dered astronomy, the science of celestial objects. :

The apparent motions of heavenly bodies across the sky
were well known even in very ancient times. :

Watching the starry sky at night one gets the impression
of a dome-shaped celestial sphere in rotation about the
earth making a single circuit every 24 hours. This diurnal
rotation of the firmament is repeated regularly, from day
to day, without any apparent change. :

The stars in the sky appear firmly fixed in place with
‘respect to each other. Hence the name fized stars. Ages ago
astronomers had already compiled permanent maps of dif-
ferent constellations and of the entire stellar sky. :

All heavenly bodies without exception participate in the
diurnal rotation about the earth. But if a given body re-
tains its relative position among the stars it is called a
fixed star. In contrast, when we speak of an object moving
across the sky we have in mind not its diurnal motion but
-its movement with respect to the fixed stars.

~ Antiquity knew of seven bodies that moved among the
" stars. They were called planets (which in Greek meant
«wanderers”). Two points should be noted in this respect.
First, these included five bodies that were far brighter
that the stars, and the names given them by the ancient
Romans—Mercury, Venus, Mars, Jupiter, and:Saturn—re-
main to this day. Secondly, in ancient times, the planets
included the sun and moon too for they likewise were in
‘motion among the stars, :

The moon’s motion is easiest to notice because this body
moves faster than the othér objects. The moon moves
from west to east and makes a complete circuit across the
sky in only a little over 27 days. (which amounts to a speed
of 12-13 degrees per 24 hours ar 0°.5 an hour). One needs only
two nights to notice that the moon has changed its posi-
tion relative to the stars. Observations show that the moon’s
movement across the sky is not uniform, on some sections
it moves faster, on others slower. -

The sun’s movement among the stars cannot be registered
directly since the latter are not visible in the day-time,
but such movement can be detected from observations of
the stars. Note some star in the western part of the sky soon
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after sunset and then try to locate it a few days later at .
the same hour. You will find that it has moved down clos-
er to the sun. In another few days it will disappear alto-
gether below the horizon, and its place will be taken by
another star lying to the west. This new star will gradual-
ly approach the sun and continue as the first, etc. This shows
that the sun changes its position relative to the stars. Way
back in ancient times daily observations were made of the
positions of the stars on the celestial sphere. These obser-
vations permitted of a rather accurate study of the sun’s
path across the sky. It was found that the sun, and the
moon too, moves among the stars from west to east, de-
scribing a complete circuit in roughly 365 and a quarter
days, that is, in one year. The annual path of the sun among
the stars remains constant from year to year and is known
as the ecliptic. In a single day the sun moves eastward
along the ecliptic approximately one degree (or 360° per
year). The sun’s movement, again like that of the moon,
is not uniform throughout the year. In winter it moves fast-
er than in summer. For example, between June 1 and June
30 it covers 27°5, while between December 1 and 30 it
does 29°.5.

The picture of the apparent motions of the planets is more
complicated. A common feature that the planets have is that
they always move close to the ecliptic. The planets fall into
two groups: the inferior planets and the superior planets.*

In the first group belong Mercury and Venus, in the second,
all the others. Characteristic of Mercury and Venus is that
they oscillate about the sun as about a certain mean posi-
tion. At first the planet moves among the stars more rapid-
ly than the sun and passes it; then, having moved to the
farthest point east of the sun, the planet begins to move
more slowly than the sun, which overtakes it. After lag-
ging behind a certain distance to the west, the planet again
begins moving faster than the sun; and the cycle is repeat-
ed. For Venus, the maximum solar distance is about 40°,
while for Mercury it is an average of 23° (varying from

* These designations have come down to us from ancient times
when it was believed that the sun and all the planets moved about the
centre of the Universe—the earth. It was thought that Mercury and
"Venus were closer (lower) to the earth than the sun, and that the other
-planetg were farther away (higher).- . - - , i
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18 to 28°). For this reason, these planets are visible only
in the morning in the east shortly before sunrise and in
the evening in the west just a little after sunset.

The period of apparent oscillationsof Mercury about the sun
is 116 days, for Venus it comes out to one year and 217 days.

The superior planets describe characteristic loops in
the sky. ‘

The overall motion of the planets among the stars is
from west to east like the sun and moon (this is called
direct motion). However, there are times when the rate of
apparent motion of a planet diminishes, the planet comes to
a halt, and then begins to move from east to west (retro-
grade motion). Each planet has its own period of retrograde
motion with a subsequent reversal of direction to direct
motion from west to east. The result is a peculiar type of
loop that the planet describes in the sky (Fig. 1). Mars
describes a loop every 780 days, Jupiter every 399 days,
Saturn every 378 days.

These are the movements of the stars and planets on the
sky as viewed from the earth. But what are the real move-
ments of the stars, sun, moon and planets in space?

The first attempts to explain the observed motions of
celestial bodies, to build a theory of their motions that
could predict the location of a given body in the sky at a
given instant were made by learned men in ancient Greece.’
Their starting point was a stationary earth with the sun,
moon, planets and stars revolving about it.

The ancient Greeks contrasted “terrestrial” and “celes-
tial” phenomena and believed that the laws of the “heavens”
should differ utterly from those of the “earth.” The ever
recurring motions of celestial objects appeared to them a
paragon of perfection, and since they regarded uniform mo-
tion along a circle the most perfect type of motion, it seemed
to them an immutable fact that the moon, sun and planets
should move in circles at a uniform rate. However, the appar-
ent motions of these bodies hardly resemble uniform cir-
cular movements. The sun and moon have rates of motion that
are not uniform, while the planets even describe intricate
loops. Ancient Greek astronomy was thus confronted with
the following problem: to give an explanation of the appar-
ent movements of the planets based on uniform circular
motion. : :
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The most refined theory of the motions of heavenly
bodies of that time was developed in the second century
A.D. by the ancient Greek astronomer Claudius Ptolemy.
He supposed the sun, moon and planets to be in uniform
motion in circles that were called epicycles. In turn, the centre
of each epicycle was in uniform motion along a larger cir-
cle, known as the deferent, with the motionless earth at its
centre. In this scheme, the rate of motion of the planet
V, along the - epicycle is greater than the rate of
motion V, of the centre of the epicycle along the defe-
rent. During the interval when the planet P and the
centre of the epicycle O are moving in a single direction,
the observer on earth E sees direct motion. But if the
planet is in motion between the centre of the epicycle
and the earth, the motions of the planet and the centre of
the epicycle are “deducted” one from the other, and, seeing
“that V, >V, , the planet will béin retrograde motion when
viewed from the earth.

By selecting for the sun and the moon and each planet the
ratios of deferent and epicycle radii, the orbital periods along
epicycle and deferent, and the mutual inclinations of the
planes of the deferent and epicycle, Ptolemy was able not
only to explain the ponuniform apparent motion of these
bodies across the sky and the retrograde movements of the
planets, but even to compute rather accurately the paths
of the planets, sun and moon across the heavens. '

The Ptolemaic system and in gemeral the teaching that
made the earth a stationary body was unrivaled for four-
teen centuries, from the second to the

middle of sixteenth century. True, even X »
before Ptolemy, the ancient Greek scho- i

lars Philolaus (fifth century B.C.) and

Aristarchus of Samos (third century ‘

B.C.) and some others propounded

the view that the earth is in motion in

space and that, in addition, it rotates

on its axis; on their view, the observed

diurnal rotation of the celestial sphere

and of all the stars is simply a reflec-

tion of the actual rotation of the earth. .., o A, enicycle. Th
But those thinkers were unable to offer v iacisy of ¥y is greater
methods of precise calculations to pre- . than that of V,

11



=’ dict the planetary positions in the
a heavens and thus satisfy the practical
Q demands of astronomy, and therefore
their brilliant guesses did not become

“ - generally accepted.

This long period of domination of
the Ptolemaic system was of course
due not only to the low level of -
science at that time. The point is
that an earth-centred universe was

] ideally suited to religion. Since man
Fig. 3. A.°°“11P°“nded is the “crowning achievement of God”
epicycle it is natural that man’s abode—the
earth—should be located at the centre.
Thus it was that Ptolemy's cosmology served religion. Quite
natural then that the pagan priests accused Aristarchus of Sa-
mos of godlessness for his teaching of the earth’s motion, just -
as, eighteen centuries later, Christian churchmen fought furi-
ously against the Copernican system.

But finally the Ptolemaic system came to an impasse,
for as new observational data accumulated, more discrep-
ancies were detected between observed planetary posi-
tions and those predicted by Ptolemy’s theory. To elimi-
nate these divergences, it was assumed that the motion of
each planet is to be described not by a single epicycle but
by a whole system of epicycles (Fig.3). Each newly discov-
ered irregularity in the motion of a planet was eliminated
by the addition of more and more epicycles. Yet disparities
between theory and observation remained.

This extremely unwieldy and obviously artificially com-
pounded system of epicycles, on the one hand, and the lack
of complete agreement between theory and observation, on
the other, finally resulted in doubts cropping up as to its
validity. The time came when astronomy ceased to “refine”
Ptolemy’s system by adding more and more epicycles, and
rejected it outright. This was the sixteenth century, when the
great Polish astronomer Nicolaus Copernicus (1473-1543)
created the first complete theory of the motion of the earth
and planets about the sun. This is actually the starting point
of our knowledge about the true motions of celestial bodies
‘in space.
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3. THE GEOMETRY OF PLANETARY MOTIONS FROM
COPERNICUS TO KEPLER

Copernicus discarded the dogmatic assertion of a station-
ary earth that bad dominated the minds of men for ages,
According to his theory, the earth is in no way different from
the planets in its motion in space about the sun and in
its rotation round a certain imaginary line which we call
the earth’s axis. The diurnal movements of the stars and
all other heavenly bodies on the celestial sphere were cor-
rectly explained by Copernicus as the result not of their
actual motions but of the rotation of the earth. The earth
rotates, completing a circuit in 24 hours, while to a man
on the earth’s surface who does not feel any motion it
appears that the entire celestial sphere with the sun, stars,
and planets attached is in rotation.

The annual path of the sun is, according to Copernicus’
system, only the apparent motion produced by the earth’s
movement in space about the sun. The earth circles the
sun, and earth dwellers see the sun on the background of
different stars that are at far greater distances than the sun.
This is why it seems to us that the sun moves among the stars.

Copernicus demonstrated that the principal peculiarities
in the apparent planetary motions can be explained by the
fact that the planets, including the earth as one, move
~ about the sun in one and the same direction at different dis-
" tances from it and make complete circuits in definite times.

Reasoning from observational facts, Copernicus first
came to the conclusion that all the planets and the earth
move round the sun in approximately the same plane.
This explained why the paths of the planets, as seen from the
earth, lie near the ecliptic. Inasmuch as Mercury and Venus
seem to oscillate about the sun, their paths in space, or,
in astronomical parlance, their, orbits, lie closer to the
sun than that of the earth; and Venus is farther from the
sun than Mercury because its apparent deviations from the
sun are greater.

The other planets revolve about the sun at greater distances
than the earth. Closest to the earth is Mars (this is evident
from the fact that it moves fastest among the stars), fol-
lowed by Jupiter and then Saturn.

As regards the shapes of the planetary orbits and the
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type of motion of the planets, Copernicus was of the opinion

that all planets  exhibited a nearly uniform motion in
circles but that additional oscillations were superimposed
on these uniform circular movements. More precisely, Coper-
nicus thought that it was not the planets themselves that
moved uniformly in circles but the centres of epicycles or

Fixed sy, -

Fig. 4. Copernicus’ World

systems of epicycles along which the planets proper moved.
Motion along epicycles characterized the deviations from
uniform circular motions about the sun.

Copernicus was the first astronomer to produce a cor-
rect plan of the solar system. He determined the relative
distances of the planets from the sun (in terms of the earth-
sun distance) and also their periods about the sun. Here
are his calculations.

Consider, for example, the planet Mercury, which is
closer to the sun than the earth. In Fig. 5, the inner
circle is the orbit of Mercury, the outer circle, that of the
earth; arrows indicate the direction of motion. From the
figure it is clear that when viewed from the earth Mercury
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should always be close to
the sun oscillating about -
the latter. E; and M; de-
note the earth and Mercu-
ry when the latter is far-
thest from the sun to the
west. The angular dis-
tance* between the sun and
Mercury is then an average
of about 23° (Copernicus
explained the oscillations
in angular distance be-
tween Mercury and the

o Fig. §. Determining Mercury’s
su_n—from .1§° to 28. - distance from theg.;un andr};ts
with the aid of epicy- orbital period about the sun

cles). Since the triangle
SE, M, is a right-angle triangle, by trigonometry we

" obtain:

SM . o
.S’E: = sin 23° ~ 0.39.

Thus it turns out that Mercury's mean distance from the
sun is less than that of the earth by a factor of roughly 2.6.

Earlier it was pointed out that the period of Mercury’s
apparent oscillations about the sun is approximately 116
days. This means that in just about 58 days Mercury will
again be seen at maximum elongation from the sun, but
this time to the east. However, the earth, and hence -also
‘Mercury, will oceupy different positions in their orbits. Let
us designate these positions by E, and M,. The length
of the arc E,E, may easily be found since it is known that
the earth makes one complete circuit about the sun in 365.25
days. In 58 days the earth covers roughly 0.159 of its orbit, an
arc of 57°. In another 58 days Mercury will again be seen
at maximum elongation to the west. We denote the posi-
tions occupied by Mercury and the earth at this time byM,
and E;. Thus, in 116 days the earth will "describe an
arc E,E,, that is, 57°4-57°=114°. During this time Mer-
cury does more than one circuit round the sun so that the

* Angular distance is the angle between two lines pointing from
the observer’s eye to the two celestial bodies whose separation is to -
be measured. '
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period of apparent oscillations
of Mercury about the sun
does not coincide with its
orbital period. But the latter
can easily be computed.
Indeed, from Fig. 5 it may
be seen that the leg SE; of
triangle SE, M, has moved114°
to the position SE;, and
therefore the leg SM;, at
Fig. 6. Detormining the Martian position SMy, has mozed 114°,
tg. 0. Letermin e Mar Hence < M;SMz=414". Thus,
period of revolution in 116 ansl Mel?cury describes
a complete circle plus 114°, or an arc of 474°. Mercury'’s
orbital period, that is, the time it takes to complete one
circuit (360°) may be found from the ratio.

T 360°
16 — 474°
Whence  p__ 360_;;4“6 ~ 88 days.

In exactly the same way we can calculate the distance
of Venus from the sun and also the planet’s orbital period.
Venus has an orbital period of 225 days and a mean solar
distance 0.72 that of the earth-sun distance.

A different method can be used to determine the orbit-
al periods and solar distances of planets farther away from
the sun than the earth.

Take Mars, for instance. In Fig. 6 the inner circle is the
earth’s orbit, while the outer one is that of Mars. We de-
note by E; and M, the positions of the earth and Mars
at a time when Mars and the sun are on a straight line at
opposite sides of the earth (this configuration is known
as opposition). Observations show that oppositions of Mars
occur every 780 days. Three hundred and ninety days
after opposition, the earth will be at £, and Mars will be on
one line with the sun and on the same side from the earth (this
position is called conjunction of the planet and the sun).
In another 390 days Mars will again be in opposition to
the sun, and the earth will be at E; and Mars at M. In 780
days the earth sweeps out two complete circuits about the
sun plus the arc E;E;, which amounts to about 49°, in
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other words, a total of 769°, while
Mars, as may be seen from the fig-
ure, completes one circuit plus an arc
of 49°, making a total of 409°. By
means of ratios we obtain the fol-
lowing orbital period for Mars:

T 360 780

05 = 687 days.

The method is the same for de-
termining the orbital periods of Ju- 7iz. 7. Determining the dis-
piter and Saturn, which come out to tance of Mars from the sun
12 years and 29.5 years respectively.

Now let us determine the distance of Mars from the sun.
Beginning with opposition we measure the angle between the
sun and Mars as seen from the earth (Fig. 7). At opposition
this angle is 480°. It begins to diminish and there comes
a time when it reaches 90° (£’ and M’). Observations show
that this occurs roughly 106 days following opposition. Dur-
ing this time the earth has moved through an arc of about

- 105°, while Mars has completed approximately %xi%z

~56° the angle E'SM’ will be 105° — 56°=49°,

Fr
the triangle £'SM’ we obtain om

SM’ 1
TE et = L5

Thus, Mars is one and a half times more di
the sun than the earth. distant from'

In similar fashion we can obtain the relative distances
of Jupiter and Saturn from the sun. Calculations show that
Jupiter moves at a distance from the sun five times that of
the earth’s solar distance, while that of Saturn is 9.5 times
farther away.

Copernicus demonstrated that the loop-like apparent
paths of the planets could be explained by the fact that we
observe the planets from the earth which itself is in motion
about the sun. By way of illustration, lét us see how Mars
moves beginning from the point of opposition (EyM, in
Fig. 8). Within a certain interval of time following op-
position, the earth will reach E,, while Mars during the same
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interval will describe in its orbit a smaller arc M, M, (since
its orbital period is longer). At opposition Mars was in
a direction E,;M,, some time after opposition it will be
seen in the direction E,M,, which moved to the west
with respect to the direction E,M,. The earth appears
to overtake Mars in its motion about the sum, creating
the impression that Mars is moving among the stars

Fig. 8. The apparent motions of the planets explained

westward from its original position, though in reality
Mars continues to move in its orbit in the same direction
as the earth.

Let us see how the earth-Mars line will have changed
when the two planets reach E; and M,, that is, when Mars
and the sun form a right angle as seen from the earth (Fig.
8). Some time later the earth reaches E, and Mars M,. E,M,
now points eastward relative to E;M,, which means that
Mars will be meving among the stars from west to east.
Thus, during the time that the earth described in its orbit
the arc £,K,, Mars (speaking of apparent motion) first
moved from east to west among the stars (retrograde motion)
and then from west to east (direct motion). At a certain
point in between M, and M, Mars will come to a “stop”
(Es and M, in Fig. 9) and reverse its path among the stars.
Observations show that Mars comes to a halt roughly 35
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days following opposition. Mars then reverses its direction
to direct motion. Bul,approximately 35 days prior to the
next opposition, whed“the edrth and Mars are at E’; and

’¢ (the mirror images of E, and M, )—see Fig. 9—Mars
again reverses its direction to retrograde motion. Thus,
retrograde motion continues 35 days prior to opposition
and 35 days following opposition, making a total of 70 days.

e ;760

——

Fig. 9. The retrograde motion of a planet

The arc of retrograde motion which Mars describes during
this time amounts to roughly 16°. :

In this way Copernicus explained the retrograde motions
‘of Mars, Jupiter and Saturn. But in explaining the other
planetary deviations from uniform circular motion
Copernicus retained the system of epicycles of the an-
cient astronomers. Particularly involved was Copernicus’
theory of the moon, whose motion was found, by the as-
tropomers of antiquity, to contain many irregularities.

Nevertheless, the Copernican system was a new stage in
the development of astronomy. Copernicus was the first to
put the sun, earth, and planets in their places. He created,
on the whole, a correct picture, an orderly system of the
earth’s motion and that of the planets. He succeeded in
defining the most important characteristics of planetary
motion: the orbital periods and solar distances of the
planets.

But the significance of Copernicanism extends far
‘beyond the pale of astronomy proper. Copernicus was the
first to demand that astronomical schemes should reflect
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reality, “the true nature of things,” and not the teachings
of religious systems. Thus it was that Copernicus dealt a
severe blow at the world view of religion that was based
on the writings of the church fathers, and his name became
the banner of progressive science. .

No wonder that Copernicus’ theory was so hostilely
received by the church—it reduced the earth to the status
of an ordinary planet and placed the sun at the centre of
the solar system. The earth was no longer the centre of the
world as the Bible had taught. In 1616 the Catholic church
pronounced the Copernican system heretical and banned it.
Even before this time there had been active opposition to
the new theory by prominent representatives of protestant-
ism. : :

All of this, of course, greatly hindered the spread of
Copernicus’ theory. One should likewise bear in mind
that Copernicus had no direct proof of the earth’s motion.
The only thing that he could say was that his theory
gave a simpler and more natural explanation to the
apparent motions of the planets than did the Ptolemaic
system. Moreover, the Copernican system was mnot yet
able to predict planetary position with sufficient
accuracy. : '

Nevertheless, Copernican views gradually came to be
accepted. An exceedingly important part in the develop-
ment and victory of the new scheme of the solar
system was played by two remarkable men, the Italian
Galileo Galilei (1564-1642) and the German Johannes
Kepler (1571-1630).

In 1610, for the first time in the history of astronomy,
Galileo directed a telescope to the heavens, thus opening
up unimaginable vistas for astronomical exploration. His
very first observations resulted in a series of remarkable
discoveries. First of all, he found that Jupiter had four
small stars circling it. The shortest orbital period of these
stars was 42 hours, the longest; 17 days. Galileo christened
them the “Medicean planets” in honour of Cosimo de’
Medici, Grand Duke of Tuscany. It was not long before
Kepler gave them the name of satellites. This name has re-
mained to the present day for all celestial bodies that .re-
volve round their primaries as the planets do about the
sun.

20



The “moons” of Ju-
piterthat Galileo discov- -—O’ "O’"'O«-o
ered reproduced in min- /O .

“iature the sun’s system D B o C’

of planets. The new sat- . p:
ellites proved the old . .
dogma—that only the Q O"-‘--O' G
stable earth could bethe -
centre of motion—to ~ Fig. 10. The phases of Venus
be wrong. Jupiter’s
orbiting satellites graphically destroyed the “objection”
to Copernicus’ system that the moon could not revolve
about a moving earth without lagging behind it.
Galileo also found that Venus does not always appear
as a full disk, but, like the moon, changes its appearance—
first crescent, then full, and at times it is not seen at all.
This was proof that, like the moon, Venus is a dark body
that receives its light from the sun. The changes in Ve-
nusian phases occurred exactly as might be predicted if
it were in orbital motion about the sun (Fig. 10).
Buttressed by these and a whole series of other discov-
eries, Galileo was highly successful in spreading Coper-
nican astronomy both from the university rostrum and in
a number of masterly written compositions. For this he was
summoned before the tribunal of the Inquisition and in
1633 forced to recant publicly his “fallacies.”
. The next step in the study of the planetary motions prop-
er was made by the pre-eminent work of Kepler, Galileo’s
contemporary. _ :
By about 1600 the tables of planetary motions compiled
on the basis Copernicus’ theory were predicting planetary
positions with errors up to 4° and 5°. Such gross errors showed
that the Copernican system was anything but perfect. Kep-
ler himself was an ardent follower of Copernicanism and
least of all thought of abandoning its basic principles. The
only thing he questioned was the correctness of the Co-
pernican-Ptolemaic system of epicycles. Kepler had at his
.disposal extensive and precise observations of the planet
Mars obtained by the Danish astronomer Tycho Brahe (1546-
1601)—most proficient observer of that period. Using Mars
as an example, Kepler set out to make a detailed study
of the nature of planetary motions.
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Since the apparent motion of Mars is due both to the
motion of Mars itself and of the earth, Kepler decided first
to define precisely the earth’s orbit. To do this he applied
an ingenious technique that permitted him first to study
the irregularities in the earth’s orbit. Its underlying prin-
ciple consists in the following. ' ‘

Let us suppose that Mars is observed at intervals of time
following opposition equal to one, two and several orbit-
al periods of the planet. Mars will then always be in one
and the same position in its orbit, while the earth will oc-
cupy different positions (see F ig. 11, M refers to Mars and
E,, E,, E,, etc., refer to the earth).

If the earth is at E, at the first observation, then in
687 days (the Martian orbital period) it will not have time
to complete two full circuits and will be at E,. After the
next 687 days it will be at E, and so on.

First of all, note that

vy it is possible to deter-

mine the angles between
different positions of the
sun as seen from the
earth by comparing the
apparent solar positions
on the ecliptic at dif-
ferent instants. Indeéd,
the apparent distance
covered by the sun along
the ecliptic in degrees
. i s s orbit during a- certain - time
Fig. 11. Determining the earth’s orb interval will be equal to
the angle swept out by the sun-earth line during this time. The
motion of the sun along the ecliptic had been studied by the
“ancient Greeks and by Tycho Brahe. So Keplerhad at his dis-
posal a rather precise set of tables of solar motion with indi-
cations of where the sun should be on the ecliptic each day.

Thus, the angles E,SE;, E,SE,, etc., were known to Kep-
ler. From observations one could find the angles SE,M,
‘SE,M, etc., between the sun and Mars.* Then, from tri-

" % These angles are not usually determined directly, since Mars
and the sun are rarely visible in the sky at one time, but by
measuring the positions of these bodies relative to the stars, the an-
gular distances between which are known.
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angles SME,, SME,, SME;, etc., in
which one side (SM) is always constant
and two angles are known, it is pos-
sible by trigonometry to determine
the distances SE,, SE,, etc., in frac-
tions of the distance of SM and en-
ter, on the drawing, points that cor-
respond to the positions of the earth Fig. 12. Kepler’s concep-
at different instants. It is then pos- tion of the earth’s orbit
sible to use these points to draw

a curve that depicts the path of the earth about the sun.

It was found that this curve is a circle with the sun not
exactly in the centre but slightly displaced from it. (Fig.
12.) The distance OS between the centre of the circle and
the position of the sun was, according to Kepler’s figures,
roughly 1/59 the radius of the circle. This is a very small
value. In a circle of radius 10 ¢m. this displacement would
amount to only 1.5 mm.

Kepler also noticed that the earth does not move uniform-
ly in its orbit. When the earth is closest to the sun near
P in Fig. 12—this point in the orbit is called the perihe-
lion—it moves faster than when it moves away from the
sun and approaches A (this point of the orbit most distant
from the sun is known as the apheliorn). Taking into account
this irregularity, Kepler compiled a detailed table of the
earth’s orbital motions with the positions of the earth
given for nearly every day of the year.

Having completed this work, Kepler began a revision of
the Martian orbit. From Tycho Brahe’s observations he
selected those that gave
the positions of the planet
every one or several of
its orbital periods.

Fig. 13 shows the po-
sitions of the earth and
Mars at opposition (E , M)
and after a single Martian
orbital period (£;M). Kep-
ler could determine the
anglew and the distance SE;
from the tables of terres-
trial motion that he had Fig. 13. Determining the orbit of Mars
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compiled. Angle SME, was determined from observations.
In this way, from triangle SME, it was possible to find
SM, the distance of Mars from the sun.

In a similar manner Kepler computed the distance of
Mars from the sun at different points in the orbit and
attempted to find a curve that would pass through all these
points. However, after a long time and arduous labour

iy

(8!

Fig. 14. When a plane cuts a cylinder or a cone it produces an
ellipse

Kepler concluded that the Martian orbit could not be a
circle and that the motion of this planet could not be repre-
sented by a combination of circular motions. Thus it was
that the view which had predominated for centuries—
celestial motions could only be circular motions—was
disproved. Kepler then tried to draw an elongated curve
through these points and found—again after numerous
trials—that the Martian orbit could very well be represented
by an ellipse, the simplest type of oval curve resembling
an elongated circle with the sun at ome of the foci.*

We know that the ellipse is a curve, for any point of
which the sum of its distances from two given points called
the foci of the ellipse is a constant. An ellipse may be
oFbtaimzd by an inclined plane cutting a cone or cylinder.
(Fig. 14).

In Fig. 15, F, and F, are foci of the ellipse and O is
the centre. AD is the major axis and BE the minor axis

*-This is a simplified version of Kepler's discovery. The actual
reasoning was far more involved.
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of the ellipse. AO=0D and BO=OF are the semi-major
and semi-minor axes of the ellipse respectively. AD is
known asthe line of apsid>s. The ratio e==?)—1:1—‘ 2271} is called
the eccentricity of the ellipse. The greater the eccentric-
ity the more displaced are the foci from the centre and

the greater is the difference between the semi-major and

Fig. 15. An ellipse. The sums r+r,=r'y-r'y =r",+r", are
constant and equal to the major axis of the ellipse

semi-minor axes. The distance of the centre of the ellipse
from the foci is calculated from the equation OF;=0OF,=
=eXO0A. The semi-minor axis BO is related to the semi-
major axis AO and the eccentricity e by the equation:

BO = A0\ T—¢.

The more BO differs from AQO the more elongated is the el-
lipse and the more it differs from a circle. When the ec-
centricity is small the semi-major and semi-minor axes are
nearly the same, and the ellipse differs but slightly from a
circle.

From the equation relating A0, BO and e it may be
seen that if, for example, the eccentricity is 0.1 and
A0 =10 cm., that is, the foci are displaced from the centre
1 cm., the difference between the semi-major axis and
the semi-minor axis is only 0.05 cm.

Kepler computed the eccentricity of the elliptical orbit
of Mars at about 1/11. The semi-major axis of the Martian
orbit was 1.52 times that of the radius of the circle in
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which the earth revolved. Fig. 16 illustrates an elliptical
orbit with this eccentricity. Judging from the drawing it
is very difficult to distinguish the ellipse from a circle,
but the displacement of the sun with respect to the centre
of the ellipse is readily apparent.

Observations showed that Mars appears to oscillate about
the ecliptic. Earlier this was explained by means of ad-

Perinelion Aphetion

Fig. 16. The Martian orbit after Kepler

ditional planetary motions in epicycles. And Copernicus
adhered to it too. Analyzing the observations of Tycho
Brahe, Kepler found that all of Mars’ deviations from the
ecliptic could be explained by the fact that Mars always
moves in a single plane which is inclined to the earth’s
plane. This angle is known as the inclination of the planetary
orbit. For Mars it is roughly 2°.

Summarizing, Kepler established the fact that Mars
moves in an elliptical orbit in a plane inclined 2° to the
plane of the earth’s orbit, with the sun in a focus of this
orbit.

This was the first in a series of remarkable regularities
that Kepler discovered in the motion of Mars.

Kepler then made a study of the peculiarities of
the planet’s orbital motion. He found that near perihelion
Mars covers in two months a path of 37°.0 as seen from
the sun, while during the same period of time near aphelion
Mars sweeps out an arc of only 25°.8. Thus, the farther Mars
is from the sun the slower it moves in its orbit: near peri-
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helion the speed is great-

- —————
—————

est, near aphelion, the M .-~ DN
least. Kepler tried a - N,
large number of hypo- 5 A

M
theses and at last hit P NSz, A

upon a remarkable regu-
larity (Fig. 17): Mars
moves in its orbit in
such a way that if we
take the sections of its
path M, M,, MyM,, etc., Fig. 17. The “Law of Areas”: if the
that. Mars”swoops ont piene syecps ut, e o Ml
' d_urmg One.and the same the areas c;fthes({laded sectors are equai
time in different parts

of the orbit, and connect the ends of the arcs
with the sun, the areas of these sectors (SM,M,,
SM,M,, etc.) will be equal.* This regularity may be ex-
pressed otherwise: the areas swept over by the radius vector
(line joining the centre of the sun with the centre of the
planet) of the planet are proportional to the times.

This was the second remarkable regularity in the mo-
tion of Mars—the Law of Areas. Thus, for Mars two impor-
‘tant laws were found that are now known as the First and
Second Keplerian Laws.

1. The planet moves in an ellipse with the sun at one
focus.

2. The -straight line connecting the planet with the
sun (the radius vector of the planet) passes over equal
areas in equal intervals of time.

Although Kepler established these two laws only with
respect to Mars he was convinced that they hold for all
planets. For one thing, Kepler could straightway verify
the validity of his laws as regards the earth. Indeed, ac-
cording to Kepler’s data the earth moves in a circle with
the sun displaced from the centre 1/59 the radius. This,
then, should be the eccentricity of the earth’s elliptical
orbit. With an eccentricity so small the semi-minor axis
should differ from the semi-major axis by only one part in
7,000. Of course, in his day Kepler was unable to distin-

* To make the idea clear, Fig. 17 depicts a much more elongated
elliﬁse than that of the Martian orbit. The lengths of the arcs M;M,,
MM,, etc., differ greatly from actuality.
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guish such an ellipse from a circle.* But at any rate the
data on the earth’s motion that Kepler had at hand did not
conflict with the First Law. As regards the Second Law,
Kepler’s tables of the earth’s motion revealed that the
earth moves faster when closest to the sun and slower when
farther away, exactly as follows from the Second Law.

Later, Kepler determined the approximate elliptical
orbits of the other planets.

Kepler’s First and Second Laws were momentous discov-
eries for the science of the heavens. But Kepler did not
give up the hope of finding a general law for all the plan-
ets of the solar system that would embrace the prominent
fact that the farther a planet is from the sun the slower it
moves. This remarkable ratio Kepler discovered only in
1618; it is now known as Kepler’s Third Law. By correlat-
ing the sizes of the orbits of the planets and their orbital
periods about the sun, Kepler discovered that the squares
of the periods of revolution of any two planets about the
sun are to each other as the cubes of the semi-major axes
of their elliptical orbits (or, otherwise stated, as the cubes
of their mean distances from the sun).

For example, the mean distance of the earth from the
sun is to the mean distance of Mars as 1 : 1.52 (according
to Kepler’s data) and their periods of revolution about the
sun are as 1:1.88. If we cube the first ratio and square the
second we obtain nearly equal values: 1/3.53 and 1/3.54.

Correlating the mean distances from the sun of the earth
and Jupiter we obtain for the ratio of the cubes of the dis-
tances 1/125 (it was known that Jupiter is roughly five
times farther from the sun than the earth); for the squares of
the periods we find 1/144 (Jupiter has an orbital period of
about 12 years). The equality of these ratios is naturally
only approximate since the distance of Jupiter from the
sun and its period of revolution were rather imperfectly
known at that time. But Kepler regarded his law as abso-
lutely exact. :

If we take the earth-sun distance and the earth’s orbit-
al period to be unity, and utilize present-day data on the

. * One should bear in mind that in Kepler's day all observations
(including those of Tycho Brahe that Kepler utilized) were naked-eye
observations.
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distances and orbital periods of the planets we obtain the
following table:

Table 1

]S?;‘i;?:mf o | g -
Mercury . . . . 0.387 0.241 0.058 0.058
Venus . . . . 0.723 0.615 0.378 0.378
Earth. . . . . 1.000 1.000 1.000 1.000
Mars . . . . . 1.524 1.881 3.540 3.538
Jupiter . . . . 5.203 11.862 140.8 140.7
Saturn . . . . 9.539 29.458 868.0 867.9

From the table it is seen that for any two planets the
ratio of the cubes of their mean distances from the sun
(a, Ja,)* almost exactly coincides with the ratio of the squares
‘of their periods 7,2 /T,®. The reasons for the slight deviations
from the Third Law that are apparent from the tabulated
numbers will be explained later on.

On the basis of the laws that he had discovered and
after many years of painstaking computation, Kepler com-
piled tables that indicated the position of each planet in
the heavens at any instant of time. These tables were is-
sued in 1627 and proved far superior to all the astronomical
tables in use before. This was a clear demonstration of
the correctness of his laws and justified his place in the
history of astronomy as the “law-giver of the heavens.”

We must once again stress the fact that Kepler believed
his laws applicable to the movements of all planets, and
also to those of the moon and the four Jovian satellites
then known. Kepler correlated the distances of Jupiter’s
satellites from the planet and their orbital periods and
found that his Third Law held. He applied his first two
laws to the motion of the moon, but it turned out that lu-
nar motion is complicated by a large number of irregular-
ities which Kepler was unable to explain.

Kepler’s studies brought to a close .the first period in
the investigation of planetary motion, which may be called
the descriptive or geometric period. How the planets
moved was known, and detailed and rather accurate tables
of planetary motion had been compiled, but it was still not
clear why the planets moved as they did—in accordance
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with Kepler's Laws. What makes the planets move about
the sun, Jupiter’s satellites round their primary, and the
moon round the earth?

The sources of the development of the causal theory of
planetary motion—the dynamics of the solar system—are
intimately bound to the same glarious names: Copernicus,
Kepler and Galileo.

3. THE DISCOVERY OF THE LAW OF GRAVITATION

Everyone knows that all bodies fall to the earth be-
cause of the force of gravity. All material bodies that are in
no way supported will fall to earth. What makes them fall?
The ancient Greeks “explained” this simple fact by saying
that all heavy bodies must strive “down,” to the centre of
the universe, which in antiquity was considered to be the
centre of the earth. And it was this property that they
called gravity. ‘

As long as the earth was considered something exception-
al and unique in the world, weight (or gravity) wasbelieved
to be a purely terrestrial phenomenon that had nothing to
do with things celestial. But the discoveries of Copernicus
and his adherents proved that the earth is an ordinary planet
moving about the sun together with the other planets and
that the earth is a heavenly body very much like other
heavenly bodies. In this connection it occurred that the
property of gravity was an attribute not only of the earth
but of other celestial bodies as well. If material bodies in
the vicinity of the earth strive towards its centre, then
these same bodies in the vicinity of the moon, planets or
sun should also strive to the centres of these celestial ob-
jects too. In other words, they should be attracted by these
objects. ‘

Copernicus and, later, Kepler correctly supposed that
celestial bodies possess the property of attracting.* They
regarded this property as the tendency of homogeneous
bodies to coalesce. In his book Astronomia nova Kepler
writes: ,

“Gravity is the mutual inclination between similar bod-

* Similar views on gravity had been expressed earlier by Nicholas
of Cusa and Leonardo da Vinci.
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ies striving to merge, coalesce. ... No matter where we
put the earth, heavy bodies will always strive to move to-
wards it due to their peculiarity. ... If two stones were
removed to any part of the world, near each other but out-
side the field of force of a third related body, then the two
stones, like two magnetic bodies, would come together. . . .”

Thus, due to an extension of the property of gravity
to other celestial bodies, the question now posed was that
of the interaction of these bodies. '

On the other hand, the peculiarities in the structure
of the solar system that were discovered by Copernicus
showed that the sun, being at the centre of the system of
planets, played a definite role in their motion. In assum-
ing that the sun and planets possess the property of at-
tracting, Copernicus recognized the influence of the sun on
the planets. The part played by the sun in planetary mo-
tion was still more clear-cut in Kepler’s Laws. The sun
was in a focus of all the elliptical orbits of the planets
(First Law); the planets moved faster when closer to the -
sun and slowed down when the distance increased (Second
Law); the orbital periods of all the planets and their solar
distances are related by a single regularity (Third Law).

Kepler himself believed that planetary motion was gov-
erned by the sun. He propounded correct views on gravita-
tion, proclaiming that “two separate bodies strive towards
each other like two magnets”; gravitation, according to
Kepler, has great importance in plametary motion. It
holds the planets to the sun. However, Kepler’s views on
this question were not exactly correct. He believed that the
sun attracted the planets like a magnet and in its rotation
pulled the planets around.

The next step in the development of conceptions con-
cerning the relation between planetary attraction and
motion is closely connected with discoveries in the mechan-
ics of material bodies.

Science is indebted to Galileo for these discoveries,
Galileo’s work upset the erroneous views on the motion of
material bodies that had dominated the world for two
millennia, and lay the foundation of a mechanics that is in
use to this day.

Before Galileo the dominant conception was that bodies
could move only as long as a force acted on them, and in
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the absence of forces, bodies should remain at rest. This
point of view had seemed so in accord with the facts of
everyday life that it had remained unquestioned for ages.
It was the genius of Galileo that first found it to be falla-
cious.

Galileo carried out a number of experiments with a
smooth and polished metal ball rolled down a smooth in-
clined board. If the ball is pushed upwards it slows down,
stops and then begins to descend at an accelerated rate.
Galileo found that if the board is made less sloping the ball
will be less retarded in its upward movement and less ac-
celerated in its descent.

And what if the board is exactly horizontal? Obviously,
the ball should then experience neither retardation nor ac-
celeration and should roll for an indefinitely long period
of time without accelerating or decelerating its motion.
In Galileo’s own words: “When a body moves in a horizon-
tal plane without encountering any resistance ... this
motion is uniform and would continue without end if the
plane extended out into space without end?”

Of course, practically, such an experiment with a hori-
zontal board is impossible, for the ball would stop in any
event due to the friction of the board. This is precisely
where Galileo’s genius comes in, for he was able to abstract
himself from the action of friction and to perceive that
bodies are accelerated or decelerated due to the action of
different forces. And if the body is not acted upon by
forces it will move at an unaltered rate (uniformly) and in
a straight line. This property of a body to move in the
absence of an acting force uniformly and rectilinearly be-
came known as inertia.

Galileo’s discovery permitted an entirely different view
of the causes of planetary motion. To explain the motions
of the planets Kepler required the concept of a “pushing”
force. This was now unnecessary since the planets could
move without it, by inertia. The forces acting on the plan-
ets were invoked to explain not the fact that they moved
but only the poculiarities of the motion. It was this ap-
proach that made possible a correctly established relation-
ship between attraction and planetary motion.

In 1666 the Italian scholar Borelli said the following
on the role of gravitation:
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“Let us suppose that a planet tends toward the sun and
at the same time, in its circular motion, recedes from this
central body in the middle of the circle. If these oppo-
sing forces are equal they will balance, and the planets will
continue to revolve about the sun.” L

The English scientist Robert Hooke went further. In
1674 he wrote in his paper “An Attempt to Prove the Motion
of the Earth from Observations”: .

“[At a future date] I shall explain a System of the World
differing in many particulars from any yet known, [and]
answering in all things to the common rules of mechanical
motions. This depends upon three suppositions: first,
that all celestial bodies whatsoever have an attraction or
gravitating power towards their own centres. . . . The sec-
ond supposition is this: that all bodies whatsoever that
- are put into a direct and simple motion, will so continue
to move forward in a straight line, till they are by some’
other effectual powers deflected and bent into a motion,
describing a circle, ellipse, or some other more compounded
curve line. The third supposition 1is: that these attrac-
tive powers are so much the more powerful in operating,
. by how much the nearer the body wrought upon is to their
own centres.” .

Borelli and Hooke were now not far from the truth, But
their ideas were mere conjectures. What was needed was
rigorous proof that the planetary motions obey the forces
of attraction and that the existence of gravitation really
explains the observed regularities of these motions.

This was done by the great English scientist Isaac New-
ton (1642-1727). '

Newton became engaged in problems of gravitation and
planetary motion as early as 1665-66 (almost at the same
time as Borellj and Hooke) and by 1680 he already had a
complete theory of his own. Newton published the results
in 1687 in his famous book Philosophiae Naturalis Principia
Mathematica (The Mathematical Principles of Natural Phi-
losophy). ,

In this remarkable work Newton embraced :in a single
summarization all the previous discoveries in the field of
terrestrial and celestial motion and formulated his famous
“Laws” that formed the basis of mechanics—one of the
theoretical fundamentals of technical science.
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‘Newton’s First Law (the law of inertia) states that
every body continues in its state of rest, or of uniform
motion in a straight line, unless it is compelled to change
that state by forces impressed upon it.

Newton’s Second Law relates the acceleration of a body
to the impressed force. According to this Law the accelera-
tion, w, acquired by a body is proportional to the acting
force, F, and inversely proportional to the mass of the
body, m:
i r
W == —
m

In this Law we encounter the concept of mass, which
was first derived by Newton. Newton calls mass the meas-
ure of the quantity of matter contained within a body.

Newton's Third Law states that to every action there
is an equal and opposite reaction.

These three laws are fully borne out by practice in ter-
restrial conditions and constitute the basis for studying
the motions of material bodies on earth. Newton applied
them to the motions of celestial bodies not doubting for
a moment that celestial bodies are subject to the same laws
as are terrestrial.

Fig. 18 is, schematically, a small part of the path of
a planet, P, round the sun, S. P, is the position of the
planet at a certain instant of time. If no forces were acting
on the planet it would move, by the law of inertia, uniform-
ly and in a straight line with the speed it had at point P,
(the direction of the planet’s motion is indicated by an ar-
row). This motion would be tangent to the curve at this
point. But since the planet moves in a curve it is acted
upon by some force that compels it to deviate from a recti-

linear path. A planet’s orbit is always

5 ] concave towards the sun, tHat is to say,
" the deviation of a planet from a rectilinear

®  path is always directed towards the sun.

For this reason, the force acting on the
Fig. 18. How a  planet should be directed towards the sun.
lanet deviates Newton proved that if the motion of a
pr:t’ﬁ : nffgf‘%ﬂ; material body about a certain centre sat-

isfies the Law of Areas, then the force that

action of solar ; .
attraction deflects the material body from a straight
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line is not merely in the general direction of the centre
but always exactly towards the centre.*

Since the motion of planets round the sun satisfies the
Law of Areas, these planets should move about the sun
due to attraction toward the latter. Thus, what formerly
was propounded as a speculation now became a rigorously
proven fact.

Newton then proceeded to derive the formulae that per-
mit determining —on the basis of the geometric properties
of the curve described by a material body in its motion
about a centre of force—the law of variation of the force
of attraction with distance from this centre.

He based his conclusions on the fact that the curve in
which a body moves will deviate the greater from a straight
line (that is, the curvature will be the greater), the stronger
the attraction of the centre. Newton’s calculations showed
that if a curve described by a material body is an ellipse,
in one of the foci of which is the attracting centre, the force
of attraction of this centre will diminish in proportion to
the square of the distance from it.

From Kepler’s First Law we know that each planet moves
in an ellipse with the sun at one of the foci. Therefore,
the force of attraction acting on a planet is inversely pro-
portional to the square of the distance of the planet from
the sun. Thus, starting with Kepler’s planetary geometry,
Newton was able to prove that the planets move due to
solar attraction, which varies in inverse proportion to the
square of the distance of the planet from the sun.

Planetary motion about the sun was now explained. But
Newton reasoned that the force of attraction should also
govern the movements of such bodies as the satellites of
planets. As Newton saw it, the satellites too should be
attracted to their primaries with a force that varies in-
versely with the square of the distance from the centre of
the planet.

When Newton entered the scene four of Jupiter’s satel-
lites had been discovered by Galileo and five of Saturn’s
had been discovered during the period between 1655 and
1684 by Huygens and Cassini. Observations of the Jovian

* A rigorous and detailed proof of this and others of Newton's
theorems is given in the Appendix.
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moons showed that they move uniformly in circles with
Jupiter in the centre of their orbits. The movements of these
satellites satisfied exactly Kepler’s Third Law (the squares
of the periods of revolution of the different satellites vary
as the cubes of their distances from Jupiter), and this ratio
held for the satellites of Saturn too.*

Insofar as uniform circular motion obviously satisfies
the Law of Areas, from Newton’s theorems it followed that
the forces, which compel the satellites of Jupiter and Sat-
urn to deviate continually from a rectilinear path and
trace out circles, are directed towards Jupiter and Saturn. -
Newton proved .a simple theorem which stated that mate-
rial bodies moving around a centre of force in circles and
satisfying Kepler’s Third Law are attracted to the centre
with a force that varies inversely with the square of the
distance. From this it follows that the force with which the
satellites of Jupiter or Saturn are attracted to their pri-
maries is inversely proportional to the square of the dis-
tance from the planet.

Newton thus gave rigorous proof that all the motions.
of bodies in the solar system result from the action of the
force of gravity. '

But this was not all. Newton found yet another, indi-
‘rect, proof of the law of gravitation that he had discovered.
Let us reason along with the discoverer. Take a material
body moving under the action of the attraction of a centre
of force which obeys the inverse-square law. What regulari-
ties should we then observe in the motion of this body?

Newton proved the following theorem: if a material body
is in motion due to the attraction of a centre of force, this
motion should satisfy the Law of Areas. If this force of
attraction diminishes with the square of the distance from
the centre, the body can move in one of the following
curves: ellipse (a special case of which is the circle), para-
bola or hyperbola. Now if several material bodies are mov-
ing in different ellipses about .an attractive centre, then,
© given a force of attraction towards the centre that is in-

* Actually, the satellites of Jupiter and Saturn move not in cir-
cles but in ellipses of very small eccentricity (observations in those
times were not accurate enough to detect ellipticity in their orbits).
However, this in no way keeps them from obeying Kepler’s Third Law.
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versely proportional to the square of the distance to it,
the squares of the periods of revolution will vary as the
cubes of the semi-major axes of their elliptical orbits.

Summarizing, if the planets move due to gravitational
forces then Kepler’s three laws must hold. And since these
laws were deduced from observations Newton’s reasoning
served as indirect confirmation of the existence of gravita-
tional forces. , _

But Newton was not only able to prove that the exist-
ence of attracting forces between the planets and the sun
follows from Kepler’s laws. He succeeded in linking up
the gravitational forges, which appeared to act only between
celestial bodies, with such a familiar occurrence as the
falling of bodies to the earth. Newton studied the lunar
motions and proved that the force with which the moon is
attracted to the earth and which governs the moon’s move-
ments is nothing other than the force of gravity on earth,
which force extends to the moon losing strength with the
square of the distance from the earth.

Galileo had already conducted experiments which showed
~ that heavy bodies fall to earth with a uniformly accelerat-
ed motion equal to roughly 9.8 m/sec?. And what is more,
all heavy bodies moving in any direction (up, down, or at
an angle to the horizon) possess the same acceleration di-
‘rected vertically downwards. Hence, accordinig to Newton's
Second Law, all bodies are acted upon by a force directed
vertically downwards (toward the centre of the earth),
which is the same as to say that all bodies are atiracted to
the centre of the earth. And this is the force that determines
the gravity (weight) of the bodies. Bodies possess weight
both at the earth’s surface and at high-mountain altitude.
And so what is there to stop this earth-centred attractive
force from operating at a greater distance from the surface?
Newton naturally suspected it to extend out at least to the
moon. And this force diminished, so Newton reasoned, ac-
cording to the same inverse-square law that wds evident in
the case of the sun, Jupiter, and Saturn. Newton was able
to verify his conjecture by calculation since at that time
both the moon-earth distance and the earth’s radius were
known.

At the earth’s surface, that is, at a distance of about
6,370 km. from its centre, the rate of acceleration is roughly
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9.8 m/sec?. Acceleration produced by the earth’s gravita-
tion at the lunar distance, r, (about 384,000 km.) should

diminish by a factor of %%—gj’f ~3,640. Dividing

9.8 m/sec? by 3,640 we obtain 0.270 cm Jsec?, This should
be the acceleration of the moon if it is caused by the earth’s
attraction. Now let us compute approximately the actual|
acceleration of the moon, on the assumption that it moves
in a circle. In uniform circular motion, the acceleration,
w, is equal to
3

w = -
where v is the speed of the moon in its orbit, while r is the
distance between the moon and the earth. The speed, v,
of the moon in its orbit is equal to 2=r (T, where T is the
orbital period of the moon, equal to 27.33 days. Solving
the equation we obtain

v~ 1.02 km/sec.
Squaring v and dividing by r, we find
w = 0.271 cm/sec?.

Thus, the actual acceleration of the moon nearly coin-
cides with that caused by the earth’s attraction. The agree-
ment between these two numbers (0.270 and 0.271) is very
good if, in addition, we take into account that the moon’s
orbit is not an exact circle but an ellipse.

Consequently, weight at the surface of the earth and
the motion of the moon are due to the same force. This
force with which the earth attracts all material bodies to
its centre is inversely proportional to the square of the
distance from the centre. Thus, weight on earth is the
force with which this planet attracts these bodies.

Newton clinches this argument with the following rea-
soning. Suppose the earth like Saturn or Jupiter were cir-
cled by several moons (satellites). The attracting force
that holds them in their orbits is inversely proportional to
the square of the distance from the earth’s centre. Now if
the closest satellite were so close as to almost touch the tops
of the highest terrestrial mountains, the attracting force
that would be maintaining it in orbit would be some 3,640
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times that acting on the moon. The acceleration of this sat-
ellite would then be roughly

0.270 X 3,640 cm/sec? ~ 9.8 m/sec®.

Like all material bodies, this satellite would have weight
with the concomitant acceleration of 9.8 m/sec? towards
the centre of the earth. If the force of gravity differed from
the force that held the satellite in its orbit, its acceleration
would be the sum of the two accelerations (one due to the
force of gravity and the other to the force governing the
motion of the satellite), in other words

9.8 + 9.8 =19.6 m/sec®.

But since everywhere on earth the acceleration of fall-
ing bodies is equal not to 19.6 m/sec? but to 9.8 m/sec?,
the force that holds the moon in its orbit is the same force
that we on earth call weight.

The foregoing suggests the conclusion that the revolu-
tion of all planets about the sun, the Jovian satellites about
Jupiter, Saturn’s satellites round Saturn, and the moon
orbiting the earth are phenomena of the same nature. All
satellites and planets receive their motion from a force
directed to the centre of the body around which they move,
This force diminishes as one recedes from Jupiter, Saturn,
the sun or earth in proportion to the square of the distance.
Consequently, these bodies possess the property of attract-
ing other celestial objects. On earth, this attraction embraces
all material bodies producing what is known as weight.
It seems natural, therefore, that material bodies on the
sun, on Jupiter, Saturn, Venus, Mars and Mercury should
have the same property —weight.

As follows from Newton's Third Law, attraction is a
mutual property. Therefore, if the sun draws to itself all
the planets, then each planet should draw to itself the sun,
If the earth attracts the moon, the latter should  attract
the earth. And, finally, if all material bodies are drawn
towards the earth, they should also draw the earth to them-
selves. This suggests that the property of gravitation is
innate not only to every celestial body, but in general to
all material bodies, all material particles that comprise
these bodies. . :

On what does the magnitude of the attracting force des
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pend? We already know that this force decreases with the
distance between the gravitating bodies. But what else is
there to alter the magnitude of this force? - -

Newton proved very simply that the gravitational force
is a function of the mass of the body: the greater the mass
the stronger the pull it exerts on other bodies.

Experiments on the earth show that the force with which

the earth attracts all material bodies imparts to them all
the same acceleration (9.8 m/sec?). Newton's Second Law
states that the acceleration w=F{/m. If the acceleration
of all falling bodies is constant, then the force acting on
a body should vary in proportion to the mass of the body,
increasing and diminishing with the mass.
- Or we could-argue this way. The attraction of material
bodies by the earth determines their weight, which increases
in proportion to the quantity of matter contained in them.
Hence, the attracting force is proportional to the masses
of the bodies. : ‘

The force of attraction is thus proportional to the mass
of the attracting body. For instance, if there are three
bodies:- A, B, and C of masses ma, mg, mc, body A4 will
attract bodies B and C with a force proportional to their
masses: :

Fap _ .mp
Fac me

But Newton's Third Law states that a body attracted by
another body should itself attract the latter with the same
force. Consequently, bodies B and C attract body A with
forces equal to F,p and ‘Fac and proportional to the masses
of these bodies. Hence, the forces of attraction are pro-
portional to the masses of the attracting bodies.

It was from such reasoning that Newton arrived at his
tamous law of universal gravitation:

every particle of matter attracts every other particle
with: a force directly proportional to the masses of both
particles (to the product of their masses) and inversely pro-
portional to th> square of their distance apart. a ‘
‘ Mathematically, -this law may be expressed as follows.
Denoting the masses of the material particles by my and
m,, the distance between them by r, we find the force of

gravitation F to be:
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m, m,
F—jmurs
The number f is called the gravitation constant and is
the same for all material particles. At the present time,
the gravitational constants have been determined with a
sutficient degree of accuracy. If we take the solar mass as
unity, the mean sun-earth distance as unit distance and
the mean solar day as unit time, then f=0.000295912.
In c.g.s. units (centimetre, gram, second), f is equal
to 6.67x10® accurate to 0.01Xx10-8. The possible error
here is 0.005 x 103,

4. THE ATTRACTION OF MATERIAL BODIES
OF DIFFERENT.. SHAPES

The inverse-square law was formulated by Newton for
material particles. But celestial bodies—the sun, moon,
planets —are not material particles. The natural question
is: can we study the motions of these bodies by applying
Newton'’s law? What law states how the attraction of ma-
terial bodies varies with distance?

We consider two material bodies A and B whose dimen-
sions are very small in comparison to the distance between
them. Mentally, we divide bodies A and B into a large
number of very small parts which we shall call “particles.”
The particles of the bodies attract each other in keeping
with Newton’s law, and the total attraction of 4 and B
builds up from the mutual attractions of the individual
particles. But all the particles of A are, practically, at
one and the same distance from the particles of B. There-
fore the resultant attractive force of the particles of bod-
ies A and B will be inversely proportional to the square
of the distance between these bodies. Thus, Newton’s law
holds for material bodies whose dimensions are very small
as' compared to the distance between them. In mechanics
these bodies are termed material particles. v
" Material particles are sometimes regarded as small-sized
bodies. However, in some problems even the sun and planets
may be regarded -as particles. Indeed, let us comnsider
the problem of the motion of planets about the sun. Here,
the distances of the planets from the sun are great in com-
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parison to their sizes (the earth-sun. distance is roughly
100 times the solar diameter and 10,000 times the earth’s
diameter), which means that, without committing a gross
error, the sun and planets may be regarded as attracting
each other like particles.

However, by no means in all cases is the distance between
the attracting bodies great. ‘

Take, for instance, the earth’s pull on a small material
body close to the surface. In this case, the very concept
of distance between the earth and the body becomes vague,
since one may speak of the distance to the earth’s surface
or to the centre of the earth, etc. If we mentally divide
the earth into small particles of equal mass, these particles
will attract our body with different forces.

Then what law will describe the overall total attraction
of the earth if each particle of the earth follows the inverse-
square law in pulling the body to it? '

When we compared the force of gravity at the earth’s
surface and the force that holds the moon to the earth, we
considered that the earth attracts all material bodies both
close to its surface and at a large distance with a force
inversely proportional to the square of the distance from
the centre of the earth. Isn’t there some contradiction here?

This problem was first posed and solved by Newton.
He proved a theorem according to which a uniform sphere
consisting of particles that attract by the inverse-square
law attract other material bodies and is attracted by them
as a single material particle localized in the centre of the
sphere and concentrating within itself the entire mass of
the sphere (see Appendix for the proof). This remarkable
theorem is valid not only for a uniform sphere but also
for a sphere whose density varies only with the distance
from the centre of the sphere.

This theorem holds for the sun, earth and other planets
since they all are nearly spherical in shape. Thus, the
sun and planets attract each other like material points for
two reasons:

1) the distance between them is very great in compar-
ison with their dimensions;

2) they are nearly spherical in shape.

Of course, not all bodies are spherical and not in all cases
are the distances between the attracting bodies great in
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L]
comparison to their sizes. For /?p
them the law of force vary-
ing with distance becomes r
more complicated. 2

Consider, for example, the (¢ a™cZiD—meemeom- a

attraction of a particle, P,
(Fig. 19) by a material an- , . .
nulus of mass M and radius a, & 19. The force with Which
the thickness of which is very an annulus attracts point P does
. R not pass through its centre O
small in comparison with the
radius. Let particle P be at a distance r from the centre
of the annulus O and at a distance z from the plane of the
annulus. The particles of the annulus closest to P will
attract it with greater force than those farther away, with
the result that the direction of the gravitating force of
the annulus, F, will not pass through the centre of the
annulus but will be displaced towards the half closest to
P. To find the magnitude of the force F, we break the
annulus into tiny (“elementary”) particles, each of which
attracts point P according to Newton's law. By summing.
all these elementary forces we obtain the force of attraction
of the entire annulus.

Qualitative calculations show that the force of attrac-
tion by the annulus of particle P of unit mass at a compara-
tively great distance may be expressed approximately by
the equation: '

1
F=iM(+iw—7 7

From ‘this equation it may be seen that the attraction of
the annulus differs from that of a sphere of the same mass
with its cemtre at O by

which varies in complicated fashion with the distance r and
the position of the particle P relative to the plane of the
annulus.

Of special interest is the law of attraction of an ellipsoid
of revolution, which may be generated by revolving an
ellipse about its minor axis. In this figure, shown schemat-
jcally in Fig. 20, the distance OL is less than that of OFE;
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the plane cutting the axis LQ
/ /W\ / is an ellipse with semi-axes
g’ > OL and OE, while any plane

B 7,

W

‘ the axis of rotation of the
ellipsoid, the section EK is

‘ q called the equatorial section,

Fig. 20. An ellipsoid of revolution 18 radius OF, the equatorial

radius, and the distance OL,
OE—OL

the polar radius. The quantity o that is, the differ-
ence between the equatorial and polar radii, expressed in
fractions of the equatorial radius, is known as the oblate-
ness of the ellipsoid. An ellipsoid of revolution with small
oblateness (differing but slightly from a sphere) is often
termed a spheroid.

Compared to a uniform sphere, a uniform spheroid . of
radius OL has excess mass concentrated chiefly along the
equator (Fig. 21). The attraction of this surplus equato-
rial mass should resemble that of an annulus. Therefore,
the difference in the attraction of a sphere and a spheroid
of equal mass should be roughly the same as in the case of
a sphere and an annulus. The force will not vary exactly
in proportion to the square of the distance from the centre
of the spheroid. It does not pass exactly through the centre
but is displaced towards the half of the equatorial section
of the spheroid closest to the attracting point. True, since
the spheroid is symmetrical with respect to the axis of
rotation, the force of attraction will pass through this axis.

It is possible to compute the expression for the force of
attraction of a homogeneous spheroid. If a particle of mass
my=1 is relatively -distant from the spheroid, that is to
say, the distance r from the centre of the spheroid is far
greater than the equatorial radius of the spheroid a, we have,
approximately,

1 2 a2 22
F=t |5+ (35 222y,

5 5 8

7% cutting perpendicular LQ is

777
772222 acircle. The axis LQ is called

where ¢ is the oblateness of the spheroid, M is its mass,
a the equatorial radius, and z the distance of the particle
from the plane of the equatorial section of the spheroid.
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The force of attraction of the
spheroid differs from that of a
sphere by the following amount:

, 3 a? 9 a2 22
F'=iM (5% —55)e
This expression is very similar

to the difference between the forces
of attraction of an annulus and

h Fig. 21. The excess mass
sphere. ' ) of a spheroid is localized
The fact that the force with at its equator

which a spheroid attracts (and ‘
is attracted) does not pass through ‘its centre permits
of drawing the following important conclusion:

a material particle P, acting on a spheroid with a force
F, not only imparts to the spheroid translational motion
(determined by the motion of the centre of the spheroid,
0), but also tends to turn the axis of rotation of the sphe-
roid LQ.

This is clearly seen in Fig. 22. Particle P attracts both
the centre of the spheroid and its equatorial bulge. But the
attraction of the closer part of the spheroid is greater than
that of the more distant part since PK<{PE; particle P
not only attracts the spheroid imparting translational
motion but also tends to turn the equatorial plane EK in
the direction of the particle OP. :

Considering the expression for the attractive forces of
an annulus and spheroid, it may be remarked that as the
attracting particle recedes, that is, as the ratio a/r di-
minishes, the difference between the attraction of these
bodies and that of a sphere will decrease and, if r is, very
great in comparison with a, the annulus or spheroid will
exert a force that practically coincides with that of a sphere.
As we have seen, this holds for bodies of any shape. At
very great distances they all attract (and are attracted)
like. spheres or, to be more precise, like material particles
of the same mass localized in the centres of gravity of these
bodies, : :

The above detailed examination of the attraction of
ellipsoids was necessary because the earth and the other
planets are slightly oblate spheroids. The earth, for in-
stance, has a polar radius smaller thanthe equatorial
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radius by 21 km.,* for Jupiter the difference is 9,500 km.
Accordingly, the earth’s compression amounts to 1/297,
Jupiter’s to 1/16, while the greatest of all in the solar
system is that of Saturn—nearly 1/11.

Still, the effect of the compression of the planets on
solar gravitation is very small. It may be computed that

pP

Fig. 22. The attraction of a spheroid

the solar attraction of the earth differs from that of a sphere
of terrestrial mass by not more than ome part in
150,000,000,000. Thus, in considering planetary motion
about the sun one may totally ignore oblateness (that is,
one may regard these bodies as material points). However,
there are a number of problems in which one has to take
into account the supplementary attraction of the planet
caused by the departure from spherical shape.

5. EXPERIMENTAL DETECTION OF ATTRACTION BETWEEN
MATERIAL BODIES ON EARTH

The mutual attraction of material bodies was first detected
in the heavens. But Newton’s law applies to all material
particles irrespective of where they are located, and there-
fore attraction should exist between terrestrial bodies as

* The equatorial radius of the earth, accurate to within one kilo-
metre, is 6,378 km., the polar radius—6,357 km.
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well. This was actually found to be
the case 50 years after Newton’s
discovery, in the eighteenth cen-
tury. During a scientific expedi-
tion to South America in 1735-38
the French scientists Bouguer and
La Condamine noticed that in Fig. 23. The deviation of
the vicinity of mountains a plumb plumb bob near amountain
bob is deflected towards these

mountains. In 1774 the English scientist Maskelyne
made a very careful measurement of the deviations of a
plumb bob. He compared the direction of a plumb bob on
both sides of a narrow mountain ridge Schiehallion in Perth-
shire, Scotland, and found that these directions differ by
roughly 24, which means that the attraction of the moun-
tain deflected the plumb bob about 12’’. Omne can very
simply determine the force required to deflect 12"" a plumb
bob at the end of a line. Correlating this force with the weight
of the bob, one can find out how much greater is the attrac-
tion of the earth than that of the mountain. More, from
the dimensions of the mountain and its surmised density
it is possible to evaluate the mass of the mountain and
then also the mass of the earth as a whole (say, in grams
or tons).

This first determination of the absolute mass of the
earth was still inaccurate since the mass of the mountain
had not been evaluated with any precision. A British sci-
entist, Henry Cavendish, conducted more accurate experi-
ments in 1798 and measured the attraction exerted on a
small ball not by a mountain but by heavy lead balls, whose
masses were accurately known. In these measurements he used
a torsion balance, whose main component is a thin horizontal
rod with small balls on the ends suspended by a slender
elastic fibre (Fig. 24). If massive balls of lead are placed
close to the small balls the latter will be attracted and the
whole rod will turn and thus twist the suspension. The
force acting on the small balls is determined from the
torque. By comparing this force with the weight of the balls,
that is, with the attractive force of the earth, it is possible
to calculate how many times the mass of the earth is great-
er than the masses of the large balls. Cavendish found the
mass of the earth to be about 6x10%* grams=~06Xx10* tons.
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Since that time, numerous exper-
iments have been carried out to
correlate the force of gravity with
the attractive force of terrestrial
bodies.Theseexperiments have resulted
rather confidently in a more precise
-value for the mass of the earth—
5.974 x10* grams.

If we know the mass of the earth
Fig. 24. The Cavendish it is possible to calculate the force of

experiment attraction between any material bod-

ies. By way of illustration, let us find

out the force with which two balls of mass one kilogram each
at 10 cm. apart attract each other.

Supposing the radius of the earth to be about 6,000 km.,

or6 X108 cm., the force of attraction between these two balls

is less than that of the balls to the earth by a factor of

10 2 6x 1021
(toe) X 2 ~ 1,600,000,000.

The earth attracts these balls with a force of one kilo-
gram, while their mutual attraction is beyond all
comparison and amounts to about six ten-millionths of a
gram.

Similarly, one can calculate that two ships, each with
a displacement of 10,000 tons, passing at a distance of
100 metres will be attracted to each other with a force of.
60 grams.

The foregoing attests to the smallness of the forces of
attraction between bodies on earth and to the reason why
in our daily lives we do not perceive the action of these
forces.

But it would be misleading to think that the law of
universal gravitation has no practical application in our
earthly doings. The point is that the acceleration of gravi-
ty at the earth’s surface, due to the force of attraction
of the earth, is not everywhere constant. It varies with
the distance of the attracted particle from the centre of
the earth. Since the earth is oblate (a flattening at the
poles) and its equatorial radius is greater than the polar ra-
dius, acceleration due to gravity on the equator is slight-
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Iy less than at the poles.* Gravitational acceleration may
be measured at different altitudes above sea level. The
findings of such measurements made in different latitudes
and longitudes enable us to determine variations in the
distance to the earth’s centre, and, in this way, to find
the exact shape of our planet.

However, if we take into account the height above sea
level and variations associated with the shape of the
earth, acceleration due to gravity is found, in certain lo-
calities, to experience additional deviations. These are
what are known as enomalies of gravity. They result from
the upper layers of the earth’s crust being inhomogene-
ous. These layers may contain heavy rocks in some places
and light rocks in others. In the first case the gravi-
tational acceleration is slightly above average, while in the
second it is somewhat below average for the given local-
ity. The magnitude and character of anomalies due to
gravity are a clue to the distribution of rocks of differ-
ent density in the earth’s crust. One is able to “peep”
into the earth’s interior and get a picture of its geologi-
cal structure. This helps in geological prospecting for min-
eral resources.

The science that deals with measurements of variations
in acceleration due to gravity is called gravimetry. The
origin of this science shows how a law discovered in the
“sky” finds wide application in the study of purely
terrestrial problems. This illustrates vividly that there
is no hard and fast dividing line between the “terrestri-
al” and the “celestial,” that nature is integral, with the
game laws operative throughout the universe.

6. NEWTON'S LAW—THE THEORETICAL BASIS OF
CELESTIAL MOTION

 The laws of mechanics and the law of gravitation that
Newton discovered not only explained the apparent mo-
tions of the planets but opened up to astronomy entire-
ly new vistas. This was the foundation of celestial mechan-

* At the equator, acceleration due to gravity is also diminished
because of the action of a centrifugal force, which at the poles is zero
and on the equator a maximum,
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ics, the science that treats of the motions of heavenly
bodies.

Formerly, the sole object was to derive the true mo-
tions of bodies in space from their apparent paths in the heav-
ens, and then to describe these actual motions by means of

. some geometric conception. The study of motions was thus

of a geometric and descriptive nature.
After the discovery of the law of universal gravitation

that governs the motions of celestial bodies, theoretical

investigation of motions superseded the descriptive meth-
od. It was now possible to solve the theoretical prob-
lem of the motion in space of bodies under the action of mu-
tually attractive forces. The past and future motions of
celestial bodies were no longer a matter of guesswork and
deductions by analogy, but the subject of mathematical
calculation. .

The first problems of the motion of celestial objects con-
sidered as ordinary material bodies subject to mutually
gravitating forces were solved by Newton himself. One of
the simplest, and yet most basic is the problem of the
motions of two bodies attracting each other by the New-
ton’s law (the so-called “two-body problem ”).

We have already considered the problem of determin-
ing the force from a given motion. We said that if a ma-
terial body is in motion along an ellipse and about a cen-
tre of force at a focus of the ellipse, this motion should
be due to the attractive force of the centre and should
vary in accord with the inverse-square law. The present
problem is just the reverse — determine the motion of a ma-
terial body from a given force. We need to find out how
a material body attracted to a centre of force, C, will
move.

Fig. 25 shows a centre of force C attracting (according
to Newton’s law) like a material point of mass M, and
a body, P, moving under the action of the attraction . of
the centre of force, C. The force with which C draws P
towards it is:

Mm
72

F=j

where r is the distance between C and P, m is the mass
of P, and f is the constant of gravitation. The quantity
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fM defines what Newton calls the
«absolute force of the centre.”

Let the body P occupy position
P_at a certain instant of time ¢, which
wo shall call the initial instant. The
body’s subsequent motion depends
upon the velocity which it has at the
initial instant. Let this initial velocity g,
be v, and directed as indicated in f;%yzfdn{fﬁjaﬁ;“;u‘;i;
Fig.25. If P were not acted upon by any  due to graviation
other force it would continue in uniform
and rectilinear motion with the same velocity, v,, and during
a small interval of time A¢ it would cover the path P _A,.
But the force of attraction of C deflects the body from
its straight path and during this time it will describe
a small arc PyP;. PyA, is an indication of deflection from
a straight line; its length is connected with the magni-
tude of the force of attraction. When we determined the
force from the given motion of the body, the arc P P, and
the distance P,A, were known, and we had to determine
the force from this distance. In this new problem, how-
ever, the force is given and we must find P;A; and then
the position of the body, P, on the curve. Since the ac-
celeration, that is, the change in velocity of the
body P as a result of the gravitation of C, is known, we
can also find the velocity the body will have when it
arrives at point P;. Reasoning in the same way we can
find the position of P, after the next interval of time At, ete.

It is thus possible to find points Py, P,, etc., that de-
fine the path of the body P.

The nature of the motion of the body will change if the
initial velocity is different. We consider motion with an
initial veloecity v *, which is greater than »,. During the
interval of time A¢, the body will cover (at this speed)
a distance P _A,* which is greater than P_A, (Fig. 26).
But the deviation from rectilinear motion will be the same
in both cases inasmuch as the force at C is the same. For
this reason, if the small arcs P P, and P _P,* denote the
actual distances covered by the bodies in both cases, then
P, A, and P,*A,* chould be equal. Thus, as an inspec-
tion of Fig. 26 shows, increased initial velocity diminishes
the curvature of the trajectory. '
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Newton showed that if the ini-
tial velocity (for simplicity, we
consider v ) P .C) at a given posi-
tion of the body (that is, the
distance of P from C) does not ex-

ceed the value ]/2r_f/|_/1 (where fM

is the “absolute force of the cen-

[ig. 26. Tho greater the ¢ o5 ng' . iotho initial distance),

‘“Lﬁii‘f,,,‘[{ﬁ;’g’ﬁ% tthlfek;,s:t]tlhe the body, P, will describe an el-

lipse with a, focus at C. In the case

of small initial velocities, the el-

lipse will be greatly elongated along the straight line P.C,

with the initial point P, the aphelion (Fig. 27). As the

initial velocity is increased, the dimensions of the ellipse

will increase, as will also the orbital period in this el-
lipse.

At first, increasing the velocity will make the ellipse

rather more expanded than elongated and it will take on

a rounded form. At an initial velocity of v, = ':rﬂ the
curve will be a circle. This velocity is known as the cir-
cular velocity. Further increases in the initial velocity
will produce more and more elongated ellipses with less
expansion. Its semi-major axis and the maximum dis-

tance at which P recedes from C will increase more and more

rapidly. At » = / 2M the curve will no longer be closed.
o 7o

The semi-major axis of the ellipse will have reached infin-
ity and the initial veloci-
ty will now be so great

Yo that the attraction of the

H centre, C, will no longer
:50 be capable of returning P,
C—F ~ and the body will recede
\ from C for good. Newton
shows that the resulting

path will be a parabola. Fig.
28 shows the limb of the pa-

Fig, 27. The orbits of a body mov- rab.ola (middle curve)'along
ing in a gravitational field with Which t.he body P will re-
velocities less than critical cede to infinity without re-
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turning. (The other limb of the parabola is shown as a
dashed line.) The velocity vo=]/ gré—l!is called the critical or
parabolic velocity.
"2 M .
At v°>'/ - the body, P, will even less be able to

return to C. As Newton demonstrated, it will move in an
open curve called a hyperbola (the outermost curve in
Fig. 28). The greater the initial velocity v,, the less curved
will this hyperbola be and the faster P will recede
from C.

Consequently, the only path a body, P, can have around
a gravitating centre is along a conic section: an el-
lipse (a closed curve), if its initial velocity does not exceed
the critical velocity, and a parabola or hyperbola (open
curves) if the initial velocity is equal to or greater than crit-
ical. In the special case, when the initial velocity is directed
normally to P.C and its magni-

tude is exactly equal tol/-m, p
ro

will move about € in a circle.
Now if the initial velocity of P
is zero, it will simply fall to-
wards C (moving wunder gravi-
ty) along the straight line PC.
As P approaches C the force of
gravitation, and with it thejac-
celeration of P, will increase.

There is an important relation-
ship between the orbital period
of the celestial body, the semi-
major axis of the orbit and the
mass of the centre of force M:

4n2ql

™

This relationship brings us
to Kepler’s Third Law (it was
precisely in this manner that
Newton . derived this law
from his theorems). Also, Fig, 28. Ellipse, parabola
we are now able tQ compare and hyperbola

&9
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the masses of the centres of force about which celestial
bodies revolve. ‘

Let us consider the motion of the earth about the sun
and the moon round the earth. If we denote the orbital periods
of the earth and moon by T4 and T[], the mean earth-sun
and moon-earth distances by ad and e[j, and the masses
of the sun and earth by M and m@, we find that

42 3 4 273
TE? — “ﬂ';éandeD= ;‘maén
and
L5, "
g = B0 N M
whence
Mé_TZC‘S ad []

TR

Substituting the following approximate values: T4 =365
days, T[] =27 days, a[] = 384,000 km., a}=150,000,000 km.,
we obtain ,

m 3650 (384.000)% t
M 27 (150,000,000 ~ 330,000 ° ‘

In the same way, one may compare the masses of the sun
and any planet that has satellites, or the masses of two
planets with satellites. Newton accordingly determined the
masses of Jupiter and Saturn whose satellites were known
at that time. It turned out that the Jovian mass is less
than that of the sun by a factor of 1,000, while for Saturn
this figure is 3,000.

These first determinations of the masses of celestial bod-
ies showed that the planetary masses are very small in
comparison to that of the sun. When studying the mo-
tions of planets around the sun or of satellites around their
primaries, use may be made of the results of the solution
of the foregoing two-body problem, assuming the sun as
the centre of force in one case and the planet as that force
in the other. However, the problem of the motion of
a planet about the sun differs from the above problem of
motion about a centre of force. Indeed, we considered the
centre of force stationary, and, hence, did not take into ac-

=2

* Newton’s own, erroneous determinatibn of the earth’s mass at
1/170,000 that of the sun was due to the fact that the earth-sun dis-
tance was very imperfectly known at that time. .
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_eount  the attraction of ‘this p.ﬂ’._>__> ‘ g ‘:6
same centre of force by the = « - ..~ C

given body. Yet, according to W=lds+ Wp

Newton’s Third Law each Fie 29, Calculating the “absolut
Efnat - : ig. 29. culatin, e “absolute

pl?:initil should hattfgqt the s:im’ force of the centre” in the two-

an e sun should ‘move due body problem

to the attraction of the plan- :

ets, _ L.

We consider planet P and the sun S attracting each other

‘according to Newton’s law. If their masses are m

and M, the force of mutual attraction between them will be

=1t o
where r is the distance PS. The sun, S, impérbs
‘to the planet an acceleration w, =f, While the planet,
drawing S with the same force, imparts to the latter an
acceleration w; =f-'r%. The acceleration of the sumn, S, is

less than that of the planet, P, the same number of times
the mass S is greater than the mass P. The sun’s acceleration
is obviously very small, but the main thing is that it exists.

Let us consider the movement of a planet P relative to
the sun, S, as seen by an observer on the sun. The rela-
tive acceleration of the planet P will be equal to the sum
of the accelerations w, and wj :

M+i+m
w=ws +wp=f —F—

Thus, if we regard the motion of P around S, the
latter a stationary centre of force, the acceleration from
P to S will be such as is created by an attracting body
of mass M-+m. The coefficient that defines the “abso-
lute force of the centre” will be f(M-+m). All the equa-
tions that define the critical velocity, the orbital period,
etc., which are deducible for motion about a centre of
force, hold for the new meaning of the “absolute force of
a centre.” If P revolves about S in an ellipse, then

g - 4mdgd
- Perrew |
If several bodies of mass m;, ms,... revolved about a single
body S (for instance, the motions of several planets around
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the sun) with periods 7,, T,, ... and semi-major axes of
their orbits ay, a,, ..., then .

T2 4n2a? ) 2 _ 4n2ag .
VUM Em) 2T M myy
T2. 72 :___“?_._ . _ag_
1:42 ... M+m1.M+m2...,

This relation shows that the squares of the orbital pe-
riods of the planets about the sun are not exactly propor-
tional to the cubes of the semi-major axes of their ellip~
tical orbits. Strictly speaking, then, Kepler's Third Law
is not satisfied. However, since the masses of the planets
are very small in comparison with the solar mass, that

3
is, (M+m;) : (M+4+m,):....~1, then also ;L:=;—,%=..,.
1 2
Kepler’s Third Law is thus almost exactly satisfied (re-
call the Table on p. 29).

The motion which we have just examined is relative motion
of one celestial body about another. But when viewed from
outside, from a certain stationary point, both P and C
would be found to bein motion due to mutual accelerations,
Newton showed that the centre of gravity of C and P would
be at rest (or in uniform and rectilinear motion), while
the bodies themselves would be moving about this cen-
tre of gravity. Their orbits would be similar to the orbit
of P in its motion round C.

If the mass M of the eentre C is very great as compared
to the mass m of body P, the acceleration imparted
to C by P is negligible, and the centre of gravity of C and
P practically coincides with C. We may then say that C is
stationary and that P is in motion about a stationary
centre,

Take, for example, the earth’s motion about the sun,
Since the terrestrial mass is only 1/330,000 that of the
solar mass, the centre of gravity of these two bodies is sit-
uated at a distance of

w—ﬁ__ﬁ“”s‘g"modo"“" ~ 500 km.

from the centre of the sun, which means that the centre of
the sun describes around the centre of gravity of the sun
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and earth a circle of radius 500 km.  This is only about
1/2,800 the solar diameter, which is 1,400,000 km. When
correlated with the size of the sun and the solar distance,
such oscillations in the sun’s position are negligible, so
that the sun is practically stationary in this sense.

But when computing the earth’s orbital period about the
sun a knowledge of the terrestrial mass is necessary. If
the earth's orbital period is computed from equations

T2 ~ % and 7%~ f(Ma_-:m; we get a discrepancy of roughly
100 seconds. This is a rather perceptible quantity.

7. CELESTIAL MOTION AND THE TWO-BODY PROBLEM

The problem of the motion of two bodies attracting each
other according to Newton's law is widely used in astronomy.
Planetary motion round the sun is first of all regarded as
motion due to solargravitation in accordance with Newton's
law. The same procedure is used in elementary studies of the
motions of asteroids and comets about the sun and of satel-
lites round their primaries. For planets, asteroids and sat-
ellites, elliptical orbits are found that accord with the two-
body problem. :

The motion of a body in space in an elliptical orbit is
fully defined by six quantities which are known as orbital
elements.

Two elements —the inclination and the longitude of the
ascending node—define the position in space of the plane
in which the planet moves.

The inclination is the angle i between the plane of plan-
etary motion and the plane of the ecliptic (the plane
of the earth’s orbit).

The two points at which the planet intersects the plane of
the ecliptic are called nodes. Near the ascending node §} the
planet passes from the southern hemisphere of the sky
into the northern hemisphere, near the descending node S
—from the northern to the southern hemisphere. The angle
§} between the direction towards the point in the sky Y,
where the sun is located on the day of the autumnal equinox,
and the ascending node of the planetary orbit is called the
longitude of the ascending node,
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The third element—the distance of perihelion from the
node—is the angle o between the directions towards the
ascending node and the perihelion of the orbit. This ele-
ment is sometimes defined otherwise. We call the line of
nodes the line along which the planetary plane intersects

/

/ S~e
/ Plane of
J ecliptic

Fig. 30. The orbital elements of a planet

the plane of the ecliptic, and the line of apsides that which
connects perihelion P and aphelion A. Then the distance
of perihelion from the node will be the angle between the
line of nodes and the line of apsides.

The fourth and fifth elements—the semi-major azis and
the eccentricity—define the size and shape of the ellipti-
cal orbit of the heavenly body.

And, finally, the sixth element defines the position of
the body in the orbit at a certain instant of time, which
is commonly the time of passage of the planet through peri-
helion. If the initial position of a body in orbit is known,
then with a knowledge of the mean velocity of motion of
this body it is possible, by invoking the Law of Areas, to
compute the orbital velocity and, hence, the position of
the body in the orbit at any instant of time. If one knows
the shape, size and position of the orbit in space, he cande-
termine the position of the given celestial body in space
and then compute its apparent position in the sky.

Determinations of the elliptical orbits of Mercury, Ve-
nus, Earth, Mars, Jupiter, and Saturn caused no difficul-
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ties since these planets had been under observation for cen+
turies and data on their positions in the sky were numerous.
These orbits were first derived by Kepler. As time passed,
the orbital elements were refined by new and more accurate
observations.*

17°8. Pluto

Mercury

Other
* _________________________________ | Planels

Fig. 31. Orbital inclinations of the planets. of the solar system

Table 2, lists several orbital elements (based on modern
data) of all the major planets.

We see that the orbits of all the planets, with the ex-
ception of Mercury and Pluto, have slight inclinations and
eccentricities, that is, they move in practically the same
plane (Fig. 31) and are nearly circles.

Table 2
Semi-major axis Eccen- | Ineli-
A U | 108 Km. Orbital period tricity natiop
Mercury . . . 0.387 57.9 87.97 days 0.206| 7°0’
Venus . . . . 0.723 108.1 224.70 days 0.007 | 3°24’
Earth . . . . 1.000 149.5 365.26 days 0.017} —
Mars . . . . . 1.524 227.8 1 year 322 days|{0.093} 1°51’
Jupiter . . . . 5.203 777.8 | 11 years 315 days | 0.048| 1°18’
Saturn . . . . 9.539 | 1426.0 | 29 years 167 days | 0.056] 2°29’
Uranus . . . . | 19.191 | 2869.4 | 84 years 7 days |0.047| 0°46
Neptune . . . | 30.071 | 4495.6 |164 years 280 days {0.009] 1°46'
Pluto. . . . . 39.457 | 5898.9 | 248 years 0.249 17°8’

The two-body problem has also been successful in studying
the motions of the minor planets (asteroids), comets,

* At the end of the seventeenth century, telescopes began to be-
used to determine the positions of heavenly bodies, and observational
accuracy increased greatly.

** A U. stands for astronomical unit—the mean distance between the
earth and sun. It is convenient for measuring distances in the solar
system. .
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and satellites of the major planets. The first applica-
tion of this problem to asteroids and comets was particularly
important as confirmation of Newton’s theory of gravita-
tion.

Comets—these “long-haired” luminaries—have been ob-
served since the dawn of man. Prior to Newton, most astron-
omers believed them to be formations in the terrestrial
atmosphere. Galileo and Kepler considered them celestial
bodies but could not find an explanation for their strange
movements, they could not understand why they appeared
suddenly and disappeared without a trace.

Newton argued that since comets were some sort of celes-
tial body they should obey the law of gravitation too. Such
being the case, their motions are due to the sun’s gravita-
tional pull. But what are their paths? The two-body prob-
lem permits of only three types of motion: elliptic, parabolic
and hyperbolic. Newton had to exclude elliptical motion
more or less close to a circle since comets, obviously, did
not circulate regularly about the sun as did the planets.
That left the parabola and the hyperbola. Also possible
were elongated ellipses, for in such orbits the comets would
be visible for only a short time during closest approach to
the sun and would then be lost to view for long periods.

The problem arose of determining the path of a comet
in space. Observations of all comets were comparatively
brief and there were few facts about their position in the
sky; all of which made the problem immensely difficult.
Newton solved the problem of determining a parabolic or-
bit from several observations. He showed how it was pos-
sible to find the parabola (the elements of a parabolic orbit)
of a comet moving in space if three of its positions in the
sky are known for different times. Newton applied his meth-
od to comets that were observed in 1680 and 1682. He
computed the elements of their parabolic orbits, and right
up to the time the comets disappeared from sight their com-
puted and observed positions in the heavens were very close.
This was proof that comets are celestial bodies moving under
solar gravitation. This discovery was one of the first remark-
able attainments of the new gravitation theory.

One of Newton's pupils, Halley, used this method to com-
pute the orbits of 24 comets that had appeared chiefly in the
sixteenth and seventeenth centuries, Extant records of the
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positions of these comets served as the starting point. He
noticed that the parabolic orbits of comets that had made
their appearances in 1682,1607 and 1531 were very much alike.
And what is more, the time intervals between apparitions
were roughly the same: 1607-1531 =76 years, 1682-1607
=75 years. Halley figured that what had actually been ob-
served on these occasions was not three different comets
but one and the same comet moving not in a parabola but
along a very elongated ellipse. An extremely elongated el-
lipse nearly coincides with a parabola near the focus, and
a comet is, as a rule, observed near the focus at which the
sun is located. And it is very difficult to distinguish be-
tween motion along a parabola and along an elongated el-
lipse.

Halley predicted the next appearance of this comet for
1758-59. And true enough, the comet appeared in 1759.
This was vivid evidence for the correctness of the law of
gravitation.

Gravitational theory was equally successful in connec-
tion with the discovery of the minor planets or asteroids.

On January 1, 1801, the Italian astronomer Piazzi detect-
ed in his telescope an object that looked very much like a
star, but was in rapid motion among the stars. This was
similar to the apparent motions of the planets and suggested
that the body was relatively close to the sun. Piazzi soon
lost sight of this star-like body as it approached the sun
and disappeared in the latter’s rays. The problem now was
to determine the motion of this heavenly body in space
on the basis of Piazzi’s observational data. It was solved
by the German mathematician Gauss who found a way of
determining an elliptical orbit from several observations.
Gauss demonstrated that if the positions of a body in space
are known for three different instants of time, it is possible
to define the ellipse along which this body moves. The prob-
lem of determining the elliptical orbit from observations
proved far more difficult than the problem of determining
the elements of a parabolic orbit. But Gauss solved it, and
in such rigorous mathematical form that his method of
determining the elements of an elliptical orbit is the best
to this day.

. Gauss computed the orbit on the assumption that the ob-
ject Piazzi had discovered was in motion about the sun due
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to gravitational force. It turned out that this heavenly body
moved in an ellipse, the semi-major axis of which was
roughly 2.8 astronomical units and the eccentricity 0.08,
which meant that it had an orbit between those of Mars
and Jupiter and that it belonged to the solar system. Gauss

Jupiter

Fig. 32. Ceres’ orbit (4 and P denote aphelia and perihelia -
of the orbits)

computed its positions in the sky for different times thus
indicating where it could be observed in the future. And
when observations were resumed towards the end of the year
(1801) it was recovered in the very spot that Gauss had pre-
dicted. In this way the solar system acquired a new
planet that was given the name of Ceres. v

Three more such objects were soon discovered. In the tel-
escope they appeared like stars, but moved like planets, and
so were called asteroids —the Greek for “star-like.” They are
also often called minor planets due to their small size in com-
parison to the major planets—Mercury, Venus, Earth,
Mars, Jupiter, Saturn, Uranus, Neptune and Pluto.
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At present, the elliptical orbits of some 1,600 asteroids
have been computed. Each year more and more asteroids
are discovered and their orbits derived.

In mass and dimensions the asteroids are far smaller
than the major planets. In diameter the largest asteroids
reach from 200 to 800 km., while the smallest ones, just de-
tectable in the biggest telescopes, do not exceed a kilometre
or two across. Many asteroids have irregular shapes resem-
bling chunks of rock.

8. THE CONCEPT OF PERTURBED MOTION. CELESTIAL
MECHANICS AND PRACTICAL ASTRONOMY

Descriptions and studies of planetary and cometary or-
bits based on the two-body problem represent only a first
step towards investigating the complex motions of heavenly
bodies. Indeed, if a planet, say the earth, were attracted
by the sun alone it would pursue a precisely elliptical orbit.
Such motion that fits the solution of the two-body problem
is known as unperturbed motion. But all bodies of the solar
system attract each other. So the earth is acted upon not
only by the sun but also by the other planets, which “dis-
place” our globe from its elliptical orbit. In turn, the
earth attracts the other planets and forces them to deviate
from their elliptical paths. A consequence of Newton's law
of gravitation is that all the planets, asteroids, and comets
of our solar system attract each other and deflect each other
from the path that each would pursue under the gravita-
tion of the sun alone. Satellites are constrained to alter their
elliptical motion due to the sun’s attraction and that of
“alien” planets.

Add to this the fact that the planets do not possess true
sphericity and do not attract in absolutely exact ac-
cordance with the inverse-square law. Though in practice
this may be ignored when considering sun-planet interac-
tions or the mutual attractions of the planets (see above,
Section 4), satellite theory demands a consideration of
these facts. For example, the moon, even in the absence of
solar or planetary attraction, would not pursue a precisely
elliptical orbit about the earth.

To summarize, then, not a single body in the solar system
can describe precisely an ellipse, parabola or hyperbola.

68



The generic term perturbations is given to all these devia-
tions from elliptic, parabolic or hyperbolic motion. Planets,
asteroids, satellites, and comets are said to be perturbed.
Perturbations are exceedingly involved and to account
for them is a task of immense complexity. However,
if perturbations are ignored we obtain only a rather crude
picture of the motions of many heavenly bodies.

In Kepler's day, when observations to determine the
positions of heavenly bodies were made with the naked eye,
planetary deviations from an elliptical unperturbed path
were not striking. But in the mid-seventeenth century tel-
escopes and various measuring instruments began to be
used in this work, and as the astronomical tools became
more refined observations became more accurate. Thus it
was that the deviations of the planets and of other bodies
of our solar system from the Keplerian laws could no long-
er be ignored.

From the eighteenth century on, one of the principal
problems of celestial mechanics was the determination of
the perturbations of planets, asteroids, satellites and
comets.

Methods for determining perturbations and also tech-
niques for solving other important problems of celestial
mechanics grew up together with the methods of higher
mathematics. Present-day celestial mechanics was crea-
ted by the great mathematicians of the eighteenth and
nineteenth centuries: Clairaut (1743-1765), d’Alembert
(1747-1783), Euler (1707-1783), Lagrange (1736-1813),
Laplace (1749-1827), and others. And to this armamenta-
rium of celestial mechanics, the twentieth century added
new and powerful mathematical techniques and remarkable
calculating machines.

There were two principal reasons for this development
of celestial mechanics.

The first was the immediate demands of practical as-
tronomy. Celestial mechanics was being called upon to give
solutions to a number of problems of great practical sig-
nificance. In the eighteenth century (before the invention
of chronometers), one such problem was the elaboration
of an accurate theory of the moon’s motion. At that time,
lunar observations were used to determine geographical
longitude.
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. To determine the longitude of a given point on the earth’s
surface, it is necessary to compare, at a given time, the lo-
cal time of this place with the local time of some other place
whose longitude is known.* The local time at the given
point can easily be determined from direct observations of
the sun or stars, But how is one, far out at sea, to know
what the local time of, say, Greenwich is. True, at the pres-
ent time special radio time signals are broadcast for use in
figuring Greenwich time. In the nineteenth century, before

- radio had been invented, very precise clocks called chronome-

ters were in use. One could take such a chronometer with
him out to sea or on an expedition to a locality with an
unknown longitude and thus “take along” Greenwich time.
But the eighteenth century had neither radio nor chronome-
ter, and the most accurate clock to find out Greenwich time
was the moon.

The moon moves through the stars quite rapidly—rough-
ly 30" per hour. So one can regard the stellar heavens as the
clock-face and the moon as the hour hand. The only thing
is to graduate this peculiar dial. In this we are aided by spe-
cially compiled tables, based on the theory of lunar motion,
which indicate the moon's position among the stars at def-
inite moments off Greenwich time. This “celestial time-
table” of the moon should, of course, be sufficiently accu-
rate. In order to determine Greenwich time, and thus the
longitude, with even such aslight accuracy as one minute
(this corresponds to an error of 30 km. in determining a
point on earth), it was necessary to know the position of
the moon in the sky to within 15”. It was exceedingly dif-
ficult to create even such a theory of lunar motion because
the moon is subject to exceptionally strong perturbations.

At the present time we have more accurate methods of
determining longitude. But a precise theory of lunar mo-
tion is necessary for other purposes. Without this theory
it would be impossible to calculate accurately the beginning

~of solar eclipses, their duration, to define precisely the

locality where the eclipse can be observed, and so on. Such

* On the globe, longitude is measured from a meridian that passes
through Greenwich, a town near London and the site of the Greenwich
Observatory. For this reason, when determining the longitude it is
most convenient to know the local time at Greenwich.
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predictions are necessary so as to organize properly obser-
vations of eclipses. Information about eclipses that were
observed in the distant past enable us now to study irregu-
larities in the earth’s rotation (see Section 17). Eclipse theo-
ry is helping even historians. By correlating the theoreti-
cally calculated times and places of eclipses with the written
records of these eclipses found in ancient manuscripts it
is possible to find out the exact dates of historical events
where other dating procedures fail.

‘The second reason for the development of celestial me-
chanics was the necessity to verify the law of universal
gravitation,

It was the task of celestial mechanics to find out whether
Newton’s law of attraction was correct, whether the attrac-
tive forces between material particles do indeed vary inverse-
ly with the square of the distance between them. Is it pos-
sible by this law alone to compute all the observed pertur-
bations of the bodies of the solar system? Naturally, there
was hardly any doubt that this law gave a good descrip-
tion of the movements of planets, satellites, asteroids and
comets. But is it capable of describing accurately all the
motions of these bodies? Verification of this fact was, of
course, of extreme importance both scientifically and prac-
tically. To do this, it was necessary to build a theory of the
motions of planets and the other bodies of the solar system.

The question of refining Newton’s law was frequently
raised in connection with calculations of the disturbed
motions of celestial bodies. For instance, in the middle
of the eighteenth century the French astronomer Clairaut
was absolutely unable at first (in building a theory of lunar
motion) to correlate all the observed peculiarities of lu-
nar motion with Newton's law of gravitation. He therefore
suggested that the force of attraction does not vary ininverse
proportion to the square of the distance but is expressed by
the tollowing equation:

A e
=%+

where ¢ is a very small number.

However, Clairaut later detected inaccuracies in his
mathematical procedure that led to an incomplete account
of all perturbations in the moon’s motion. After the errors
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were eliminated the disparities between theory and obser-
vation disappeared, and there was no longer any necessity
for the additional term e/r® in the gravitational equation.

In a number of other cases, for example, in studies of
the motion of Mercury, opinions were advanced that the
force of attraction varies in inverse proportion to the (24-3)tt
power of the distance, where 3 is a certain very small num-
ber. But these were erroneous too. Newton’s law described
the motion of the planets (with one exception, see Sec. 21)
with the same accuracy that present-day observations yield.

Thus, the relationship that Newton established between
the forces of gravitation of material particles and their
distance apart is now beyond any doubt. Newton's law is
borne out by the entire essemblage of observational and
theoretical findings.

9. WAYS OF DESCRIBING PERTURBED MOTION. THE
VARIATIONAL ORBIT

In the preceding section we pointed out the possibility
of regarding perturbations simply as the difference between
positions of a body in unperturbed and perturbed motion.
But perturbations may be characterized otherwise by ap-
plying a method first developed by Euler in 1756.* Un-
derlying this method is the concept of a so-called wvaria-
tional orbit.

If the velocity of motion of a body and its position in
space is known at a given instant of time, it is then possi-
ble to determine the path (ellipse, parabola or hyperbola)
which this body will pursue around the sun in the absence
of perturbations. Suppose that the elliptical orbit of a planet
has been found for a certain instant of time, but under the
influence of perturbations the planet deviates from this
orbit. If after an interval of time its elliptical orbit is com-
puted from new observations, the result will of course be a
different ellipse. True, if the perturbations are smallthe new
ellipse will resemble the preceding one, that is, the new or-
bital elements will differ but slightly from those derived
earlier. If this procedure is repeated some time later, the
orbital elements will again differ. For this reason we may

* It was published in 1771.
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imagine that at each instant the planet is moving along a
certain elliptical orbit, but that the orbital elements, that
is, the dimensions, shape and position of this ellipse inspace,
are constantly changing. In this case the planet is said to
be moving in a variational elliptical orbit.

If a planet or other body does not experience consider-
able perturbations during a single circuit, its motion dur-
ing this time will be almost exactly in the same ellipse.
But perturbations are cumulative in time. In each sub-
sequent circuit the planet pursues a slightly different el-
lipse. After a large interval of time, the shape, size and posi-
tion of the ellipse may be perceptibly altered. For example,
the ellipse described by the earth is almost of the same size
and shape as 1700-1800 years ago and lies in nearly the same
plane. Yet it has turned approximately 5° in this plane. -
In 1850 Jupiter’s semi-major axis was 5.20265 astronomical
units, while in 1950 it was 5.20290 astronomical units—
an increase of roughly 40,000 kilometres. ‘

Now if the perturbations are great the path of the body
will deviate from the elliptical during even a single orbit-
al period. In other words, the orbital elements computed
at the beginning and the end of a period of revolution are
noticeably different. To illustrate again, take the orbital
elements of the moon at the beginning and end of a month.
It will be found that during this time the ellipse that the
moon should pursue has turned more than 3° in its plane.
The lunar elements vary with comparatively great rapid-
ity. But even so the elements of this elliptical variational
orbit at a given instant give a pretty fair picture of the mo-
tion during a single or several circuits.

Alterations of the elements of a variational orbit are
a certain clue to what type of changes are to be expected
in the motion of the given body. For instance, an increas-
ing semi-major axis will mean that this body is pursuing
an ellipse that is continually increasing in size, that is
to say, the body is gradually receding from the central
body. If the eccentricity is increasing, the elliptical orbit 1
is elongating—the closest approach of the bodies becoming
less and their greatest distance apart ever greater. .

Thus, the perturbed motion of a heavenly body can be
described by means of the varying orbital elements, that
is, those that change with time. The motion of all plan-
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ets, asteroids, and satellites is perturbed motion, and for
each instant of time their orbits are described by specific
values of the elements. The table of orbital elements of the
major planets on p. 59 is not a list of constant, definitively
established magnitudes. These elements refer to our epoch,
but since the planetary perturbations are slight the elements
change very slowly with time and will describe planetary
motion for a long time to come.

10. THE PROBLEM OF MOTION IN THE SOLAR SYSTEM

A precise statement of the problem of motion of bodies
of the solar system consists in the following.

The solar system comprises the sun, planets, their satel-
lites, asteroids and comets. All these bodies attract each
other in accordance with Newton’s law. The problem is
to study their motions mathematically when their positions
and velocities at a certain (initial) instant of time are known.

There is, of course, no necessity to state the problem in
such a general form, with account to be taken of the influ-
ence of all bodies on each other. The masses of the comets
and asteroids are very small in comparison to those of the
planets, and so can impart to the sun and planets only ab-
solutely negligible accelerations. The very masses of comets
were evaluated on the basis of the fact that they had never
been observed to disturb the motion of any planet or of
the satellites of any planet. In 1886 a comet passed very
close to Jupiter and right in between its many moons. But
the latter didn’t exhibit the slightest deviations in their
ordinary motions. The inference was that the mass of this
comet was less than that of the earth by a factor of at least
one million. : '

The masses of the largest asteroids are of course much
greater than those of eomets. Let us evaluate the mass of
the largest asteroid, Ceres, whose diameter is 800 kilome-
tres. If this asteroid has a density that of the earth* its mass
should be approximately (12,800/800)° =4096 times less
than that of the earth. Several asteroids have diameters
around 100-300 kilometres, while the majority are much

* The earth has a mean density of*5.5 g/cm?®; true, all the other
major planets have a lower mean density .

69



smaller, so that the mass of all the asteroids together does
not exceed 1/700 of the terrestrial mass. Naturally, bodies
of so small mass cannot influence perceptibly the motion
of planets and satellites.

Consequently, we can consider the motions of planets
and their satellites as independent of the motion of aster-
oids and comets.

To continue, the masses of satellites are but a fraction
of the planetary masses. For instance, among the Jovian
moons, Ganymede—the third satellite outwards from Jupi-
ter —has the largest mass, roughly 1/12,200 that of its pri-
mary, and is 1 million kilometres distant. Under the in-
fluence of mutual attraction, Jupiter and Ganymede de-
- scribe ellipses about their common centre of gravity, which
is about 1,000,000/12,200=80 km. from the centre of Ju-
piter. These relatively very small deviations will have prac-
tically no effect on the attraction between the sun and Ju-
piter. Besides, it is actually impossible to notice these de-
viations in observations from the earth. Even at the earth’s
closest approach to Jupiter they cause a displacement in
Jupiter’s apparent position that does not exceed 1/30".
Still less is the influence of the other Jovian satellites on the
motion of their primary. The influence. of the satellites
of Saturn, Mars, Uranus and Neptune on the motion of
their planets is also negligible. An exception is our moon
with its mass less than that of the earth by a factor of 81.5
times. The moon and earth move around a common centre
of gravity that is 4,700 km. from the centre of the earth. The
deviations of the earth from its path by this amount are
rather noticeable, particularly in precise studies of the
earth’s motion round the sun. For instance, the sun-earth
direction with account taken of movement around the cen-
tre of gravity can differ by 6” from the direction when no
such allowance is made. For this reason, in precise inves-
tigations we consider jointly both terrestrial and lunar mo-
tion, that is, the entire earth-moon system and the motion
of the centre of gravity of this system about the sun.

All this means that instead of considering the motions
of the planets, asteroids, satellites and comets jointly,
one can pose separate problems of the motion of a) the
planets, b) their satellites, ¢) asteroids, d) comets.

In studies of planetary motion, account is taken of solar

70

|
P
5 ’]
\



gravitation and the mutual attraction of the planets. Oth-
erwise stated, the problem is that of the motion of 10
bodies (nine planets and the sun) attracting each other
according to Newton's law.

When investigating the motions of the satellites of a plan-
et, the latter are considered to occur under the action of
the attraction of the planet (main force), the disturbing
mutual attraction of the satellites, and also the disturbing
attraction of the sun and other planets.

Since the asteroidal and cometary masses are exceed-
ingly small they do not produce any perceptible effect on
the motion of the other bodies of the solar system. For
this reason, the motion of each comet or asteroid is regard-
ed separately, as if they were attracted by the sun and
planets but did not themselves attract.

However, despite such simplifications we always have
to deal not with the motions of two bodies but of several
gravitating bodies. Mathematically, this problem is so
involved that to this day it remains unsolved in its gener-
al form. In other words, we are not able to obtain equa-
tions which represent the motions of these bodies, that is,
which would permit computing the positions of these bodies
in space or to get an idea about their properties for any
masses or initial positions and velocities. And, of course,
we are unable to describe these motions in words in a general
case, as, for instance, was possible in the two-body problem.

It is, of course, a matter not only of the mathematical
complexity of the problem, but also of the extraordinary
complexity of the motions themselves even in the case of on-
ly three bodies. Some idea of these ditficulties may be had
from a consideration of three bodies: the sun, S, Jupiter,
J, and a meteoroid, M, with a mass of several grams. Due
to the smallness of its mass, such a meteoroid imparts
to Jupiter only the very slightest additional (perturbing)
acceleration, and we may regard Jupiter as moving along
an elliptical orbit under the influence of the sun’s gravita-
tion alone, while the meteoroid’s motion is affected by
the attraction of the sun and Jupiter. In celestial mechanics,
this is known as a restricted three-body problem. The restric-
tion here is that the influence of the small body on the other
two is ignored, while the motions of these two latter bodies
are known,
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When the meteoroid is relatively far away from Jupiter
the gravitational pull of the planet is but a fraction of that
of the sun, and it pursues an elliptical orbit about the sun
experiencing only small perturbations. In Fig. 33 M, is the
initial position of the meteoroid, M o My is the first portion
of the ellipse that it covers. If it reaches M, when Jupiter

Fig. 33. An example of motion in the restricted problem of
three bodies

is far away it will continue to move in the same elliptical
orbit (denoted by I in the figure).

But if the initial positions of the meteoroid and Jupiter
and their velocities are such that at this instant they make
a close approach to each other, the Jovian gravitational
pull on the meteoroid will be so strong that the small body
will deviate from its initial path. The magnitude and nature
of this deviation depend on the mutual positions of the sun,
Jupiter and the meteoroid at the instant of closest approach,
and on the magnitudes and directions of their velocities,
which, in the final analysis, means that everything depends
on the initial conditions of the problem. It is even possible
that the perturbation produced by Jupiter will lead to such
an increase in velocity that the body will recede from the
sun along either a hyperbolic or parabolic path. Let us
assume meanwhile that the meteoroid’s velocity -has been
altered so that after Jupiter recedes the meteoroid settles
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in an ellipse denoted by number 2 in Fig. 33. This ellipti-
cal orbit is quite different from the first one. In this orbit
the meteoroid should return, in equal intervals of time, to
the very same spot at which it encountered Jupiter. If the
orbital periods of M and J are not equal the second encoun-
ter will not occur at once. Nevertheless, sooner or later the
meteoroid and Jupiter will meet. And again the orbit of
the small body will be altered radically; it will begin to
move in an entirely different ellipse or will settle into a
hyperbola or parabola.

Slight variations in the conditions of the first encounter
may lead to comparatively great differences in the condi-
tions of the second encounter, that is, to a big difference in
the size of the new orbit and in the period of revolution.
This difference will lead to a still greater alteration of the
conditions of the third encounter, which will undoubtedly
take place if the new orbit is an ellipse, and so forth. Any
general equation that would take into account all the pos-
sible consequences of each encounter and their diversity
in the case of very slight changes in the initial conditions
will be incredibly complicated.

Jupiter will of course alter the orbit of the meteoroid
in between encounters as well as during encounters, which
is an added complication of the problem. And if M had a
considerable mass there would be the added difficulty of
M’s influence on Jupiter and the associated alteration of
the Jovian orbit. By now it is probably clear that the math-
ematical difficulties that arise in solving the three-body
problem are due to the complexity and extraordinary diver-

'sity of the motions that can occur, given different initial
positions and velocities of M.

It is true that in 1912 a Finnish mathematician, Sund-
mann, found a theoretical solution of the three-body prob-
lem. But the mathematical equations that he obtained are
s0 involved that they do not permit calculating the posi-
tions of the bodies in space or drawing any conclusions
about the properties- or nature of the motions, so that Sund-
mann’s equations are, as yet, of no practical value.

The result is that to this day we are not in possession
of any complete solution of the problem of the motion of
three or more bodies. Therefore, various approximate methods
are used in studying the motions of bodies in the solarsystem,
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11. SUCCESSIVE APPROXIMATIONS IN THE THEORY OF
MOTION OF HEAVENLY BODIES

The motions of heavenly bodies have been investigated
chiefly by methods of quantitative celestial mechanics.
These methods enable us to find such an approximate solu-
tion to the problem of the motions of certain bodies as
is close to the unknown exact solution over a given inter-
val of time. Quantitative celestial mechanics permits of
building a theory of motion of astronomical bodies. Ap-
plying these theories it is possible to compute the positions
of bodies in space in the course of a certain period of time,
to investigate the nature of the mutual influence of differ-
ent bodies over a given interval of time, to establish a re-
lationship between the mutual perturbations of the bodies
and their masses, and then determine these masses. In short,
then, the theory of motion enables one to describe fully
the motions of celestial bodies in the course of specific time
intervals, starting from an initial instant.

There are different concrete methods of constructing theo-
ries of motion. One is the method of successive approxima-
tions which we shall apply to the problem of planetary
motion. :

The most conspicuous feature of planetary motion is that
the planets pursue elliptical paths that are very close to
unperturbed elliptical motion. This is due to the fact that
the solar mass is much greater than that of all the other bodies
of the solar system, which means that each planet is more
strongly attracted by the sun than by any other body in
the system. Let us find out how much more the sun attracts
the earth than does Jupiter —the largest of the planets. Ju-
piter is roughly five times farther from the sun than the earth,
and the closest earth-Jupiter distance (at opposition) is
some four times the sun-earth distance. Noting that the Jo-
vian massis about 1 /1000 that of the sun, we find that at clos-
est approach Jupiter pulls the earth with a force that is 42 X
%1,000=16,000 times weaker than that produced by the
sun. Jupiter’s attraction is still less at other points in the
orbit, and the gravitational pull of the other planets on the
earth is much weaker.

In the same way we can find out how much weaker is
the attraction of any other planet at closest approach (at
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opposition) than that of the sun. These figures are given
in Table 3 on p. 76. Also listed in the table are up-to-date
figures on the planetary masses and the mean acceleration
imparted to each planet by the sun.

The numbers in the rows of the table indicate how many
times stronger is solar attraction on a given planet than
that of the other planets at closest approach. For example,
the gravitational pull of the sun on the earth exceeds that
of Mercury 3 million times, of Venus 32,000 times, Mars
800,000 times, and Jupiter 16,000 times. The numbers
in each column show the influence of the given planet on
any other planet (at closest approach). For example, the
sun exerts a gravitational pull on Mercury that is 154,000
times that of Jupiter; the corresponding figures for the other
planets are: on Venus, 40,000; Earth, 16,000; Mars, 6,500;
Saturn, 200; Uranus, 500; and Neptune 700 times.

Thus, the principal force governing the motion of bodies
of the solar system is the gravitational attraction of the
sun. The effect of mutual planetary attractions is small in
comparison to that of the sun’s pull. This is the reason
why the planets move about the sun almost in ellipses
and experience but slight deviations (perturbations) from
their elliptical paths.

Actually it was this that enabled Kepler to discover his
remarkable laws. If the planetary masses were greater and
if they exerted a more disturbing influence on each other
their paths would differ so greatly from the elliptical that
these laws would not be valid.

The method of successive approximations exploits the
fact that the planets pursue almost unperturbed elliptical
orbits so that Kepler’s laws permit finding the approxi-
mate position of a planet in an unperturbed orbit at any in-
stant of time. An approximate knowledge of the planetary
configuration enables one to compute the forces of mutual
attraction and the resulting acceleration of the planets
for each instant of time. It is these additional accelera-
tions, which combine with planetary accelerations produced
by the sun, that are the disturbing accelerations. They de-
fine not the paths themselves of the planets, but devia-
tions from known elliptical paths. These disturbing accel-
erations may be used to determine the perturbations for
each instant of time. These will be what is known as per-
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turbations defined in the first approximation or perturba-
tions of the first order. Their magnitudes are proportion-
al to the masses of the disturbing bodies.

Perturbations of ‘the first order do not coincide with
the full (precise) planetary perturbations since the disturb-
ing accelerations are computed for approximate positions
of the planets. Still, insofar as the planetary deviations
from these positions are slight, perturbations of the first
order will not differ very much from precise perturbations.

An account of first-order perturbations permits comput-
ing the new positions of the planet in space (first approx-
imation) for each instant of time. These new, approximate
positions will be more accurate than those computed on the
basis of the equations of elliptical unperturbed motion, since
the deviations from elliptical motion have in large measure
been taken into consideration.

Utilizing this new and more accurate planetary configu-
ration for each instant of time, it is again possible to com-
pute the mutual attractions and disturbing accelerations
of the planets for these instants, and then also the per-
turbations. These perturbations determined in what is known
as the second approxzimation will now be closer to the precise
values than those of the first order. The planetary posi-
tions can now be determined more accurately than with
account taken of first-order perturbations (second approxi-
mation). Similarly, it is possible to calculate the pertur-
bations in the third approximation, etc.

The smaller the mass of the disturbing bodies—planets—
as compared to that of the principal attracting body (the
sun), the fewer approximations are required in order to
obtain a more or less precise result. Let us consider a planet
disturbed by another planet. In the first approximation,
the disturbing acceleration of our planet at each instant will
be computed from the equation

w_m
1 r2

where m is the mass of the disturbing planet (in a fraction
of the solar mass), and r, is the distance between the two
planets calculated on the condition that the planets pursue
unperturbed elliptical paths. These disturbing accelerations
are used to compute the perturbations in the first approx-
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imation, which, in magnitude, will be proportional to
the disturbing mass m. With these accounted for we obtain
more accurate values of the distances between the planets
at eavh instant of time. We denote these distances by ry.
The r, values will differ from the corresponding r, values
by amounts proportional to the mass m:

rn=r,+Ar; Ar, ~m.

[n the second approximation, the disturbing acceleration
is computed from the equation

w_m
2= 3
n

What is the difference between accelerations w; and w, at
one and the same instant of time? To find out, we take the
difference

m 2Ar, +Ar3,

wl—wzz—':——————=m ST T t=mAn
ry (ro +Ary)e ro(ro + Ary)?

ro{ro +4r71)?

Since Ar,~m, the difference w;—w, is now proportional
to the square of the disturbing mass m. Using accelerations
w, to compute the perturbations in the second approxima-
tion we obtain new distances at each instant —r,. They
will differ from r; by magnitudes that are proportional to
the square of the disturbing mass m, that is,

rae=ry -+ Ar, Ary ~ m?

We now calculate the disturbing accelarations in the third

approximation:
m
Ws = —%
re

and write the difference

. . NNy L .11 T
2 3 r2 (ry +Ary)? o 2 tra+Ary)

~ We see that this difference is proportional to the cube of
the perturbing mass m. The mutual distances computed
in the third approximation (rs) will differ from rs by mag-
nitudes that are proportional to m®, that is,

rg=rg+ Ars, Arg~md.
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Summing up, then, we see that the first approximation
enables us to determine the position of a planet with . an
accuracy to magnitudes proportional to m, the second ap-
proximation, to m?, the third approximation, to m?3, etc.
The smaller m is, the greater the accuracy of the successive
approximations, the less the positions of the planet in the
first and second approximations differ from the precise
positions of the planet in the given problem.

As we have already noticed, the masses of the planets
are comparatively small. Jupiter has the largest mass,
and yet this is only about 1/000 the solar mass. This is why
the method of successive approximations is very convenient
in studying planetary motion, Let us carry out some numer-
ical calculations for the three-body problem: Sun-Jupiter-
Saturn. We shall assume that neither Jupiter nor Saturn
are influenced by the other planets.

Saturn and Jupiter revolve round the sun in ellipses that
are close to circles with radii of 1,500,000,000 km. and
750,000,000 km. respectively. Jupiter completes a circuit
in 12 years, Saturn in 30 years. First, we evaluate the pertur-
bations that Saturn experiences due to Jovian gravitation
and that Jupiter experiences due to the attraction of Saturn
in the course of three years from the time of opposition.
To do this, we calculate the disturbing accelarations that
these planets impart to each other at the time of opposition.
According to Table 3 (p. 76), at the times of opposition
solar gravitational action on Saturn is roughly 200 times
stronger than that of Jupiter. Since acceleration is propor-
tional to the force of attraction, Jupiter, at this time, im-
parts to Saturn an acceleration 1/200 that of the sun. The
table gives the mean acceleration of Saturn due to the
sun’s attraction: 0.006 cm/sec®. Thus, the disturbing ac-
celeration of Saturn produced by Jupiter at opposition is
approximately

wy = 0.2(())86 =0.00003 cm/sec?,

In exactly the same way we calculate the disturbing ac-
celeration of Jupiter due to Saturn, wg , at opposition, not-
ing that Saturn attracts Jupiter with a force roughly Y/, 50
that of the sun, while the mean Jovian acceleration due
to the sun’s gravitational pull is 0.022 cm/sec?. We then find

wg = g;% =(0.000009 cm/sec3.
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" 5* During three years, Jupiter covers
about 1/4 of its orbital path, while

Saturn moves 1/10 of its way around

. Sun the sun (Fig. 34). Three years from
3 3 S8  opposition these planets will occupy

positions J* and S* in Fig. 34. Begin-
ning with opposition, the distance
between Jupiter and Saturn will con-
tinually increase, and the disturbing
accelerations will consequently dimin-
ish. But the directions of the disturb-
Fig. 34. The mutual ing accelerations will not change much
pertturbat:ionss of Jupi-  Juring these three years, and, without

er and Saturn committing a grosserror, we can take
the disturbing accelerations during this time to be constant
and equal to their maximum values—0.00003 cm/sec® and
0.000009 cm/sec?, respectively—and in the same direction.
Then the deviations from elliptical paths calculated by
the well-known equation for uniformly accelerated motion

s=1, wt?
would, in any case, be greater than the true values. Com-
puting these deviations in kilometres, we obtain for Saturn

s~ 15X 10 cm. = 1.5 million km.
and for Jupiter
s= 5% 10 cm. = 500,000 km.

Consequently, in the course of three years Saturn does
not deviate from its elliptical path more than 1,500,000
km., and Jupiter not more than 500,000 km. Of course
these distances are not small, but in comparison with the
solar distances from these planets they are rather insignif-
icant. As viewed from the earth, these deviations of Jupiter
and Saturn in space correspond to deviations in their ap-
parent positions in the sky that do not exceed 3’ for Saturn
and 2’ for Jupiter.

To obtain the first approximation, a precise calculation
is made of the disturbing accelerations of Jupiter and Saturn
and then of their perturbations at each instant of time dur-
ing the given three years on the condition that these plan-
ets are moving in true ellipses. But we shall do otherwise
and more simply.
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. Since the total perturbations of Saturn and Jupiter dur-
" ing three years do not exceed 1,500,000 and 500,000 km.
respectively, we can estimate to what extent the first-ap-
proximation perturbations differ from the full perturbations.
Indeed, the precise positions of Jupiter and Saturn can
differ from the positions in elliptical orbits, for which we
computed the disturbing accelerations in the first approx-
imation, by not more than 1.5 million km. and 0.5 million
km., respectively, while the true distances between them
cannot differ by more than 1.54-0.5=2 million km. from
those taken in the calculations. The accelerations due to
the mutual gravitational action of the planets
vary as the square of the distances. Therefore, -
w r2

w, re

where w; and ry are the disturbing acceleration and the dis-
tance between the planets in the first approximation, while
w and r are the true disturbing acceleration and distance
between Jupiter and Saturn.

Applying the rule of proportions, we write the following
relation:

W—w,  r%—r?

w, r#

Since r; cannot differ from r by more than 2 million km. and
r by not less than 1,500—750=750 million km., this ratio
does not exceed 1/180. Therefore, w, does not differ from
w by more than one part in 180. Otherwise stated, in the
first approximation, the error in disturbing accelerations
does not exceed 1/180. And for this reason, the first-approx-
imation errors of perturbations calculated on the basis
of these accelerations do not exceed

—1§1’§Oﬂ= 8,300 km. and 27" — 2,.800 km.
respectively.

Thus, account of first-approximation perturbations en-
ables one to determine the positions of Jupiter and Saturn in
the course of the given three years with an accuracy to
within 8,300 km. and 2,800 km. respectively. Such discrep-

6—2125 81



ancies in the motion of Jupiter and Saturn correspond to!
-apparent displacements in the sky, as seen from the earth, '
that do not exceed 1”. This accuracy in determining plan-
etary positions is quite sufficient, and there is no need to
compute perturbations in the second approximation. But
if we wished to determine these perturbations we would
have to compute again the positions of the two planets
obtained after taking into account the perturbations of the
first order, then the disturbing accelerations, and finally
the perturbations themselves in the second approximation
for each instant of time. Since errors in the distances be-
tween Jupiter and Saturn will not exceed 2,800+ 8,300=
=11,100 km., the errors of disturbing accelerations and
the errors of perturbation of the second approximation will
not exceed one part in 35,000 of these figures. In this case,
the errors in the positions of Saturn and Jupiter, after tak-
ing into account the second-approximation perturbations,
will not exceed

15 % 108 5 % 108
500 ~ 23 km. and Sy

respectively. An accuracy of this degree is more than suf-
ficient for all practical applications of the theory.

On what will the expressions for perturbations de-
pend? The positions of Jupiter and Saturn in space
in elliptical motion (this type of motion was one of
the starting conditions) are determined by the elements
of their elliptical orbits and by the time; the mutual dis-
turbing accelerations are proportional to the masses of
the planets. Therefore, the computed perturbations of the
first, second, etc., approximations will depend solely on
the initial orbital elements, the time and the masses of
Jupiter and Saturn. The equations of our theory of motion
will relate the positions in space of Jupiter and Saturn for
each instant of time, the initial orbital elements and their
masses, and in this way we will be able to construct so-
called analytical theories of Jupiter and Saturn.

Such, essentially, is the method of successive approx-
imations which has found wide and successful application
in the construction of theories of motion of planets and
other bodies of the solar system. This was the procedure
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used to build the analytical theories of motion of all the

P major planets.

- 'Analytical theories of motion are valuable not only
because they permit of calculating the apparent positions
of heavenly bodies, but because they enable one to study
the character of the mutual influences of planets and other
bodies and also to calculate their masses.

- We have already learned that the masses of planets that
have satellites can be determined approximately by means
of Kepler’s Third Law. This was the procedure used to
find the masses of the earth, Mars, Jupiter, Saturn, Ura-
nus, and Neptune. Now how is one to find the mass of a
planet not attended by satellites? By means of the analy-
tical theories of these planets.

- By way of illustration, let us determine the mass of Venus.
We may make an approximate estimation of the Venusian
mass on the assumption that its mean density is the same
as that of the earth. The size of the planet is known, so
we can calculate the approximate value of its mass.

This figure will, of course, be very inaccurate. Refinements
in this value can be made by considering the perturbations
that Venus produces in the motion of the earth.

We already know that the mutual perturbations of bod-
ies depend upon their masses. Let us calculate the pertur-
bations that Venusian gravitation produces in the earth’s
motion using Venus’ mass approximated by the procedure
described above. We then compare the calculated pertur-
bations with those actually observed in the earth’s motion
(perturbations caused by the other planets should naturally
have already been taken into account).

Since the mass of the planet has not been accurately de-
termined, the computed perturbations will differ from the

observed ones. By varying the mass of Venus it is possible

to select a value for which the computed perturbations will
least of all differ from the observed ones. The result will
be a Venusian mass closest to reality.

It is far more difficult to determine the mass of Mercury
and Pluto. Both of these planets are very small and produce
only minute perturbations in the motions of the other plan-
ets. This is the reason why the masses of these two planets
are so imperfectly known at the present time.

)
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12, THE DISCOVERY OF NEPTUNE

One of the most brilliant attainments of celestial me-
chanics was the discovery of the planet Neptune.

Five planets—Mercury, Venus, Mars, Jupiter and Saturn
—had been known since remotest antiquity.

In 1781 the English astronomer W. Herschel, while scan-
ning the heavens with his telescope, noted a faint star
that moved slowly among the fixed stars. Herschel thought
it to be a comet. However, calculations carried out by the
Russian astronomer A. I. Leksel showed that the new body
was moving about the sun almost in a circle with the solar
distance roughly twice that of Saturn. This was a new major
planet of the solar system; it was called Uranus.

Theoretical studies of the planet’s motions based on
the Newtonian law of gravitation came up against unexpect-
ed difficulties. Uranus refused to obey strictly the law of
gravitation. Theories of its motion, with account taken of
the perturbations produced by all the known planets, were
not capable of representing the observed motion accurately.
The calculated positions of the planet deviated regularly
from the apparent positions. In 1830 these deviations amount-
ed to about 207, in 1840 to 1’.5, and in 1844 to about 2'.
By this time Newton’s law had so firmly “entrenched”
itself that only a few astronomers ascribed these deviations
to a breakdown in the law. Other causes were sought, and
it was suggested that beyond the orbit of Uranus was anoth-
er planet which produced these additional perturbations
in Uranus’ orbit. On this conjecture, the discrepancies
between theory and observation were explained by disturb-
ances of Uranus caused by this unknown planet.

Naturally, to locate this conjectured planet by telescope
was very difficult. It could only be hit upon by accident.
This brought up the problem of determining the motion
of the planet, that is, its orbit, from the perturbations
that it was thought to produce in the motion of Uranus.
This problem could be solved by means of an analytical
theory of the motion of Uranus with account taken not
only of all the disturbing attractions of all the known plan-
ets but also the disturbing influence of the unknown planet.
Above we pointed out that in constructing an analytical
theory of the motion of a planet one can obtain the relation-
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ship between the perturbations of the given planet and the
initial orbital elements or, in other words, the approximated
paths of those planets that disturb the given planet by
their gravitational attraction. Up till now the problem
was to find the perturbations from known approximate
paths of the planets. In contrast, the new problem was to
find the orbital elements of an unknown disturbing planet
by means of equations of the analytical theory of Uranus
and on the basis of the known perturbations of Uranus.

This work, which involved tremendous mathematical dif-
ficulties due to the complexity of the analytical theories
of the planets and the smallness of Uranus’ perturbations
caused by the unknown planet, was carried out almost at
the same time by the English astronomer Adams (in 1843-
45) and the French astronomer Leverrier (in 1845-46).
After the orbital elements of the planet had been found it
was possible to derive its apparent path in the sky and its
positions at any instant of time. On September 23, 1846,
Galle, of Berlin Observatory, aimed his telescope at that
part of the sky where, according to Leverrier’s data, the
unknown planet should be. At a distance of about only 1°
from the spot predicted by Leverrier, Galle actually detect-
ed a new body with a small planetary disk. A few days
later it was found that this body was in motion among the
stars. This was the new planet that later received the name
of Neptune.

This “paper and pencil” discovery of Neptune was a new
imd very convincing proof of the correctness of Newton's
aw.

13. PERIODIC AND SECULAR PERTURBATIONS

An analysis of the theories of planetary motion confirmed
by observational material permits us to distinguish be-
tween two types of perturbations: periodic and secular. The
former are periodically repeating oscillations about the el-
liptical motion (the orbital element oscillates about a cer-
tain mean value). The latter are distinguished by progres-
sively mounting deviations from unperturbed motion (the
magnitude of the element continually diminishes or in-
creases).

The origin of the periodic perturbations may be explained:
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by noting that the plan-

etary configurations, and

4 consequently the direction
and magnitude of the dis-
turbing accelerations vary
2 ) 2 rather rapidly and periodi-
Jupifer cally, with the result that

3 1 1 ~one planet accelerates
another first in one direc-
tion and then in the other.

To illustrate, let us see

Fig. 35. An explanation of peri- how the disturbing acceler-

odic perturbations of the earth  atjons of the earth pro-

with a period of one year duced by Jupiter vary in
the course of one year.
During this time, the earth completes a single cir-
cuit while Jupiter does only 1/12 of one revolution about the
sun. The arrows in Fig. 35 indicate the directions of terres-
trial disturbing accelerations due to Jupiter each quarter
year. It will be clear from the drawing that at position 2
the earth’s orbital velocity is reduced due to Jovian gravita-
tion, while in position 4 (a half year later) Jupiter’s attraction
should increase the velocity of the earth’s motion. The re-
sult is periodic perturbations of the earth with a period of
one year. Besides these periodic annual perturbations there
will be others too. For instance, Fig. 35 shows that during
the year Jupiter’s attraction displaces the earth towards
Jupiter. Let us now see how this direction of annual ter-
restrial displacement will vary during one Jovian orbital
period equal to 12 years.

In Fig. 36 the arrows indicate the direction of the annual
displacement of the earth due to Jupiter for each year of
the 12-year period. We see that in 12 years our arrows move
360°, which means that each annual displacement in one
direction corresponds (six years later) to a displacement
in the opposite direction. These perturbations have periods
of 12 years. We have thus discovered two components of
the earth’s deviations from unperturbed motion due to the
attraction of Jupiter: periodic oscillations of one and twelve
years. ,

As a rule, periodic perturbations of the planets are small
and do not lead to considerable alterations in their mo-
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' tions. The maximum apparent deviations in the sky due to
periodic perturbations from positions that correspond ta
elliptical motion are: for Mercury about 157, for Venus 30, for
the earth 1, Mars 2’, Uranus 3’, and for Neptune 1’.5. Only
for Jupiter and Saturn do these deviations attain a consid-
erable magnitude—28' and 48’ respectively. The period
of these perturbations is also great, roughly 900 years.

. Fig. 36. An explanation of periodic perturbations of the earth ’
with a period of 12 years

Perturbations with such long periods are called long-
period perturbations. They occupy a borderline position
between the periodic group and secular perturbations. It
often happens that we are unable to distinguish them di-
rectly in observations, since if the observations embrace
a period that is much less than that of the long-period per-
turbations, the latter, just like the secular type, will be
in the nature of continually increasing deviations. For
example, a very slow variation in the mean orbital veloci-
ties of motion of Jupiter and Saturn was noted in the sev-
enteenth century, but since the period of these variations
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is close to 900 years, observations alone are not enough to

decide whether the perturbations are periodic or secular.

Their periodicity is established by theory, and observa- {
tions confirm the fact that these perturbations do actually
occur as predicted by the theory of motion. What produces

the long-period perturbations of these planets?

The orbital periods of Jupiter and Saturn about the sun
are known to be approximately 12 and 30 years so that
the ratio of these periods is close to 2/5: Saturn completes
two circuits during roughly the same time that J upiter does
five. Such orbital periods are said to be commensuratle.

Commensurability accounts for a phenomenon similar to
what in mechanics is called res:nance. Resonance occurs
when an additional periodic force acts on an oscillating
body in rhythm with the latter’s oscillations. Even if this
force is very small it can gradually build up a considerable
amplitude.

Saturn’s motion round the sun can be regarded as periodic
oscillations about the sun with a period of 30 years. After
every two circuits that Saturn completes, the lafter, J upiter
and the sun appear in the same configuration as 30 years
before, so that the perturbing action of Jupiter on Saturn
is repeated regularly. In other words, the perturbing action
of Jupiter on Saturn is periodic with a period twice Saturn’s
orbital period. -

To summarize, Saturn is in periodic oscillation relative
to the sum, and is acted upon in resonance by a periodic
perturbing force (perturbations caused by the planet Jupi-
ter). The same may be said of the disturbing influence of
Saturn on Jupiter. The result is a situation which leads
to resonance. This is why the mutual perturbations of J upi-
ter and Saturn associated with the commensurability of
their periods are so great.

Besides periodic, we also find secular perturbations.
These force the planet farther and farther away from its
unperturbed course. Analytical theories of planetary mo-
tion contain such perturbations that vary in proportion
to the time and even to the square and cube of the time.
However, these perturbations "increase very slowly. For
example, according to the theories of motion of the earth,
"Venus, and- Jupiter constructed by Leverrier, the eccentric-
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ities of the orbits of these planets have secular perturba-

\. tions expressed by the following formulae:

¢=0.0167498—0.0000426¢—0.0000001372  (Earth)
¢=0.00681636—0.00005384¢ +0.000000126¢2 (Venus)
e=0.04833475 +0.000164180:—0.00000046872 ~ (Jupiter)

. In these formulae, ¢ is the time reckoned in cen!uries
- from 1900. It may be seen that during one year the eccentric-
ities of these planets vary by only 0.0000004; 0.00000054;
0.000001641 respectively, and in 100 years by 0.0000427;
0.0000537; 0.00016371.

However, such perturbations acting over long periods
of time could lead to essential changes in the planetary
motions. If, for example, we take a period of 10 000 years,
the eccentricity of the earth’s orbit should diminish to
0.0134, of the orbit of Venus—to 0.0014, while the eccentric-
ity of the Jovian orbit should increase to 0.064.

But we should not lose sight of the fact that the analytical
theories of plametary motion are capable of representing
the actual motions of the planets with sufficient accuracy
for only a definite interval of time, beyond which these
theories do not hold. Unfortunately, in only a few special
cases is it possible to state theoretically the interval of
time during which discrepancies between theory and the
precise solution of the problem of motion of the given bodies
are still sufficiently small.

Ordinarily, the developed theory of motion of some
body is compared with all available observations. This
naturally yields divergences between the theory and the
observations. The magnitude of these divergences and the
interval of time embraced by the comparison permits one to
judge of errors in the theory.

Comparisons of modern analytical theories of planetary
motion with observational data covering the time period
approximately from 1800 to the present day exhibit depar-
tures from observations that amount to within several seconds
of arc. Thus, we may presume that the present theories of
planetary motion will hold for calculations during 100-200
years and will allow us to predict the positions of the plan-
ets in the sky during this period with an accuracy to sev-
eral seconds of arc. During this time, the orbital elements
of the planets will vary in accordance with the equations
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of these theories, but it is not known whether they will
continue to vary in the same way in the future. At any
rate, there can be no question of using these equations to
study planetary motion in the course of many thousands
of years. To illustrate, if we calculated the eccentricity
of Venus’ orbit for 20,000 years hence using the above equa-
tion, it would be negative. But this is impossible since the
eccentricity of an orbit is a positive quantity or zero. This
equation is therefore useless for calculations of the Venusian
eccentricity tens of thousands of years in advance.

The conclusion is that analytical theories of planetary mo-
tion are not suited for studies of purely secular perturbations.
But celestial mechanics has worked out other methods,
designed not for calculating the precise positions of heavenly
hodies but specially for the investigation of secular pertur-
bations. Application of these methods has shown that some
of the perturbations, which in the analytical theories of
planetary motion are regarded as secular, are actually of
the long-period type. Such are variations of eccentricities
and inclinations of planetary orbits. Mutual attractions of
the planets periodically alter the shape of the orbits and
their inclinations to the plane of the ecliptic. It appears
that these perturbations of the eccentricities and inclinations
represent a set of oscillations with different and very long
periods, of the order of tens of thousands of years. Such
perturbations are not regularly periodic but rather in the
nature of very, very slow irregular oscillations.

" Thus, the theory of secular perturbations has shown that
the variations of the eccentricities and inclinations of the
planetary orbits are not exactly secular. But since the pe-
riods of these wvariations attain scores and hundreds of
thousands of years, the literature has retained the term
“secular.” ‘

As an illustration, Table 4 lists the secular variations
(for 100,000 years before and after 1850) of the mean values
of two elements of the variational orbits of Mars and the
parth: the eccentricity and inclinati n calculated by Le-
verrier (neglecting short-period perturbations). The orbital
inclinations are reckoned relative to the plane of the earth’s
motion in 1850. ‘ '
. The trend in the variation of the elements is graphically
digplayed in Figs. 37 and 38, which are based on Table 4,
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Table 4

| 1, thousands of Mars Farth
‘ years R R
e 1 e I T

-100 0.1079 3°13'45" 0.0473 3°45' 31”7
90 0.1195 2 55 36 0.0452 2 42 19
80 0.1251 1 5512 0.0398 1 18 58
70 0.1225 3001 0.0316 1 13 58
60 0.1175 1M 41 0.0218 2 36 42
50 0.0978 2 09 32 0.0131 3 40 11
40 0.0832 2 46 15 0.0109 4 03 01
30 0.0746 2 54 43 0.0151 3 41 51
20 0.0840 2 46 37 0.0188 2 44 12

—10 0.0884 227 51 0.0187 1 24 35
0*) 0.0932 1 51 06 0.0168 0 00 00

+10 0.1006 49 17 0.0115 114 26
20 0.1036 53.49 0.0047 2 07 46
30 0.1013 2 29 09 0.0059 23319
40 0.0945 3 4917 0.0124 2 27 53
50 0.0857 4 27 27 0.0173 1 51 54
60 0.0797 4 10 49 0.0199 51 52
70 0.0825 3051 0.0211 34 35
80 0.0948 1 46 11 0.0188 1 45 40
90 0.1113 1 5526 0.0176 2 40 56

+100 0.1258 49 45 0.0189 3 02 57

From the table and graphs it follows that the eccentric-
ity of the earth’s orbit fluctuates between zero (circular
orbit) and 0.069, while the inclination of this orbit can
increase to 4°41’.

Leverrier computed such tables for other planets too.
Table 5 gives the maximum and minimum values of the
eccentricities and also the maximum values of the orbital
inclinations of the major planets relative to the orbital
plane of the earth in 1850.

These “secular” perturbations of the eccentricities and
orbital inclinations of the planets should lead to rather
noticeable changes in the apparent positions of the planets
, in the sky. For Venus, these changes (due to increasing
orbital eccentricity to e=0.071) will reach 7-8°, while
for Mars (due to an increase in the inclination) they will be
at least 5°. o

* The initial instant of time t=0 is taken at 1850.
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Still, these perturbations are not great enough to alter

considerably the type of motion of the planets. Their

orbits ‘

will still be close to circles and the orbital planes will, |

as before, be only slightly inclined to each other.
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Fig, 37. Variations in the eccentricities of the orbits of Earth

and Mars during 200,000 years

Alterations of a more radical nature in the planetary
motions could, in time, result from the purely secular changes
of the eccentricities, inclinations, and particularly the
semi-major axes of the orbits. A secular increase in the semi-
major axes would, for example, mean that all the planets

were gradually receding from the sun.
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Fig. 38. Variations in the orbital inclinations of Earth and Mars
during 200,000 years (relative to the earth’'s orbital plane in 1850)
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Table 5

e

i maximum
minimum I maximum

Mercury . . . . 0.121 0.232 9°17’
Venus . . . . . 0 0.071 5°18’
Earth . . . . . 0 0.069 4°41’
Mars . . . .. 0.018 0.140 7°09’
Japiter . . . . 0.025 0.061 2°01’
Saturn . . . . . 0.012 0.084 2°33
Uranus . . . . 0.012 0.078 2°33’

However, neither theoretical investigations nor obser-

vations have yet detected true secular changes in these
‘orbital elements. Of course, the semi-major axes of the
planetary orbits, and also the eccentricities and inclina-
tions do not remain the same. They experience slight pe-
riodic fluctuations; however, in the course of many hun-
dreds of thousands of years there should not be any constant
decrease or increase in the semi-major axes. In other words,
the planets will be moving just about as they are now for
a very, very long time.
. Of all the orbital elements of the planets only two—the
longitude of the ascending node and the perihelion distance
from the node—are subject to secular variations. The as-
cending nodes of all the planets “retreat,” that is to say,
they move in a direction opposite to that of the orbital
motion of the planets. On the other hand, the perihelia of
the majority of planets move in the same direction as the
planets themselves. But these motions are very slow. “Fast-
est” is the line of apsides of Saturn’s orbit. It completes
a full circuit in 57,000 years. Jupiter’s perihelion makes
a complete circuit 1/6 as fast—in 349,000 years.

14. NUMERICAL METHODS IN CELESTIAL MECHANICS

In addition to analytical methods, wide use in the study
of the motions of planets and other heavenly bodies is being
made at present of numerical methods. They differ from
the analytical approach in that with their aid one obtains
not equations that define the perturbations of bodies as a
function of time, but only numbers (coordinates) that indi-
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cate the position of a body in space at definite instants of
time. How are these specific positions found?

Let several bodies attract each other by Newton’s law.
If for each body we know the position and velocity at the
initial instant of time ¢, it is possible to determine t
forces with which these bodies act on one another and
accelerations that they impart to each other at the init
instant. We select an instant ¢, that is close to the initi
instant and assume that during the small interval of ti
At=t;—t_  the accelerations of the bodies do not chang
Then, applying the equations of uniformly accelerated mo
tion we can calculate for each body its departure from
uniform and rectilinear motion during the time A¢ and its
position and velocity at the instant ¢,. From the new po-
sitions of the bodies it is again possible to calculate the
forces acting between them and the accelerations at the .
instant ¢,; it is then possible once more to determine their
positions and velocities at the subsequent close instant t,, etc.

It is thus possible by successive steps to calculate the
approximate positions of heavenly bodies in space and to
compile a table that indicates the positions of these bodies
at instants t,, ¢,, t;, . . . during a specific interval of time.
This is how a numerical theory of the motion of bodies is
constructed for this interval of time.

These computations of the successive positions of a heav-
‘enly body in its orbit are rather simple, requiring only
the four ordinary operations of arithmetic. However, the
number of these operations that must be carried out in order
to derive the motion over a more or less appreciable interval
of time (for example, 10 to 20 years) is stupendous. This
is why numerical techniques have become widespread only
during the past ten to fifteen years, since the advent of mod-
ern calculating machines.

In 1951, tables were published in the United States of
the motions of the four largest planets of the solar system—
Jupiter, Saturn, Uranus, and Neptune. These tables, com-
piled by means of electronic computers, indicate the po-
sitions of the planets from 1653 to 2060 for every 40 days.
A comparison of the observations of these planets from 1780
to 1940 with the numerical theory of their motions shows
that this theory accords better with observation than do
the most refined analytical theories created by the American
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astronomers Hill and Newcomb. The numerical theory en-
ables one to represent the apparent motions of these planets
with the same accuracy as the planetary positions deter-
mined by observations. On the average, divergences be-
tween numerical planetary theory and observational
ata do not exceed one second of arc.

Numerical methods are now being successfully applied
in studies of the motion of asteroids and satellites as well
as in solving other problems of celestial mechanics. As a
rule, they enable us to predict, with far greater accuracy
than the analytical methods, the apparent positions of ce-
lestial bodies. And what is more, the most involved prob-
lems reduce to simple calculations; no fundamental mathe-
‘matical difficulties arise. Problems of three and four
bodies are solved numerically with the same ease as the
two-body problem—only the number of operations increases.
This is the great merit of numerical techniques. What de-
merits have they?

Like analytical methods, the numerical theories of
motion cover only a specific and small interval of time.
True, calculations may be carried out for any interval of
time, no matter how large. But, not only is it, practically
speaking, too difficult to create a numerical theory of mo-
tion of a body, say, for 100,000 years in advance, but there
is also the question of errors in the theory. This is natural
since we obtain only an approximate solution of the problem
of motion. And to determine its errors for points of time
that are far removed from the initial instant (for instance,
many thousands of years), or to what extent the position
of a given body at this instant (as indicated by the numeri-
cal solution) differs from the position given by an exact
-solution of this problem of motion, is very difficult and, in
many cases, even impossible as yet.

Even to begin computations we need to know precisely
the masses of the bodies under consideration and we must
~ have complete data on the gravitation of these bodies.
] Another thing is that in numerical calculations we obtain

directly the perturbations of these bodies, but not the
relationship between these perturbations and quantities
that describe the masses, orbital elements and other pro-
perties of the perturbing bodies and their motions, as is
the case when applying analytical methods. If we did not
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have at our disposal theoretical methods of motion, we
might to this day be ignorant of the mass of Venus or
Mercury, and to discover Neptune “theoretically” would
be quite out of the question. In themselves numerical
methods do not permit of studying the general propertie
of motion of heavenly bodies.

In conclusion it may be said that numerical metho
and numerical theories of motion, as they exist today, a
a long way from being all-powerful and cannot replace com-!
pletely analytical methods and analytical theories of the
motion of bodies. Nevertheless, at the present time their:
practical value is great. And their role and significance
will grow in step with future refinements in this field and
with improved calculating machines. Papers have already
appeared that combine numerical and analytical techniques.
Undoubtedly, considerable progress is to be expected in
celestial mechanics through the joint application of nume-
rical and analytical methods.

15. SATELLITE THEORY |

The satellites move about their primaries in much the
same way as the planets do around the sun. Basically, the
motion of the satellites of a given planet is governed by
the force of gravitation of this planet. If the planet has
several attendants (like Jupiter or Saturn) their mutual
perturbations have to be taken into account. These pertur-
bations are usually small since the masses of the satellites
are small in comparison to that of the planet. The motions
of the satellites are also disturbed by the other bodies of ‘
the solar system. b

Let us compare the perturbing action of the sun and Jupi-
ter on the moons of Saturn. ‘

At closest approach, Jupiter is roughly twice as close
to Saturn as the sun. But the mass of the sun is 1,000 times
that of Jupiter, and so it attracts a Saturn satellite with -
1,000/22=250 times the force of Jupiter. The perturbing ‘
action of the other planets on Saturn’s satellites is still
less. For this reason, in satellite theory we ordinarily take
into account only the perturbing influence of the sun
and disregard the attraction of the planets. Another point
is that since the satellites are usually not far from their
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primaries we must ‘take ac-
count of the fact that the
planets are not exactly spheri-
cal in shape, and that, for
this reason, the gravitational
pull of the planet does mnot
vary exactly with the in-
verse-square law.

A study of the mutual per.
turbations of the satellites en-
ables us to determine their
masses. This was how determi-
nations were made of the mas-
ses of four of Jupiter's largest
satellites and four of Sa-
turn’s. The mutual influence )
of the other satellites of Sa- Fig. 39. Saturn
turn and Jupiter as well as
those of Uranus and Mars was not detected. Their masses ¢can
be judged only by their sizes and probable density. ‘

" The theories of satellite motion permit of separating
out the influence of departures of the planet from sphericity.
This influence depends on the compression of the planet,
so that observed perturbations enable us to evaluate this
compression (so-called dynamic compression). However,
the motion of satellites is not determined solely by the
geometric shape of the planet, but also by the law of the
distribution. of density of planetary matter, a thing that
we do not know. This is why estimates of the dynamic
compression of planets are not completely reliable. :

Saturn’s system of moons is unlike other systems due to the
ring. Saturn’sring consists of a multitude of miniature satel-
lites moving approximately in a single plane and socloseto one
another that at a distance the impression is a solid thinring.

In building a theory of the motion of Saturn’s satellites
one has to take into consideration the attraction of this
ring. The observed perturbations of the satellites have
helped us to determine the mass of the ring, which came
out to 1/27,000 the mass of Saturn. :

The problem of the motion of the earth satellite —th
moon —is one of the most complicated in celestial mechan-
ics. The~reasons for this are the following:
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1. The moon is the closest heavenly body to the earth.
The slightest irregularities in lunar motion are detectable.
A shift in the moon’s position in space of only 2 km. will
result in a 1” change in its apparent position in the sky.
This requires that the accuracy with which the theory pre-
dicts lunar positions should be at least as good as this.
Theory must be able to define the position of the moon in
space to within 2 km. or even more accurately*.

The positions in space of the planets and asteroids may
be determined with much less accuracy. For instance, in
order to predict the apparent position of Jupiter in the sky
to within 17 it is enough to know its position in space with
an accuracy of only 3,000 km.

2. The earth and moon are rather close to the sun
and perturbations of the moon due to the sun are very great.
Let us calculate how much weaker is the perturbing attrac-
tion of the sun than that of the earth, which governs the
motion of the moon.

We must make it clear here that the perturbing attrac-
tion of the sun is not the force with which the sun attracts
the moon. The moon moves round the earth and for this
reason the total force with which the sun attracts the moon
and earth does not produce any change in the mutual po-
sitions of these bodies. A change in the lunar position re-
lative to the earth is due: 1) to the gravitational attraction
of the earth (the principal force), and 2) to the fact that the
sun’s pull on the moon is weaker or stronger than on the
earth, that is, to the difference in the force of gravitation
exerted by the sun on the earth and on the moon. The
ratio of this perturbing difference of forces to the prin-
cipal force —the earth’s pull on the moon-—at New Moon,
when the latter is closest to the sun, comes out at 1 /89, which
means that the perturbing attraction is on occasion not
so very much less than the principal force. For other satel-
lites, this ratio of principal to perturbing force is many
times less.

The earth communicates to the moon an acceleration
of about 0.27 cm/sec?. The perturbing acceleration of the
moon due to the perturbing attraction of the sun is less

* To predict the onset of a solar eclipse with an accuracy, of 1 sec.
it is necessary to know the position of the moon in the sky to wathin 0”.5.
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by a factor of 89 and equal to 0.27/89 ~0.003 cm /sec?.
Applying equation s='/, at®> we find that in only three
days (during which this disturbing acceleration varies but
slightly) the moon will depart 1,000 km. from its unper-
turbed path, and its apparent position will change by about
4’. And this only in three days! Recall that the pertur-
bations of Saturn and Jupiter do not exceed 3’ in 3 years.

3. The earth is not an exact sphere but has the shape
of an oblate spheroid. Using the equation of the attraction
of a spheroid it is possible to calculate that the perturbing
force due to compression does not exceed the earth’s gravi-
tational pull on the moon by one part in one million. How-
ever, in lunar theory this force has to be reckoned with too.

Thus, on the one hand, the moon experiences relatively
strong perturbations of various origin (perturbations due to
the sun and planets and also due to the earth’s compression);
on the other hand, these perturbations have to be calcula-
ted with a high degree of accuracy, much higher than is
required for those of other celestial bodies. This is what
makes the problem of lunar motion so complicated.

Many astronomers and mathematicians, beginning with
Newton, d’Alembert and Euler, have constructed theories
of lunar motion on the basis of Newton’s law of gravitation.
In use at the present time is the theory of the moon’s motion
developed in 1895 by the American astronomer E. W. Brown.
This theory permits computing the moon’s position in the
sky with an error not exceeding 0".5—1". To give the
reader some idea of the complexity of lunar theory and
of the thoroughness with which it has to be worked out, we
may note that some of the equations defining the position
of the moon in the sky consist of sums of many hundreds
of terms. These terms are periodic perturbations. Most of
them do not exceed 0”.1 and correspond to a 200-metre
change in the position of the moon in space.

16. ARTIFICIAL EARTH SATELLITES AND THEIR MOTION

Just recently celestial mechanics was confronted with
the motion of a special type of body —artificial earth satel-
lites. On October 4, 1957 the U. S. S. R. launched the first
artificial satellite of the earth weighing 83.6 kilograms.
The second Soviet satellite (weight —500 kg.) was put into
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orbit on November 3, 1957, and on May 15, 1958, a third
Soviet satellite weighing 1,327 kilograms was launched.
Since February 1958 the Americans have put into orbit
several small artificial .satellites ranging from 1.5 kg. to
67.5 kg. in weight.

After an artificial satellite is launched into orbit about
the earth it moves under the influence of the earth’s grav-
itational force just as the moon does. In the first approx-
imation it moves in an ellipse that retains one and the
same position in space and at one focus of which is the
centre of the earth. Deviations of the satellite from this
elliptical (so-called unperturbed) motion —perturbations —
are caused primarily by an additional force, the resist-
ance of the terrestrial atmosphere. Besides, the earth
does not attract towards its cemtre in strict accord with
Newton’s low as a result of its compression and the
uneven distribution of the density of material in the earth’s
interior.

The properties of unperturbed elliptical motion are tak-
en into account primarily during the launching of the
satellites. A preliminary calculation is made of the satel-
lite’s orbit in space, of its closest and farthest distance from
the earth’s surface. The launching rocket first moves ver-
tically upwards, then, by means of control systems, it grad-
ually turns in the vertical plane. At a definite, predeter-
mined height the rocket begins to move almost horizontally,
and the satellite is detached with a prescribed speed. The ve-
locity of the satellite at this instant determines the shape
of its orbit. The plane of the rocket’s trajectory will be
the orbital plane of the satellite.

If a satellite, at a distance r, from the centre of the
earth, is given a horizontal velocity exactly equal to

_fm

Vo = ‘_r';'
where f is the constant of gravitation and m the mass of
the earth, it will move in a circle with the centre at the
centre of the earth and with a radius of r, (see Section 6
above). This is the so-called circular velocity of the satel-
lite. If fand m are equal to: f==6.67 X108, m=5.974 x10%*gr.
then y/7m=1.99x10. A more precise determination of
this quantity, based on a study of the earth’s shape and
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the acceleration due to gravity at the earth’s surface,
gives in c.g.s. units Y Tm=1.99654 x 100.*

Taking this value, we obtain for the circular velocity
the formula

Vo, cm/sec. = 1.99654/r,

where 7, is expressed in centimetres. To facilitate computa-
tions it is best to trapsform this expression. To do this, we
first calculate the circular velocity Voo of a hypothetical
satellite moving in a circle with a radius equal to the equa-
torial radius of the earth R=6,378 km., that is, at the very
surface of the earth.**

If in the latter equation we put ro=R=6,378X10° cm,
we will obtain Vgo=7,906x10° cm [sec.=7,906 m [sec. After
multiplying and dividing by /R we rewrite the formula
for V, as follows:

1.99654 x 1010 R R
N 2 i A

This formula is convenient in that it contains only the
ratio between the equatorial radius of the earth R and the
distance r, of the satellite from the earth’s centre. ‘

The circular velocity of the satellite diminishes with
increasing r,. For example, at a height of 100 km. above
the earth’s surface near the equator (i. e., at r,==6,478 km.)
we have V,=7,845 m [sec., at 300 km. (r,=6,678 km.) V,=
7,727 m[sec. A

If the initial velocity V, of the satellite is greater than
‘the circular velocity but less than the parabolic velocity
the orbit will be elliptic. This has been the case in the
launching of all artificial satellites so far. The eccentri-
city of this orbit is connected with the velocity v and v,
by the relation

) * Obtained from material in K. A. Kulikov’s book Furndamental

Astronomical Constants, Gostekhizdat, 1956.

~ #* To make this more explicit, note that if the satellite’s orbit

%assed along the equator it would lie at the very surface of the earth.
ut if it passed perpendicular to the equator it would rise 21 k.

above the earth’s surface at, the north and. south poles. ;

101



while the semi-major axis of the orbit (or the mean distance
of the satellite from the centre of the earth) is

In this case, the perigee (closest point to the earth’s
centre and, hence, to the surface of the earth) will be di-
rectly above the launching site of the satellite. The apogee
(most distant orbital point from the centre and surface of
the earth) will be on the exact opposite side of the globe.
These points of course refer to the respective positions
of the satellite above the earth’s surface at the initial in-
stant of time. In the course of time, the perigee and apogee
of an unperturbed orbit will retain the same position in
space but will be in motion with respect to geographical
points on the earth. This is because the earth rotates on
its axis, while the unperturbed satellite orbit does not alter
its position in space. When the satellite circles the earth
once, the latter has turned through a certain angle so
that the satellite’s mext circuit passes over different parts
of the earth.

The apogean distance of the satellite from the centre of
the earth is

ra=a(l4e)
and the apogean height above the earth's surface is
hA =TA — 6,378

The perigean distance r, from the earth’s centre and the
perigean height A, above the earth’s surface are related
to a and e by the equations

rp =a(l—e) and A, = r, —6,378

Here, a is throughout expressed in kilometres.

It should be noted that if the height above the earth’s
surface is calculated as the difference (r—6,378 km)., where
r is the distance to the centre of the earth, the true height
will be only that above the equator. For the other points
on the earth there will be a discrepancy due to the earth's
compression, that is, due to the fact that the distance from
the centre to the surface is less than 6,378; at the poles
this difference amounts to 21 km,
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The orbital period T, of a hypothetical satellite moving
in a circular orbit at a distance of 6,378 km. from the earth’s
centre is:

2xR 2 - 6,378 - 102 .
To = = AT 000 - 5069 sec. = 84.48 min.
°= v, 7,506

According to Kepler's Third Law (see Section 2) the or-
bital period of a satellite moving in an elliptical orbit with
a semi-major axis a should satisfy the relation:

T2 ad
T2, R®
or
T2 ad

Bi.487 ~ 6,318

where a is expressed im kilometres and 7 in minutes of
time.

Through observations of a satellite during the first days
of its existence we can compute its orbital elements and
determine to what extent the orbit’ differs from the pre-
scribed one. All three of the Soviet satellites were successfully
launched into their prescribed orbits.

Immediately after launching, the first Soviet Sputnik
had an orbital period of 96.15 min. (96 min. 9 sec.). From
the equation relating 7 and a we find that this period cor-
responds to the following semi-major axis of the orbit;

96.15 \%/s
4= 6,378 (m) — 6,953 km.

If, in addition, we know ks and hp, we can calculate the
eccentricity of the orbit from the other equations:

= ha—hy
€= "

and in this way we will determine the complete size and
shape of the orbit. For Sputnik I, the initial 44 and %y were,
according to reports in the press, 947 and 228 km. respec-
tively.
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From this it follows that

. M9 _ *
6_13,906_0'0517
The orbital plane of Sputnik I was inclined to the plane of
the equator at an angle of i=64°.26. Fig. 40 gives the gen-
eral position of the orbit relative to the earth.
Following are the initial orbital elements of Sputnik II
and Sputnik III: ‘

11 111
T = 103.75 min. T =105.95 min.
e =17,314 km. : @ =7418 km.
e = 0.09885 e =0.113
hp= 225 km. hp=224 km.
ha= 1,671 km. ha=1,880 km.
i =62°5

These may be compared with the following orbital elements
of the first and second American earth satellites: -

* It is also possible to calculate the eccentricity from the period

T and either the height kA or hp. True, in this case one must know rath-

er accurately the distance R from the surface to the centre of the earth

at the point of observation. For example, for Sputnik I we take ha=

947 km., R=06,378 km. Then, using the above equations we obtain
' T

A
ra=6,378+947=7,325 km,e ——1=0.0535,rp= 6,581 km. hp=203 km.
a

e and hp will be found to differ from the earlier computations. This is
because we incorrectly took the distance to be R=6,378 km. -

This figure is correct for points on the equator, but the satellite’s ap-
o%ee, apparently, was not above the equator. The distance to the cenire
of the earth diminishes as we move away from the equator. Since
in this individual case we know both ka and hp it is possible to cal-
culate that at perigee and apogee the distances RA and Rp to the
earth’s centre from the surface were, during the first few days, approx-
imately 6,365 and 6,366 km. Indeed, on the basis of the above values
a=6,953 km. and ¢=0.0517 and ha=947 km., hp==228 km., we obtain

ra=d (14-6)=7.312 km., rp=a {1-¢)=6,594 km.,
and therefore
RA =raA—hA =6,365 km., Rp=6,366 km.

If in calculating kp from the given period 7' and kA we assumed
R=6,357 km. (the distance from the surface to the centre at the poles),
we would obtain hy=245 km.The values of kp calculated from R=6,378
km. and R=:6,357 km. would then differ by 42 km. To summarize, hy
may be computed from kA and 7' (ha from T, hp) if very approximate
values are needed or when the distance R is known with sufficient
accuracy. - '
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T =114.95 min. T =135 min.
a =7,831 km. 2 =8,731 km.
e =0.14052 e =02
hp=352 km. hp =650 km.

hea =2,554 km. hy =4,000 km.
i =33°58 i =33°

The terrestrial atmosphere plays a very essential role in
the motion of artificial earth satellites. Due to the resist-
ance of the air, the satellite is decelerated and gradually
comes closer to the earth. At heights of 100-150 km. above
the earth’s surface, air resistance is such* that the satel-
lites heat up, break into pieces and fall to earth like ordinary
meteorites.

The first Soviet satellite stayed in orbit till the beginning
of January 1958, or about 3 months, completing a total
of about 1,350 circuits of the earth. On December 31 it
was reported to have a period of about 90 min. and an apo-
gee of 320 km. Using published data we compiled a table
indicating the orbital periods and semi-major axis of
Sputnik 1 for different dates. Also included in the table are
the values of e, hy, h, for instants at which it was possible
to calculate them.

Date T, min. g,km. e (ha) km. (hp) km.
4 Oct. 1957 96.15 6,953 0.0517 947 228
9 96.02 6,946 — —_— —
21 95.55 6,924 — —_— —
25 95.44 6,918 0.0460 890 220
27 95.31 6,912 — — —
9 Nov. 94.72 6,884 0.0442 810 202
31 Dec.** ~90 ~ 320

From this table we may draw the following conclusions.
1) The satellite gradually came closer to the earth, the

* Even though the air density at these heights is less than that at
the surface of the earth by a factor of millions,

** There is a mistake here in either the period or the apogee. For
these values of 7" and ha we obtain a=6,660 km. and hp=-244 km. which
cannot be since hp must diminish with time. If we retain ha==320 km.,
it is more likely that 7=89, in which case hp would be 150 km.
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semi-major axis of its orbit a, and the heights 4, and % de-
creased in time. And the orbital period of the satellite
likewise diminished —a very paradoxical thing at first
glance: the atmosphere impedes the motion of the satellite,
yet the latter circuits the earth faster and faster!

It may be noted that even the mean velocity of orbital mo-
tion increases. Calculating the length of an arc of the ellipse

by equation S=2r a(1—1/4&—>e), which holds for small

values of eccentricity, e, we find that on Oct. 4, 25 and Nov.
9 the paths covered by the satellite during each circuit about
the earth came out to 43,696 km., 43,444 km., and 43,232 km.
respectively. Dividing these by the orbital period (in seconds)
we obtain the mean velocities: 7.574 km /sec., 7.587 km /sec.
and 7.607 km /sec., respectively.

2) T and a diminish at an accelerated rate. Between Oct.
4 and 21 the average rate of change of T was 2.12 seconds
per 24 hours, between Oct. 21 and Nov. 9—2.62 seconds
per 24 hours and between Nov. 9 and Dec. 31—about 5 sec-
onds every 24 hours. The mean daily variation of a during
the periods Oct. 4-21 and Oct. 21-Nov. 9 was 1.82 km. and
211 km., respectively.

3) The eccentricity of the orbit diminished with the
semi-major axis, which means that the orbit became less
and less elongated.

4) The perigee distance, hp, diminished much more slow-
ly than did the apogee distance, k,. Between Oct. 4 and
Nov. 9, h, decreased by 26 km., while &, lost 137 km.

Circling about the earth along with Sputnik I (the sat-
ellite proper) was the carrier rocket*—itself an independent
satellite. At the beginning the carrier rocket was not far
from the satellite. But since it encountered greater atmos-
pheric resistance than did the satellite proper (this was
mostly due to its shape), it began to lose height faster than
its companion. And in doing so it did not lag behind Sput-
- nik I but overtook it since its orbital period diminished
more rapidly. It lived up to Dec. 3, 1957, and during the
last three days of its existence it moved in the relatively
dense layers of the atmosphere and glowed giving the impres-

* Or, to be precise, the last stage of the composite rocket that laun-
ched Sputnik I into orbit.

106



sion of burning. On Dec. 1 it was observed over Riga at 7
a. m. as a bright yellow ball of fire. During the last days
of November its orbital period was about 90 min.

The orbital elements of the carrier rocket (T, a, e, ha,
hy) varied in the same way as those of the satellite proper.
Below is a table, similar to the one above, for the rocket
carrier computed from published data:

Date T, min. a, km. e (ha), km. (hy), km.
4 Oct. 1957*  96.15 6,953 0.0517 947 228
21 Oet. 1957  95.12 6,903 — — —
25 Oct. 94.68 6,881 0.0416 789 217
9 Nov. 93.48 6,823 0.0366 695 195

The second Soviet satellite had a longer lifetime than the
first; it lasted till April 14, 1958, or about four and a half
months, completing a total of 2,370 circuits about the earth.

The following table for Sputnik II contains data on T,
a, e, ha, and hp.

Date T, min. a, km. e (ha), km. (hp), km.
3 Nov. 1957 103.75 7,314 0.0988 1,671 225
9 Nov. 103.52 7,303 — — —
17 Dec. 101.59 7,214 0.0876 1,468 = 204
31 Dec. 100.76 7,173 — — —

28 Jan. 1958 98.87 7,083

All the foregoing variations in the orbital elements of
artificial satellites may be explained theoretically.

Since satellites move in elongated orbits and the atmos-
pheric density falls off rapidly with distance from the earth’s
surface, the resistance of the air is greatest near the perigee of
the orbit, in other words, when closest to the earth. At apogee,
the satellites experience hardly any deceleration at all.
Schematically, satellite motion may be represented as fol-
lows. Let the initial orbit be ellipse  in Fig. 41. The dashed
line is the boundary, @, above which atmospheric resistance
is too small to be taken into account.

Resistance due to the atmosphere is perceptible only

* From the’ very] beginning the velocity of the carrier rocket was
less than that of the satellite proper, since the latter was ejected from
the last stage of the rocket (true, the thrust was only slight). This is
why the figures in this line are not exact. All the quantities—a, T, ha
and 2p should bereduced somewhat. :
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over the portion of orbit close to perigee, P. Let us denote
by ¥, the velocity of .the satellite emerging from perigee,
P, needed in order to move in ellipse 7. As the satellite re-
cedes from. perigee its speed diminishes and reaches a mini-
mum at apogee. Héte it is equal to

\%X\/i——el
\/ a; (1 +e)

where a, is the semi-major axis, and ¢, is the eccentricity
of ellipse 1.

When the satellite returns to perigee P in orbit 7 it ex-
periences retardation. If we regard the satellite as being
decelerated only at P (see Fig. 41) its direction will be re-
tained as it emerges from perigee but it will have less ve-
locity. We designate the new velocity by V, (V,<V,). The
next circuit will now lie in orbit 2, for which the apogee
distance k; and the semi-major axis @, will have dimin-
ished.* The greater the density of the air near P the more
speed the satellite will lose and the faster %, and a will
diminish.

The velocity V, will not be sufficient now for the satellite
to overcome the earth’s gravitation and recede to point A,.
Orbit 2 is less elongated and its eccentricity e, is less than
that, e;, of ellipse 7. At the apogee of orbit 2, the satellite
will have a velocity, :

Vim xy1—e
Va, (1 +e)

And since a,<la; and e;<le,, the velocity, V1,, is greater
than V1;. By Kepler’s Third Law we again find that the
orbital period in orbit 2 is less than that of orbit 1.

Thus, although the satellite was retarded near perigee

V1=

Vlz =

* All proportions in Fig. 41 are greatly exaggerated so as to facil-
itate explanations. First, the orbits are too elongated and the apogee
is too far awag' from the earth (upwards of several earth radii). Actually
the apogees ol the first Soviet satellites were at distances less than an
earth radius. Second, a single circuit of the satellite does not produce
such a reduction in the apogee distance. For example, between Oct,
4 and 25 Sputnik I lost an average of 2.7 km. in apogee distance per
24 hours, while in a single circuit (the satellite did 15 circuits a day)
this distance amounted to only 0.18 km., which is roughly 1/5,000 of
the original apogee distance.
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and lost speed, near apogee it gained speed. This is because
at apogee the satellite was now closer to the earth and was
experiencing a greater pull by the latter. Now an increasing
gravitational force leads to higher accelerations and veloc-
ities of the satellite. The retardation effect near perigee
is balanced by the increasing gravitational pull of the earth

" Fig. 40. The orbit of the first artificial earth satellite.

near apogee, and the resultant mean velocity of motion of
the satellite in its orbit increases.

Above, we started from the rough approximation that
retardation occurs only at perigee P, in which case, the apo-
gee distance will gradually diminish while the perigee
distance will remain constant. In reality retardation occurs
over a certain portion of the orbit close to perigee
(Fig. 41). This brings about a reduction, though relatively
slight, in the perigee distance. The satellite will return
not to point P but to P,, which is closer to the earth. The
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result is that the satellite descends
into denser layers of air and retarda-
tion at perigee gradually increases.
And this leads to a gradual decrease |
in the semi-major axis of the orbit and ~
the period of revolution of the satel-
lite. ‘

Such is the disturbing effect of the
terrestrial atmosphere. We see that
the perturbations are secular (see Sec-
tion 13), that is, the orbital elements
a, T, e vary in one direction. The
study of these perturbations is of
great significance in determining the
Fig. 41. Retardation of air density at great heights above the
satellite in the atmosphere earth. The satellite loses height the

(schematic). faster, the greater is the retardation |

and, along with it, the density of the
airnear the perigee of the orbit (at the beginning). The rate
of descent of a satellite will indicate the amount of retard-
ation, and hence also the density of the atmosphere. The
first results obtained from observations of the first two
Soviet satellites have shown that the air density at 200 km.
is from 5 to 10 times greater than had been supposed.

Perturbations of satellites due to the earth’s compress-
ion and to the uneven density of material in the earth’s
interior do not lead to a constant decrease or increase of
the semi-major axis, the eccentricity and the orbital period.
These perturbations do not, on the average, alter the size
and shape of the orbit, but gradually turn it in space. Stu-
dies of these perturbations in the case of real satellites can
help to define more accurately the shape of the earth and
also to extend our still insufficient knowledge concerning
the density distribution of material in the interior.

17. THE MOTIONS OF ASTEROIDS

We have already mentioned that close to 1,600 asteroids
have been registered to date. By registered is meant that
the asteroid’s orbit has been derived at least approximately.
The number of discovered but not registered asteroids, how-
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ever, is far greater than 1,600, with new ones constantly
being discovered and their orbits computed.

Since there are already a large number of asteroids and
more are being discovered all the time, it is necessary to
keep tab on them by means of something in the nature of an
“asteroid patrol” in order to be able to study their-motions
and to distinguish them from newly discovered bodies. It
is naturally practically impossible to keep all the asteroids
under daily observation so as mot to lose sight of them.
" Ordinarily, known asteroids are observed only when they
make a close approach to the earth (at opposition with the
sun). Many of the asteroids, due to smallness of size, can
be seen only at this time. For this reason, it is necessary
to know exactly how each asteroid moves in space and to
be able to compute its future positions in the sky for any
instant of time. From time to time, observations are made
and the apparent positions in the sky are determined, thus
permitting a check to be made on how correctly we calcu-
late these positions. But this requires a theoretical calcula-
tion of the motion of the body in space, which is done by
applying Newton’s law of gravitation.

It is evident, therefore, that theoretical investigations
of the motions of asteroids are a prerequisite to asteroidal
observations proper. Besides, there has recently appeared
a practical necessity for very precise theories of motion of
certain of the minor planets. These observations should help
to refine the so-called fundamental astronomical constanis®
which are necessary in the compiling of star catalogues.

The problem of asteroidal motion is at once simpler and
more complicated than that of planetary or satellite motion.
Asteroids have very small masses and so exert such a weak
influence on the motions of other bodies that it has as yet
escaped our notice. For this reason, when investigating the
motions of asteroids one can disregard both their mutual
attractions and their gravitational pull on the major plan-
ets. Asteroids are regarded as moving under the influence
solely of the gravitation of the sun—which acts as the cen-
tre of force—and of the disturbing attraction of the planets.
Further, the planets are regarded as moving in definite or-

* Fundamental constants are quantities that describe the shape
and size of the earth, and its motion and distance from the sun.
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bits that do not in the least depend on the motions of the
asteroids. This, of course, greatly simplifies the problem.

The first task tollowing the discovery of a new asteroid
is to derive its unperturbed elliptical orbit. This can be
done if at least three apparent positions of the asteroid have
been observed at instants of time separated by intervals
of several days. However, it often happens that a newly
discovered asteroid is lost to sight before these data have
been obtained. Sometimes observations are impossible
due to overcast skies. In this way, many discovered asteroids
are “lost” and remain. unregistered. Between 1911 and
1930 a total of 1,962 asteroids were discovered, but .only
for 484 were the orbits computed and thus only these were
registered. Naturally, the first orbit derived is not espe-
cially accurate, and further observations are required to
make it more exact.

But one cannot restrict himself to determining the ellip-
‘tical orbit of an asteroid, for its perturbations are often very
great. In practice, only the disturbing forces of Jupiter
‘and Saturn are taken into account, since the gravitational
forces of these planets are most noticeable. In constructing
theories of the motions of asteroids, wide use is made of
the method of successive approximations.

However, asteroidal motions are far more complex than
planetary motions. As a rule, the elliptical orbits of the
asteroids are much more elongated than planetary orbits,
and the planes of motion of the majority of asteroids are
inclined at greater angles to the plane of the earth’s motion
than are the planetary orbits. This, above all, gives rise
-to purely mathematical difficulties in calculating the per-
turbations of the asteroids. Further, many asteroids make
close approaches to Jupiter and can experience rather strong
Jovian attraction. Fig. 42 shows the orbits of Jupiter and
the asteroids Pallas and Juno*. The orbits of Pallas and
Juno have semi-major axes of 2.8 A. U. and 2.7 A. U. re-
spectively, and eccentricities of 0.24 and 0.26. Juno can
approach Jupiter to nearly 1.9 A. U., while Pallas can come
‘to a distance of roughly 2 A. U. if we take into account the
angle between the planes of the orbits of Jupiter and Pallas.
In these positions, the solar attraction exerted on these as-

* The figure does n6t show the orbital inclinations of the asteroids.
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teroids will exceed the gravitational pull of Jupiter by only
290-300 times.

For this reason, the perturbations of the asteroids are
far greater than those of the major planets, and even over
relatively short periods of time are reckoned not in seconds
or minutes of arc but by tens of minutes and even degrees.
Again, this is a factor complicating the accurate computa-
tion of perturbations.

_ Jupiter

Fig. 42. The orbits of Juno and Pallas (4 and P indicate the
aphelia and perihelia of the orbits).

For this reason and maybe also because astronomers
have paid far less attention to asteroids than to the major
planets, theories of motion have been worked out for only
a few asteroids, and the accuracy of these theories is con-
siderably below that of the theories of motion of the major
planets. At any rate, present-day observations of asteroidal
positions in the sky are made with an accuracy up to 17,
while divergences between observations and the best theoe
ries of asteroidal motion reach tens of seconds of arc.

At the present time, numerical methods are widely used
in computing perturbations and compiling tables that in-
dicate the apparent positions of asteroids in the sky and
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other data of asteroidal motion. These methods enable one
to indicate the positions of asteroids in space and their
apparent positions in the sky with a far greater degree
of accuracy than do analytical techniques. This is the
method used in the Institute of Theoretical Astronomy,
U. S. S. R. Academy of Sciences, in Leningrad to compile
The Ephemerides of the Minor Planets. This volume contains
data on the motions of all registered asteroids. The infor-
mation collected here is sufficient for tracking the motions
of the asteroids.

18. PLANETARY ROTATION

Up till now we have spoken of the motions of the planets
and other bodies around the sun and of satellites around
their primaries. This is the motion of a body in revolution,
it is determined by the motion of its centre of gravity. But
in addition to this translational motion, celestial bodies
are also in motion relative to their centre of gravity—ro-
tational motion. ‘

The rotation of the earth about a certain imaginary line,
which we call the axis of rotation, is illustrated by the diur-
nal rotation of the entire celestial sphére. The earth’s ro-
tation is also detected by means of certain physical exper-
iments (Foucault’s pendulum experiment), and is con-
firmed by a large number of phenomena observed on the
earth®*, The earth’s period of rotation as determined from
stellar observations is equal to 23 hours 56 minutes and
48 seconds.

The rotation of Mars, Jupiter and Saturn can easily be
detected by careful observation in a telescope; various
spots and other surface markings that are visible telescop-
ically do not remain in one place but appear to move over
the disk from one limb to the other and then disappear from
view. This is evidence that the planet is in rotation.

Observations of this kind help to determine the rotation-
al periods of these planets. Mars has a period of approxi-
mately 24 hours 37 minutes, Jupiter’s period of rotation is

* For instance, the earth’s rotation explains the fact that rivers in
the Northern Hemisphere have steep right banks and sloping left banks,
whereas rivers in the Southern Hemisphere have sloping right banks
and steep left banks.
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9 hours and 50 minutes, and Saturn’s period is 10 hours
and 20 minutes. No surface features have been detected on
the other planets, whose rotational periods have been deter-
mined by means of special observational methods. Uranus
has a period of 10 hours 45 minutes, while Neptune’s period
is about 15 hours. Mercury moves about the sun so that one
side of the planet is always facing the sun, which means
that its period of axial rotation is equal to its orbital period,
that is, roughly 88 days. Our data concerning the rota-
tional periods of Venus and Pluto are as yet unreliable.

Observations show that the planets rotate in such a way
that their axes of rotation retain a constant orientation
in space for very long periods of time. Their orbital peri-
ods also remain constant.

We can observe directly the rotational motion of the
moon—the earth’s satellite. The moon always keeps one
side turned towards the earth, which means that it rotates
once on its axis during the same time that it completes
a single circuit about the earth (about 27 days).

Although special methods permit detecting rotational
motion of many bodies of the solar system, of greatest in-
terest is the rotational motion of the planets and the moon.
We shall deal here only with planetary rotation.

There is of course no sense in asking why the planets
rotate or why they have motion in general. Everything in
the universe, from the smallest dust particle to colossal
cosmic bodies, is in constant motion. There is no such
thing as matter without motion. The matter that later went
to form the planets was also in motion. In the process of
their “birth” the planets acquired both translational orbital
motion about the sun and rotational motion* on their axes.

However, we can and should ask how the planets move,
what forces govern these movements, and what laws of
motion the planets obey. We have already analysed their
orbital motions. Let us now examine the question of the
rotational motion of the planets.

According to the basic laws of mechanics, if a body is
not acted on by any forces it should move by inertia. If
the body had translational motion it should, in the absence
of forces, be at rest or should move uniformly and rectilin-

* For details see The Origin of the Earth and the Planets by B. Levin,
Foreign Languages Publishing House.
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early with the same velocity that it
had at the initial instant. In the gener-
al case, rotational motion by inertia
(that is, rotation in the absence of
acting forces) appears far more com-
plex. Let us examine a special case
of this motion, which is related di-
rectly to the problem of planetary
rotation.

If a solid body with an axis of
symmetry (for example, a cone, cyl-
Fig.43. The Maxwell top. inder or ellipsoid of revolution) is

in rotation about this axis, the rate
of rotation of the body and the orientation of the axis of
rotation in space should, in the absence of forces, remain
constant. This is what we find in the case of the Maxwell top
pictured schematically in Fig. 43.

The Maxwell top is bell-shaped with heavy sides. Its
centre of gravity is inside the bell at point 0. The axis,
on which the bell is mounted, ends in a sharp point at the
centre of gravity 0. If the top is placed so that the point
0 rests on the support, the force of gravity of the top P will
manifest itself in the pressure of the top on the support
and will be balanced by the resistance of this support V.

In other words, the top will be a body on which no forces
(which do not balance each other) are acting, and for this
reason it should move by inertia. If given a certain position,
it should retain this position and remain at rest. If we push
the axis of the top slightly, it will oscillate a bit and then
sattle into a new position.

Now let us spin the top on its axis. It will spin and retain
the position that it was given on the support. And what is
more, if the top is in fast rotation, quite a considerable
additional force is required to alter the direction of its axis.

The same things will occur if the top is in no way support-
ed but is simply let to fall in the air, in which case the top
will be acted upon by the force of gravity that will make
it fall. The direction of this force passes through the centre
of gravity of the top. If before being thrown up the top is
given a strong twist on its axis it will continue to spin with
the same velocity and its axis will all the while retain one
and the same direction (Fig. 44).
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Now let us lengthen the axis of the top, put it on the
support and give it a strong spin. The top is now acted upon
by the force of gravity and the resistance of the support
which do not balance each other and strive to turn the top
over. If the top were not spinning it would simply fall down.
But it does not fall when rapidly rotating. Instead, the
axis of the top oscillates regularly describing a cone about
the vertical line (Fig. 45). The rate of this spin remains
constant.

We encounter a similar situation when considering the
rotational motion of the planets. We shall give one example,

Fig. 44. The axis of rotation of a rotating top thrown
upwards remains constant.

that of the rotational motion of the earth, since the latter
has been studied in greatest detail and, practically speak-
ing, is the most important. The approach to the study of
planetary rotational motion is essentially the same.

Like the other planets, the earth’s shape resembles that
of an ellipsoid of revolution with a slight compression along
the axis of rotation (the equatorial radius is greater than
the polar radius). For this reason, the earth cannot be at-
tracted by other heavenly bodies exactly like a sphere,
and the forces of attraction acting on the earth do not pass
exactly through the latter’s centre of gravity.

We have already. considered the law for attraction by a
spheroid. From this law it follows that the force with which
the earth is attracted by some other heavenly body, let
us say M (Fig. 46), differs from the force with which M
would attract a sphere above all in magnitude. Besides, it
does not only impart to the earth a translational motion
but also strives toturn the earth’s axis of rotation. This is
clearly seen from Fig. 46. Calculations show that the magni-
tude of the force that strives to turn the earth’s axis of
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rotation is proportional to
the mass, m, of the attract-
ing body M and is inverse-
ly proportional to the cube
of the distance of this body
from the centre of the earth.

Comparing the forces
acting on the earth and the
forces acting on the top, we
can conclude that the forces
of attraction of different
heavenly bodies with re-
spect to the earth should not
affect the rate of the earth’s
rotation but should lead
to regular oscillations of
the earth’s axis of rotation.

What bodies should exert the greatest influence on the
earth’s rotation?

First, the moon since it is closest to the earth; second, the
_sun, which though farther away has by far the greatest
mass. The planets exert a very weak influence because
the perturbing action rapidly diminishes with distance. From
the relationship F~m/r® we find that the influence of the
sun is exceeded by that of the moon 2.2-fold; and the moon’s
action is 13,000 times that of Venus, 140,000 times that
of Jupiter, and 800,000 times that of Mars. The effect of the
remaining planets on the earth’s rotation is still weaker.

The earth moves about the sun, while the moon circles
the earth. For this reason, the moon-earth-sun configuration
is continuously changing, with the result that the magni-
tude and direction of the forces acting on the earth’s rota-
tion axis are also continuously changing. Due to these forces,
the earth’s ax's of rotation describes a complex motion.
First of all it slowly describes a cone remaining all the time
inclined to the plane of the earth’s motion at an angle
of 23°.5 (Fig. 47). This is the so-called precessional motion
of the axis of rotation, which determines its mean direction
in space at different epochs. This motion has a period of
roughly 26,000 years. In addition, the earth’s axis of rota-
tion describes various slight oscillations relative to its

Fig. 45. The precession of a top.
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Fig. 46. An explanation of terrestrial precession resulting from
lunar attraction.

mean position. Most important of these oscillations is the
so-called principal nutation with a period close to 19 years.

How can one detect such a motion of the earth’s axis
of rotation? Why is a study of this motion so important?
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earth’s motion

Fig. 47. The precessional motion of the earth’s axis.

We observe celestial bodies from the earth’s surface.
Therefore, their positions can only be determined
with respect to reference points associated with the
earth. Such reference points are the plane of the earth’s
motion about the sun (the plane of the ecliptic), the direc-
tion of the earth’s axis of rotation and the plane of the
equator of the earth perpendicular to this axis. The direction
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of the rotation axis intersects the celestial sphere at - the
north and south poles of the world, about which poles the
colestial sphere produces its apparent diurnal rotation.
These reference points, which are connected with the earth
but do not participate in the earth’s diurnal rotation, per-
mit one to “fix” each heavenly body in place on the celes-
tial sphere.

Due to precession of the earth’s rotation axis the poles
describe in the sky circles of radius about 23°.5. Since the
poles make a complete circuit in just about 26,000 years,
in one year they move approximately 50’. The nutational
oscillations of the earth’s rotation axis lead to additional
periodic displacements of the poles that reach 9.

Alterations in the direction of the earth’s axis of rotation
lead to a change in the plane of the equator and to an al-
tered position of the poles of the world in the sky, that is
to say, to an apparent shift of the celestial bodies in the
sky relative to these reference points. These apparent shifts
due to the earth’s motion are compounded with those caused
by the actual motion of the heavenly bodies in space.
We will get a correct picture of the actual motion of the
heavenly bodies only when we find out what part of their
apparent motions in the sky is due to their actual motion
in space and what part is due to the earth’s motion. This
is why, when studying the motions of the heavenly bodies,
we must know how these reference points change.

The stars are at great distances from the earth and re-
tain almost unchanged their position in the celestial sphere.
Changes in the stellar positions relative to the poles of
the world and the plane of the equator and the ecliptic
reflect primarily not the motions of the stars proper but
the displacement of the poles, the equator and the eclip-
tic. It was precisely this alteration in the stellar positions
that was detected as far back as 2,000 years ago by the Greek
astronomer Hipparchus, who called this phenomenon by
the name precession. But at that time the cause of it was not
understood. It was only at the beginning of the eighteenth
century that Newton, applying the law of gravitation, ex-
plained precession and predicted nutation and other oscil-
lations ot the terrestrial axis. Nutational oscillations of
the positions of stars (stellar nutation) was discovered only
in the middle of the eighteenth century.
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The rotational motion of the earth was studied on the ba-
sis of stellar observations and also theoretically. However,
at the present time we need more accurate determinations
of the precessional and nutational motions of the earth’s
rotation axis. The point is that the stars are moving in
space like all other bodies, and the nature of these motions
is still rather vague. Which means that there is not much
sense in determining the movements of the poles and the
plame of the equator from the observations of stars, that
is, objects whose motions have yet to be defined.

In order to determine with more accuracy the magnitudes
of precession and nutation we must observe objects whose
positions in space and the sky are well known, even though
they may not be permanent. Such objects are the planets
and asteroids of our solar system; their motions in space
about the sun are studied by means of Newton’s law of grav-
itation. We already have accurate theories of the motions
of the major planets. However, in practice it is more con-
venient to use the asteroids because they appear as luminous
points, whereas the planets exhibit noticeable disks. The
positions of stars and asteroids (these are necessary in de-
termining the constants of precession and nutation) can
be correlated with far greater accuracy than the positions
of stars and the major planets. This is why we need precise
theories of motion of the asteroids, as was mentioned in
Section 15.

We examined the motion in space of the earth’s axis
of rotation caused by the perturbing action of the moon and
sun. But how does the earth rotate on this axis?

If we take into account only the forces of mutual attrac-
tion between the earth and the other heavenly bodies, the
rate of the earth’s rotation should not change at all. Our
day, determined by the period of rotation of the earth,
should remain constant. Yet, in reality the rate of the earth’s
rotation is gradually diminishing. The terrestrial day is
very slowly increasing by 0.001 second per century. How
is one to account for this increase in the day?

The change in the length of the day is connected with
the tides. Everyone knows that the level of water in the
oceans does not remain the same throughout the day but
changes regularly. In the course of six hours it rises reaching
a maximum at high tide; during the next six hours the water
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recedes and reaches a minimum at low tide, and so on in
regular alternation.

In localities located on the same meridian the tides occur
at almost one and the same time; to the east of the given
locality they set in earlier, and to the west, later. Thus, a
tidal wave extending the length of the meridian is in motion
in the oceans from east to west, that is, in a direction coun-

Fig. 48. The formation of a tidal wave.

ter to that of the earth’s rotation. At the equator, this wave
moves at a speed of 1,600 km /hr. and encircles the globe
in 24 hours 50 minutes. Such also is the duration of the ap-
parent revolution of the moon about the earth. This fact
long ago suggested the idea of some sort of connection be-
tween the tides and the moon. But Newton was the first to
give a correct explanation of the tides on the basis of the law
of universal gravitation.

The attraction of the earth by the moon consists in the
attraction by the moon of the individual particles that com-
prise the earth. The particles which at the given moment
are closer to the moon experience greater attraction, those
that are farther away are more feebly attracted. If the earth
were rigid, this difference in attraction of the individual
particles would not matter. Then one could speak of the move-
ment of the earth as a whole, as determined by the motion
of the earth’s centre and the rotation of the earth on its
axis. However, the earth is not absolutely rigid and, be-
sides, it is covered with oceans (71% of the terrestrial surface
is occupied by water), and particles of liquid will move in
a slightly different way from that of the rigid part of the
earth. . ' , , _
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The particles of water closest to the moon at the given
instant (near point A in Fig. 48) and farthest away (near
point C) are a.tracted by the moon with forces that differ.
Particles at A are attracted by the moon more strongly, and
particles at C weaker than particles at the centre of the
earth. The result is that the particles of water near A are
pulled towards the moon more, and particles near C less

Fig. 49. Displacement of the tidal wave
due to the earth’s rotation.

than the centre ¢ and the entire rigid body of the earth. On
the moonward side of the earth the water will rise produe-
ing a high tide. On the opposite side, at C, there will also
be a high tide, since the particles of water near this point
will lag behind the earth’s centre in its motion towards the
moon. Thus, near 4 and C there will be high tides with an
excess accumulation of water, and at B and D the level of
water will fall, producing a low tide.

The tidal bulges near A and C strive to maintain one and
the same position with respect to the moon. But with re-
spect to the earth the tidal bulges alter their positions due
to the earth’s rotation and move in a direction counter to
the earth’s rotation. In its motion from east to west the tidal
wave experiences friction over the ocean floor and resistance
offered by the continents that it encounters. For this reason
the rotating earth pulls the tidal bulges along and they oc-
cupy, with respect to the moon, positions shown in Fig. 49.
This is why the tides in each locality lag behind the instant
of meridian passage of the moon (either at upper or lower
culmination).

The force of friction between the tidal wave and the ocean
floor, and also the forces of internal friction due to- viscosity
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of the water retard the earth’s rotation. But tidal waves are
formed not only in the water envelope of the earth but in
the rigid body too because the earth is not perfectly rigid.
These tidal waves also move through the earth due to the
rotation of the latter, and the internal friction thus pro-
duced, due to the viscosity of the terrestrial matter, likewise
slows down the earth’s rotation. The overall result is that the
rotation of the earth is gradually decelerated. We have al-
ready said that the terrestrial day increases roughly 0.001
second per century.

How is it possible to detect such a minute alteration
in the length of the day? This is of course very difficult in
direet observations of the length of the day, but for consid-
erable periods of time the influence of an increasing day
can be detected.

Let us suppose that one clock follows the earth’s rotation
exactly, while another clock does not lose time at all. For
the sake of simplicity, let us assume that at the present time
the earth’s period of rotation is equal to one mean solar
day (in place of 23 hours 56 minutes of mean solar time).
In 100 years our day, that is, the time of one full circuit
of the hour-hand of the first clock,* will decrease by 0.001
sec., and each day during these 100 years this time will
diminish by =0.001/36,525 seconds (100 years=36,525
days). Thus, if the daily angularrate of rotation of the hand
(or, in other words, the angle swept out by the hand in hours,
minutes or seconds of time** during one day) always remains
constant for the second clock and equal to g, it will be con-
stantly varying for the first clock and will be equal to
w=0,—¢f, where ¢ is expressed in days. The quantity ¢ is
the retardation of the angular rate of rotation of the hand
of the first clock or the slowing down of this clock. The num-
ber of circuits during time t for the second clock is equal
to To=w,t and for the first clock is (according to the equa-
tion for uniformly retarded motion) equal to T=u, t——%g
The time lag T —T between the first and second clock dur-
ing time ¢ will amount to T,—T=1/2 ¢t*, where ¢ is ex-

* The clock dial is divided into 24 hours, not 12, so that the hour-

hand completes one circuit a day. : .
** Inj astronomy, angles are often expressed in units of time: 360°
corresponds to 24 hours or 1,440 minutes or 86,400 seconds of time.
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pressed in days. In 100 years, that is, approximately 36,525
days, the time lag of the first clock will amount to about

1/2x¢0.001 < 36,525 ~ 18 seconds;

or 1,800 seconds (0.5 hr.) in 1,000 years and nearly 2 hours
in 2,000 years. .

Astronomy makes use of time reckoned from the earth’s
rotational period relative to the stars; this is the first type
of clock, which consequently gradually slows down. The:
above calculations show the extent of this lag. Astronomical
time has long since been found to be slowing down. Even
in the eighteenth century, studies of extant material on
solar eclipses observed in antiquity showed that these
eclipses occurred several hours earlier than what should be
expected from calculations based on the theory of motion
of the moon and earth. It was at this time, that the German
philosopher Kant first suggested the retardation of the earth’s
rotation.

Careful observations of the moon will reveal a slowing
down inthe rate of the earth’s rotation over a much shorter
interval of time. Indeed, in 100 years a uniform clock will
advance approximately 18 seconds over an astronomical
clock. The moon moves through the stars with a speed of
360°/27.3 ~13°.2 per day or 0".55 per second. During
the added 18 seconds the moon will move something like
10". We should thus deteet an additional shift of the moon
equal to about 10" in a century. Such an additional move-
ment (as compared with the findings of lunar theory), which
cannot be explained by perturbations of the moon caused
by the earth, sun or planets, is actually observed.

But changes in the rate of rotation of the earth are not
limited to this so-called secular retardation. Occasionally,
the terrestrial day experiences oscillations associated with
processes that occur within the earth. These oscillations,
which in one year attain 0.001 second and more, result
in an astronomical clock losing or gaining in this one year
from 0.05 to 0.07 second. At the present time, with the aid
of a so-called quartz clock—an exceptionally good time-
keeper and far more accurate than the retation of our earth—
it is possible to detect directly the nonuniform stroke of
the astronomical clock.
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19. PROBLEMS OF QUALITATIVE CELESTIAL, MECHANICS

To this point we have spoken of studies of the motions
of bodies of the solar system which embrace r latively
small intervals of time and do not extend too far either
into the past or the future. At present, these investigations
are successfully carried out with the aid of analytical or
numerical methods. Naturally, all these techniques need
refining. This is especially true of analytical methods,
whose accuracy is far surpassed by that of the numerical
methods. We need more precise theories of the motions of
satellites, through the use of which we could find out more
exactly the compressions of planets, the mass of Saturn’s
ring, and the masses of the satellites themselves; we need
more accurate theories of asteroidal motion, on the agenda
is the development of a theory of the rotational motion of
the earth to account for varying density of matter in the
earth’s interior and so forth. However, these are problems
that have been studiel in quite some detail. It is only a
matter of refining and improving our knowledge and the
techniques of investigation. :

Available analytical and numerical theories of the mo-
tions of planets, satellites, asteroids and comets are, in the
majority of cases, sufficient to give an accurate description
of how these bodies moved tens and even hundreds of years
ago and how they will move as many years hence. Yet when
studying the problem of the origin and development of our
solar system we need to know the nature of motions for much
greater periods of time. We are interested in the motions
of planets, satellites, asteroids, and comets that occurred
hundreds, thousands and millions of years ago, and the
changes that have taken place during these periods of time.
Of no less importance is the study of changes that can occur
in planetary motions millions of years hence.

In all these cases the available theories of motion of
these bodies are of no help since they can be applied only
for very limited and relatively small intervals of time.
For this reason, so-called qualitative methods of celestial
mechanics are invoked for investigating changes in the
character of the motions of bodies over long periods of time.
They differ from quantitative methods in that they do not
permt direct computation of the positions of heavenly
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bodies in space or determination of their mass, etc., but
they do allow one to assess changes of motions of a general
nature.

Let us examine, for example, the two-body problem in
which two bodies are receding from one another at an ini-
tial instant. The problem is to find out whether these bodies
can recede to any distance (or, technically speaking, to
infinity) or not.

In this case, it is a simple matter to answer this question
without applying qualitative methods because we have
a precise solution to this problem. Depending on the initial
veloc tits, the two bodies will move one relative to the
other in an ellipse, a parabola or a hyperbola. Therefore,
if the velocities of the bodies at the initial instant are great-
er than a definite magnitude (hyperbolic motion), they
will recede from each other infinitely; if less (elliptical mo-

tion), they will not be able to separate beyond a specific
distance.

he)

v Or take a similar case in the motions of three bodies.
Let three bodies of certain specific masses move, at an
initial instant, in different directions from one another
(that is, the distance between them will at first be con-
stantly incre sing). What will be the future motions of
these bodies? |

In this case we do not have a precise solution to the prob-
lem, but an answer may be given by investigating the
problem with qualitative methods.

If the velocities of these bodies at the initial moment
are greater than a definite magnitude, all the bodies will
recede from each other to infinity. However, if the veloc-
ities are less than this value, two cases are possible: either
all three bodies will move without receding from each other
to more than a specific distance, or one of the bodies will
go to infinity while the other two will move in ellipses
relative to each other.

Let us take another problem — the motion of two bodies
whose masses are not constant but diminish with time. If
the law of variation of mass of these bodies is not known
we shall not be able to d:fine their motions accurately.
But qualitative methods permit saying that if the veloci-
ties of the bodies at the initial instant are relatively small,
they will move, relative to each other, in ellipses, whose semi-
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major axes and eccentricities will gradually increase;
thus, thess bodies will gradually recede from each other
and their paths will become more and more elongated.

In the nineteenth century, a great deal of attention was
devoted to the problem of the stability of the solar system.
This problem may be stated as follows: will all the planets
always be moving in almost exact circles in one plane and at
nearly the same mean distance from the sun as they are now,
that is to say, are variations in the semi-major axes, eccen-
tricities, and inclinations of the planetary orbits purely szeu-
lar variations?

Extensive investigations of secular perturbations of
the planets, which have already been spoken of above, were
carried out by Lagrange, Laplace, Leverrier, and others.
Their studies demonstrated that there are no purely secular
perturbations in the above-mentioned orbital elements of the
planets of the solar system. But in these investigations,
due to tremendous difficulties of a mathematical nature,
only the principal mutual perturbations of the planets
were taken into account, while the more insignificant per-
turbations were disregarded. For this reason, there is no,
mathematically speaking, rigorous solution to this prob-
lem. The results obtained so far only permit us to state
that the planetary motions will be stable for several mil-
lions of years.

Certain conclusions about the distant past of the solar
system may be drawn from geological investigations. Geolog-
ical findings indicate that in the course of several hun-
dreds of thousands and even millions of years there did not
occur any radical changes in the earth’s climate that could
be attributed to a change in the nature of the earth’s motion
about the sun. Even such perceptible changes in the cli-
matic conditions of Europe in the past as the onset of the
ice ages may be adequately explained by slight oscilla-
tions in the eccentricity of the earth’s orbit and in the incli-
nation of the rotation axis of the earth to the plane of its
orbit due to long-period perturbations. Investigations
show that these oscillations are fully capable of leading
to a fall in the mean annual temperature of Europe suf-
ficient to give rise to glaciers. More substantial alterations
of the eccentricity of the orbit or of the mean earth-sun
distance resulting either in the earth’s appreciably approach-
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ing the sun or receding from it, would have affected the
climate to a far greater extent, but geology is ignorant of
even the slightest traces of such radical alterations in the
climate over a number of millions of years.* ;

Hence, we may conclude that the earth has been moving
during this time just about as it is at present. And since
the motions of all the planets are interrelated due to mutual
perturbations, considerable changes in the motion of one
planet cannot but lead, ultimately, to appreciable altera-
tions in the motions of all the planets. But since there
are no significant perturbations in the motion of one planet,
the motions of the others should, apparently, have changed
but slightly. From this reasoning it may be inferred
that not only the earth’s motion but that of the other major
planets has been materially the same for millions of years.

A very interesting case is the history of the investigations
of Saturn’s ring. When viewed even in the most powerful
telescope it hasthe shape of a solid body. From observation-
al data the thickness of the ring is estimated at about
20 km., while the width comes out to roughly 60,000 km.
In the eighteenth and nineteenth centuries conjectures
were advanced that Saturn’s ring is indeed a solid structure.
True, some astronomers even at that time were doubtful
about the existence around the planet of a solid, very thin
and extensive circular plate. The final answer was given in the
mid-nineteenth century by the English physicist Maxwell.
He reasoned as follows. Since the ring is a material body
it must obey the law of gravitation. If it were not in mo-
tion it would have to fall onto the planet due to gravity.
Therefore the ring is in motion. But can a solid flat thin
ring revolve about a planet under the influence of the force
with which the planet attracts each particle of the ring?
Maxwell demonstrated that such rotation of a solid ring
could not be stable. At some time following the begin-
ning of motiop the solid ring would have to break up into
separate tiny pieces. For this reason, Maxwell came to the
conclusion that the rings of Saturn should consist of a number-

1

* Closer to the truth, incidentally, is the suggestion that the ice
ages and other large-scale alterations in the earth’s climaie may be
explained by purely “local,” or “terrestrial” causes, say, changes in
the nature of heavy and permanent ocean currents.
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less multitude of tiny solid bodies, each of which has its’
own_orbit' about Saturn due to the action of Newtonian
gravitation. . Co

Later observations, carried out at the end of the nine-
teenth and the beginning of the twentieth centuries by the
Russian astronomer Belopolsky and the American astrono-
mer Keeler fully corroborated Maxwell’s conclusion. They
found that the outer parts of the rings of Saturn revolve more
slowly than the inner parts. A solid body cannot rotate
in such fashion. This means that Saturn’s rings are not
solid but consist of numerous independent bodies that are
in revolution about the planet obeying Kepler’s Third Law:
the closer to the planet the body, the faster it moves.

_There are very many interesting problems for qualita-
tive investigations of the motions of satellites and aster-
oids associated with problems of the origin of satellites,
asteroids and the entire solar system. I

. For example, if we knew what changes have occurred in
the motions of asteroids since very remote times we could
get some insight into the conditions under which the aster-
oids originated. By way of illustration take the following
interesting problem in asteroidal studies.

In the case of 98 per cent of the known asteroids,
which is more than one thousand five hundred, the mean
solar distances (the semi-major axes of the orbits) lie be-
tween 2.2 A.U. (330 million km.) and 3.6 A.U. (540 mil-
lion km.), with periods ranging from 3.2 to 7.0 years. How-
ever, these mean distances are not uniformly distributed.
For instance, there are hardly any asteroids with mean
solar distances close to 3.27, 2.84 and 2.5 astronomical
units. Bodies with such mean solar distances should have
orbital periods equal to about 5.9, 4.8 and 4.0 years, re-
spectflvely, which amounts to 1/2, 2/5 and 1/3 of the Jovian
period.

This means that asteroids appear to shun orbital peri-
ods that are commensurable with Jupiter’'s period. This
gives -rise to so-called “gaps” in the distribution of the
mean solar distances of the asteroids.

Yet there are two very interesting groups of asteroids
somewhat farther from the sun than the main swarm. These
groups have orbital periods about the sun that are commensu-
rable with Jupiter’s period of revolution. One of these groups
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consists of 16 presently known asteroids that have a mean’
solar distance of about 4.0 A. U. and periods of revolution
close to eight years. This is the “Hilda Group,” named -after’
one of its members. The second group comprises 14 known
asteroids and goes by the name “Trojan Group”; theseasteroids
received the names of heroes of the Trojan war described
in Homer’s 7liad (Achilles, Odysseus, Hector, and others).
They have a mean solar distance roughly that of Jupiter
(about 5 astronomical units) and, consequently, have approx-
imately the same orbital period (close to 12 years).

A natural question is why are there “gaps” for asteroids:
near 3.27, 2.8 and 2.5 astronomical units? Why do the
asteroids avoid orbits with these mean solar distances? On the
other hand, why are orbital periods of 8 and 12 years; which
are commensurable with Jupiter’s period of revelution,
so “convenient” for asteroids that the latter have evolved
two groups with these periods?
~There are two possible answers:

a) these peculiarities of motion are connected with the
conditions of origin of the asteroids; asteroidal motions
possessed such peculiarities from the very moment of their
“bil'th n; . .

b) these peculiarities of motion are independent of the
original conditions of the asteroids and evolved under
the influence of the disturbing forces of the planets.

To confirm one or the other of these points of view, one
has to investigate changes in asteroidal motions that have
occurred since the very remote past. For instance, if it were
possible to demonstrate that asteroids with orbital peri-
ods of 5.9, 4.8 and 4.0 years should experience secular per-
turbations, which in the course of millennia would gradual-
ly alter these periods, this would confirm the second view.
It would then even be possible to give a rough appraisal
of the time required to form the above-mentioned gaps,’
and thereby also the age of the asteroidal  system. Con-
versely, if it were shown that there are no purely secular
variations in the orbital periods of these asteroids, and
therefore, that no gaps could have appeared in the proc-
ess of changing asteroidal motions, we could then say
that the gaps had arisen as the asteroids evolved.

This question has -already been investigated and the
results show that, apparently, the gaps are associated with
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the perturbing influence of Jupiter. If the orbital periods
of Jupiter and an asteroid are commensurable, perturba-
tions of the latter should be much greater than if commen-
surability were not the case (recall the instance analysed
above of the mutual perturbations of Jupiter and Saturn;
whose orbital periods are also commensurable). However,
this is not, asyet, an exhaustive answer to the problem of the
origin of the gaps.

More involved and, so far, less successful are studies |
of the secular perturbations of the two earlier mentioned
groups of asteroids. Peculiar in this respect are the Trojans.
These asteroids are isolated from the main swarm and
should "present an interesting picture. What movements
did they have millions of years ago? Could they have been |
dissociated and then have formed into a group through
variations in their motions? Will this group remain intact in
the future or will secular perturbations alter the orbital peri- |
ods of the Trojans and their mean solar distances and dis-
perse the members? Answers to these questions would give
us some idea about the possible ages of the Trojans and
would help to clarify the conditions in which they originated.

The problem of the formation of groups of asteroids
with similar orbits is particularly intriguing since there
are a large number of such groups. There is even a hy-
pothesis that all the asteroids originated in the disintegra-
tion of a single major planet while the various individual
groups of asteroids appeared as a result of repeated disin-
tegration of the larger “fragments” of the splintered planet.

On the one hand, it should be interesting to find out
whether such groups of asteroids could have formed as a
result of planetary perturbations, and, on the other hand,
can secular perturbations produced by planets lead grad-
ually to a dissociation of such groups, if they originated
in the process of the formation of the asteroidal system.
Such investigations could to some extent confirm or reject
the hypothesis at hand.

Unfortunately, in studies of this nature we encounter
formidable mathematical difficulties that have yet to be over-
come. There are still far more problems concerned with qual-
itative investigations of the motions of heavenly bodies
than there are answers to them. And what is more, these
interesting problems, which are so intimately bound up
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with cosmogony—thescience of the origin and development
of heavenly bodies—have so far engaged but little atten-
tion. Only the future holds a more complete solution to
these problems.

Exciting problems arise also in studies of our satellite,
the moon, and of the Martian satellites. But in these cases,
account must be taken not only of the action of New-
tonian attraction but also of tidal friction.

We have already spoken of the forces of tidal friction
as gradually retarding the earth’s rotation. In addition to
this retardation of the rate of rotation, there should also
occur a slow increase in the mean moon-earth distance,
which means that at an earlier time the moon was closer
to the earth than at present. If the earth’s period of rota-
tion increases roughly 0.001 second per hundred years, the
mean lunar distance should now be increasing at the rate
of 2 metres every hundred years. Of course, this is an in-
significant figure, but if one considers the motions of the
earth and moon over the course of thousands and millions of
years, the change effected by tidal friction becomes very
perceptible indeed. :

Judging from calculations made by the English scientist
George Darwin, approximately 4,000 million years ago
the moon was at a distance of only 14,000 kilometres from
the earth, and the terrestrial day was only 5 hours long. At
the beginning of the twentieth century George Darwin
even suggested that the earth and moon were one, and that

‘the moon at some later date separated from the earth. In the fu-

ture, according to this hypothesis, the moon should continueto
recede from the earth and the terrestrial day will continue
to lengthen. Many thousands of millions of years hence
the moon-earth distance will increase by 50 per cent, the
lunar period of revolution (the month) will increase to 47
days (628 hours) and the terrestrial day will be of the same
length. Darwin then says that at this stage tidal friction
should produce just the opposite effect onthe moon’s motion,
and the latter will begin to approach the earth. Ultimately,
the moon can approach the earth to such a distance that it will
be broken to pieces by the earth’s gravitational pull, which will
give rise to huge tides on the moon. During this final stage, the
moon’s orbital period (month) will remain shorter than the
earth’s period of rotation (day).
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Unfortunately, it is difficult at present to say just how
true this hypothesis is. As to the past, it is very doubtful
whether the moon could ever have separated from the earth.
Investigations carried out by the noted Russian mathema-
-tician Lyapunov showed that a separation of the moon from
the earth is impossible. More, when Darwin studied the
future evolution of the moon he did not take into considera-
tion any forces, other than gravitation, that could affect
.the motions of the earth and moon. However, investigations |
covering large periods of time have to take account of pos-
sible changes in the physical structure of the earth and moon
and of the entire solar system. But even so, we must admit
that tidal friction can be a serious factor influencing the
motions of bodies over very lengthy intervals of time. =

A hypothesis concerning the effect of tidal friction on
the motions of satellites might be an aid in the study of |
the Martian moons.: These satellites are among the most ‘
remarkable objects in the solar system. First of all, they |
are very close to their primary: the first, Phobos, is distant |
9,380 km., from the centre of the planet which is a mere 1.5
Martian diameters and only 5,930 km. from the planet’s sur-
face, the second, Deimos, is 23,500 km. from Mars, or 3.5 dia-
meters of the planet. Another interesting thing is that Phobos
makes a complete circuit of Mars in less than one third of
a Martian day (the planet has a period of rotation equal to
about 24 hours 37 minutes, while Phobos has an orbital peri-
od of roughly 7 hours 39 minutes). In other words, the month
on Mars - (judging from Phobos) is shorter than the day.
If the earth had a similar satellite it would move from west
to east instead of from east to west, and would rise in the
west and set in the east, in complete contrast to all the other
heavenly bodies including our artificial earth satellites.

On the Darwin theory, the orbital period of the satellite
(the month) is first longer than the planet’s period of rota-
-tion (the day), and the satellite gradually moves away from
itsprimary. Then, at a certain stage, having receded to a defini-
-te distance, the satellite begins gradually to approach the
planet. During this stage the length of the month is less
than that of the day. And the satellite can make an extremely
close approach to the planet.

The first impression-is that Phobos is in the latter stage
of this evolutionary scheme: the month on Mars (for Phobos)
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‘is shorter than the day, and Phobos is very close to its pri-
mary. According to this scheme, the satellite will continue
‘to approach Mars. - ’ :

‘On the other hand, Deimos, according to Darwin, should
be in the first stage of recession from the planet, since the
‘month (for Deimos) is equal to 30 hours and 18 minutes,
which is longer than the day.

Observations conducted between 1879 and 1941 (the Mar-
tian satellites were discovered in 1877) confirm the fact
that the orbital period -of Phobos is . gradually diminish-
ing; and at an average of 0.00025 second per year, accord-
ing to the American astronomer B. Sharpless. This figure
corresponds to 646-centimetre per year decrease in the
semi-major axis (six metres a century). It follows that
within 100,000,000 years Phobos will fall onto Mars (the
decrease in ‘a’ will exceed the present mean distance’ of
Phobos from the surface of its primary). - x

A complicating factor is that the cause of such a con-
siderable secular perturbation in the orbit of Phobos, in
Jarge measure, is still a mystery. The British astronomer
H. Jeffreys found (after some theorizing on the internal
structure of Mars) that tidal friction was responsible for
only 1/1000 of the observed decrease in the semi-major
axis. Other astronomers have pointed to the decelerating
action of interplanetary matter. This is analogous to the
effect of the terrestrial atmosphere on artificial earth sat-
ellites. At the same time, the Soviet astronomer N. Parysky
bhas found that tidal friction—notwithstanding Jeffreys!
findings—can produce the observed effects, if we. asume
that Mars and the earth have the same viscosity. e

The problem of the motion of Mars’ satellites remains
«on the agenda” as one of the most interesting problems
of qualitative celestial mechanics. L

20, STELLAR MOTIONS AND THE LAW OF GRAVITATION .

The arrangement of stars in the sky remains the same from
day to day, and even during a whole lifetime it is impos-
sible to notice any changes in their, positions. This is why
the ancients called them “fixed stars.” However, it is hard
to find a name less appropriate. Careful measurements of
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stellar positions made with powerful instruments show that
all the stars are in motion in the sky. In part, these motions
are due to the fact that we observe the stars from a moving
earth. But, on the other hand, these motions are the actual
motions of the stars and also that of the sun carrying with
it in space its whole family of planets. Shifts in the apparent
positions of stars produced by the motion of the star itself
and of the solar system in space are termed proper motions.
Stars have very small proper motions. The majority move
only 0”.01 per year, which is a small angle indeed—that
subtended by a hair at a distance of 2 kilometres! Only a
few stars have a proper motion of 1" per year, and of these
only about ten of the very “fastest” stars move several sec-
onds of arc a year (from 4 to 107). This is why naked-
eye observatioms (whose accuracy does mot exceed 2') do
not exhibit any movements in the great majority of stars
even during 100 to 200 years. True, if a comparison is made
of the positiens of stars over many hundreds of years,
their proper motions may be detected with relative ease.
It was precisely in this way that stellar motions were dis-
covered in ancient China, as recorded by the Chinese chron-
icles. But Europe did not know of this remarkable discov-
ery of the Chinese astronomers.

In 1718, Halley noticed that three stars (Sirius, Procyon,
and Arcturus) had altered their positions as compared with
the observations of the ancient Greek astronomers.

Comparing the observed positions of these stars with the
data of the Greek astronomer Hipparchus (first century
B. C.), Halley found that Sirius had moved 1°.7, Procyon
0°.7 and Arcturus 1°.4. This is how much these stars
moved in 18 centuries.

At the end of the eighteenth century, orbital motion was
discovered in birary star systems. .

In naked-eye observations, binary stars frequently do
not differ from the other stars. But through a telescope one
finds that each binary star consists of two separate
stars close together (at a distance not exceeding several sec-
onds of arc). The first fundamental studies of binary stars
were carried out by Herschel at the end of the eighteenth
and the beginning of the nineteenth centuries. He
found that the component stars of a binary system are in
motion relative to each other. Herschel discovered several
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_hundred binary stars, at the present time some 20,000
such systems have been recorded. ,

What forces govern the motions of stars and force them
to move about each other? :

Stars are balls of incandescent gases just like our sun.
They are material bodies that should attract each other ac-
cording to Newtonian law. The fact that the motions of
stars do indeed obey the law of gravitation is above all
vividly demonstrated by observations of binary stars.

One star in the pair is usually brighter than the other.
This one is called the brighter component, or primary, the other
one the jainter component or satellite. Careful measurements of
the mutual positions of the pair of stars show that the satellite
describes an ellipse about the brighter component. And
this motion always obeys Kepler's Second Law, the Law of
Areas. Which means that the stars move under the influence
of the force of mutual attraction. But maybe this force does
not obey Newton’s law of gravitation, that is, the inverse-
square law? No, in the mid-nineteenth century three
French mathematicians Alphand, Darboux and Bertrand
gave rigorous proof that stars should attract each other in
strict accord with Newtonian law. They demonstrated that
the motion of the fainter component about the brighter one
in an ellipse could occur in two cases only:

1) if the force of attraction increases in proportion to the
distance; the brighter component should then be at the
centre of the ellipse described by the satellite.

2) if the force of attraction varies in accordance with
Newton’s law (inversely as the square of the distance); in
this case, the brighter component is located in a focus of
the elliptical orbit of the satellite.

In all other cases of the dependence of the force of attrac-
tion on distance the satellite will not pursue an elliptical
path about the main star.

Observations show that the brighter component is never
in the centre of the ellipse described by the fainter compo-
nent. This precludes the first case. ‘What is more, this case
is hardly possible physically speaking: one finds it difficult
to imagine that the force of attraction of a star increases
with the distance from this star. We therefore find the at-
traction in accord with Newtonian law, and the two stars
of the pair should move in accordance with the problem of
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two bodies attracting each other. A brilliant confirmation
of the application of Newton's law was the discovery of a
companion of Sirius. In 1844, Bessel noted that Sirius was
describing a wavy trajectory in the sky. He therefore con-
cluded that Sirius should have an invisible companion and
that these two stars should move under the influence of
"mutual attraction in ellipses about their common centre
~of gravity. Bessel determined the orbit of the invisible
satellite and even estimated its mass. In 1862, after Bessel’s
death, this companion star of Sirius, whose existence had
been predicted twenty years earlier, was found. Its orbit
is roughly that which Bessel himself had computed.

et e

Fig. §0. A schematic view of the Galaxy “on edge.”

In addition to binary stars, we also find systems com-
prising three, four and more stars each. These are called
multiple stars or multiple systems. The stars in a multiple
system are located close to each other and move under the
‘action of mutual attraction. The motions of multiple-
system components are very intricate since it is no longer
a problem of two bodies but of several bodies. Actually,
the theoretical study of the motions of such systems has
only just begun.

Nearly all the stars that we see in the sky with the naked
eye are part of a hnge stellar system known as the Galgzy,
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The Galaxy contains something like 150,000 million ' stars,
the bulk  of which- form a lensshaped structure when

‘viewed on edge (Fig. 50).- The Galaxy <is 85,000 light

years in diameter, while the-densest part near the centre
has a thickness of 1,000 light years.* " - 4

Thus, the stars of the Galaxy are concentrated mainly
near a certain common plane called ‘the galactic plane.
The sun and its system of planets is situated in the main
mass of stars near the galactic plane at a distance of some
23,000 light years from the centre of the Galaxy. Since the
solar system is situated near the galactic plane, we see the
major portion of the stars in a direction parallel to this
plane. The luminous patch of the Milky Way that girdles

‘the sky is the main accumulation of stars of the Galaxy.

When looking perpendicular to the galactic plane we see, on
the average, far fewer stars. o :

How do the stars in the Galaxy move?

The observed proper motions - of the stars in the sky ap-
pear, at first glance, to be without any system whatsoever.
But a careful and long term study of the motions -of
stars has shown that this is not the case at all. It turns
out that on the average (that is, if we disregard the individ-
ual peculiarities in the motions of the separate stars,
or clusters) all the stars are moving -around the centre of
the Galaxy in one and the same direction, so that the Galaxy
appears to be rotating about its centre. Of course, this
is not rotation in the proper sense of the word. Each star
has independent motion and its velocity depends on its dis-
tance from the centre—the farther away it is the slower it
moves on the average—and it is only due to the fact that
stellar motions occur mainly in a single direction that these
motions collectively give the impression of rotation.

The forces which govern the motions of stars and make
them revolve about the centre of the Galaxy are the Newtoni-
an forces of mutual .attraction. Each individual star is
acted on by the total attraction of the millions and millions
of other stars of the Galaxy. Since the stars of the Galaxy -
form a system that is symmetric with respect to the.centre

* A light year is the distance light travels in one year, or 9.5x 1082

‘km. Light covers the distance from sun to earth in only 8 minutes and

18 seconds!
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this integrated attraction is directed to the centre of the
Galaxy and each star is attracted to this centre. However,
the law of the variation of this attraction with distance from
the centre and distance from the galactic plane is extreme-
ly involved and far from being understood. In this case,
naturally, there can be no talk of gravitation in strict
accord with the Newtonian law, that is, strictly in inverse
proportion to the square of the distance from the centre.

The problem of the galactic law of attraction may be ap-
proached from two angles. The first is a theoretical approach.
It amounts to calculating theoretically what the gravitation-
al pull will be on a single star in the Galaxy if each of the
150,000 million stars occupying a definite volume of
space attract this star in accordance with Newton’s law.
In addition to the purely mathematical difficulties that
arise, we have also to deal with fundamental difficulties
since we do not know exactly how these 150,000 million
stars are arranged in space. And without this knowledge
it is impossible to give an accurate calculation of the force
of attraction of the stars. This can only be done approxi-
mately, on the assumption, for example, that the stars in
the Galaxy are distributed uniformly (this is the sim-
plest assumption), or assuming that the density distribu-
tion of stars varies with the distance from the centre of the
Galaxy in accordance with some definite law.

The second approach to the problem may be called an empir-
ical approach. In this case, the observed motions of stars
are used to determine the forces which should bring about
these motions (the problem of determining a force from a
given motion). This was the approach made by the Soviet
astronomer P. Parenago, who showed that the stars in the
galactic plane are attracted towards the centre with a force

R

T T aR%
R being the distance from the centre of the Galaxy, and a
- a certain constant. The expression for the law of attraction
of stars outside the galactic plane is far more complicated.

What is needed, of course, is investigations that would
unite these theoretical and empirical methods and utilize
both the diversity of observational findings and the theo-
retical attainments of celestial mechanics,

F
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In bringing to a close our discussion of the motions of
stars we can say that gravitation governs not only the
motions of the planets of the solar system but also those
of the most remote stars and stellar systems.

21. WHAT IS GRAVITATION

The problem of the nature of the forces of gravitation
arose a long time ago, immediately after Newton discovered
the law of universal gravitation. What is gravitation, then?
What is it that makes material particles attract each other?
These are the questions that immediately arise when one
learns of the Newtonian law. But it is no easy matter to
answer such queries. Physically, gravitation is very diffi-
cult to understand. This was the reason why Newton’s the-
ory was at first met with incredulity. Many scientists tried
to disprove it and even denied the existence of gravitation.
In time these doubts disappeared and the validity of New-
ton’s law became generally recognized. But the nature of
the gravitational force remained incomprehensible, even
mysterious.

Wherein lies the complexity of this problem?

First of all, gravitation manifests itself as action at a dis-
tance. Indeed, the force of gravitation acts between bodies
no matter how far away from each other they are; and it
is unimportant that airless space separates them. Newton’s
contemporaries thought that this ran counter to direct ex-
periments which indicated that bodies act on omne another
only through contact (the transmission of motion by push-
ing, pressure, thrust, etc.). Newton himself expressed the
view that gravitation is transmitted from one body to
another via the “ether”—a peculiar tenuous medium that
pervades the entire space between bodies and fills the in-
terstices in all solid bodies. Some scientists after Newton at-
tempted to give a more detailed explanation of gravitation
through the action of the ether.

An opinion was also voiced that gravitation is the result
of mechanical action on bodies by invisible “ultra-par-
ticles,” moving in all directions in space. If a certain body
were alone in space it would receive impacts from these
“ultra-particles” uniformly from all sides and would
therefore be in a state of equilibrium. But if, for example,
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there were two bodies they would shield each other from
the impinging particles moving exactly along the line con-
necting the centres of the bodies, and the particle fluxes
would push the bodies towards each other, thus creating
a force of attraction between them.

In certain hypotheses, the action of “ultra-particles”
is replaced by a similar action of streams of ether.

The originators of such hypotheses strove to eliminate
the mysterious action at a distance of gravitational forces.
Yet they were unable to explain other strange properties
of gravitation. ' :

First among them was the apparent instantaneousness
with which gravitation acted.

Indeed, when applying Newton's law it is taken that the
forces of attraction depend only on the mutual positions
of the bodies and that as soon. as they change, the magni-
tudes of these forces change instantaneously, which means
that gravitation is transmitted instantaneously. Now if the
action ‘is transmitted through the agency of some medium
(ether) we need to find out the rate at which this action
propagates. Similarly, the rate of propagation of gravita-
tion has to be determined if the latter is thought to be due
to moving “ultra-particles” or streams of ether. And
if such be the case, we must introducg corrections for this
velocity - when computing the gravitation between bodies,
for if some body A -arrives at a point located at a distance
r from body B at the instant f,, then at this instant, 4 will
not be able to attract B with a force proportional to 1/r? on
the condition that gravitation propagates with a definite
velocity. A certain time would be required for gravitation
to be transmitted from body A to body B. But during this
time 4 would reach another point of space.

Thus, at each instant the force would depend not only
on the configuration of bodies but also on their velocities
and on the rate of propagation of gravitation. In the ab-
sence of such corrections we should observe deviations in the
motions of bodies from. those computed on the basis of
Newton’s law. Yet no such deviations are observed. This
could occur if the velocity of gravitation is so great that
it has practically no effect on motion, which is to say that
in practice. we have to do with instantaneous propagation
of gravitation. Laplace calculated the minimum velocity
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of gravitation that would render corrections for this speed
undetectable in observations of astronomical objects (the
moon, for instance). The result was a magnitude at least
amillion times the velocity of light. At the present time, the
existence of such a speed of motion of particles or propaga-
tion of physical phenomena in a medium is believed to be
phiysically impossible.

Second, gravitation is a force that recognizes no barrier.
It is neither depleted nor absorbed either by an interstellar
medium or when it encounters bodies. For instance, during
lunar eclipses the earth passes between the sun and moon
and thus could block the forces of gravitation between them
exactly as it does rays of light. It is possible to determine
the perturbations in lunar motion that should arise if the
solar pull on the moon slackened during eclipses. But no
such perturbations are observed.

"No known material used as a shield or screen has been
even partially effective in stopping the force of gravity,
which attracts all material bodies to the centre of the earth.

How is one to picture particles, or a tenuous medium,
capable of propagating instantaneously and penetrating any
bodies unchecked without alteration?

Nowhere in nature do we encounter such particles, fluxes
of particles or such a manner of propagation of physical
phenomena and processes. Take light, X -rays, radio waves,
electric and magnetic forces, they are all absorbed to
a greater or lesser extent by material bodies, a material me-
dium, and all of them propagate with a finite speed (equal
to the velocity of light). Thus, a primitive mechanical
interpretation of gravitation based on the simple mechani-
cal action of an ether or of fluxes of ether, or fluxes of par-
ticles is unable to explain its amazing properties. Today
this interpretation of gravitation appears naive in the ex-
treme and runs counter to present-day physical concepts.
But how is one to explain this “marvellous” all-permeat-
. ing force of gravitation that acts instantaneously at a dis-
tance?

The answer was given by one of the greatest of modern
scientists, Albert Einstein (1879-1955). Einstein is the
author of a large number of outstanding studies in many
fields of physics, but his greatest achievement was the spe-
cial theory of relativity, which might be called a “theory of
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space and time,” and the general theory of relativity, or, more
appropriately, a “theory of gravitation.” These theories
have wrought great changes in our notions of space and time,
about the motions of material bodies and concerning the
interrelationship of space, time, and gravitation. The spe-
cial theory of relativity has demonstrated that space and
time are intimately related and that the mass of any body is
connected with its enmergy. The general theory of relativity
shows that the spatio-temporal properties of the surround-
ing world (its gecometry) are determined by material bodies.

Unfortunately, both the special and general theories
of relativity are very difficult to explain in popular lan-
guage. On the one hand, this is because of the difficulty
of the theory itself, of the complexity of its mathematical
apparatus, and on the other hand, because of certain
unexpected conclusions that follow from the theory and are
frequently a radical departure from our “common sense”
notions. Nevertheless, we shall attempt to give the reader
some idea of what the theory of relativity is about.

In classical mechanics,the mechanics of Galileo and Newton,
there is no interconnection between space, time and
material bodies in space. The diverse processes that occur
in space are measured by a time that flows uniformly and
is independent of space and independent of the material
bodies in space. The properties of space—whose sole pur-
pose is to be a passive receptacle for material bodies—re-
main always constant and immutable, independent of the
distribution of material bodies and even irrespective of wheth-
er there are any material bodies present or not. The geom-
etry of this space is Euclidean, the geometry which all of us
studied at school. It teaches that the shortest distancebetween
any two points in space is a straight line; it is precisely this
straight line that a ray of light follows when moving from one
point in space to another. In classical mechanics the mass of a
body is constant and unchangeable, as also are the geomet-
rical properties of a body (length, width, shape, etc.) which
remain the same irrespective of whether the body is in motion
or at rest.

However, such notions, though perfectly natural and com-
monplace to all of us and apparently justified by our daily
practice, are only an approximate reflection of reality.
Nature, it appears, has established a far more profound in-

144




terrelationship between space, time, and matter. Euclidean
geometry no longer holds in a space with material bodies.
The masses of bodies and their geometry depend on their
velocities of motion. The propertics of motion of material
bodies are considered to be the result of the geometrical
properties of the space and not of the forces of attraction.

Recall the law of inertia. In the absence of a disturbing
force a body will remain at rest or in a state of
uniform motion in a straight line. Let us try to verify this
law by experiment. We know that the principal reason why
a moving body, in terrestrial conditions, stops after
the force ceases to act is friction. Let us suppose that
there is no friction. Will the body remain in uniform mo-
tion and in a straight line? The answer is no, since the body
will be acted upon by the gravitational force of the earth,
moon, sun and planets. We go further and remove the en-
tire solar system, the closest stars, even all the stars in the
Galaxy. We may then contend, with a high degree of accu-
racy, that the body will remain in uniform motion and in
a straight line. But if there is a star (or any material body,
for that matter) somewhere near our body, the latter will
have a path that is no longer rectilinear; due to the gravita-
tion of the star the path will be curved.

Now let us compare two cases. In the first case, a single, iso-
lated body is in motion in space in a straight 7ine. Insofar as
this body is moving in “empty” space, we may say that the
geometrical properties of empty space are such that the path
of a body in this space is a straight line no matter in which di-
rection it is moving. Inthe second case, the body is not mov-
ing in empty space but in the field of gravitation of another
material body. In this case, the path of our body is a curved
line. Which means that the presence of material bodies alters
the geometrical properties of space: in the absence of
material bodies space is homogeneous, which fact finds
expression in the total equality of directions in which an
isolated material body can move by inertia. In the presence
of material bodies, space becomes curved.* It is this inhomo-

* By “curvature” of space we mean that the shortest distance be-
tween two pointsin “curved” space is not a straight line but a curved
line. By way of illustration, let us take a plane and a sphere. We shall
measure the distance between two points of the sphere and plane, so
as not to go beyond the limits of the plane or sphere. To do this, cne
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Ak®A . geneity of space, its “curvature” that we

' perceive as gravitation. »

Thus, according to Einstein’s theory, gra-
vitation is a manifestation of the space-time
properties of the werld; the distribution
of material bodies determines the geometry
of the space in which -these bodies are
hocated and also the motions of these bo-
-dies.

Proceeding from these conceptions, Einst-
ein developed his theory mathematically
and obtained a series of remarkable results
that have been fully confirmed by experi-
ment.

In his works, Einstein resolved the my-
stery of the enormous rate of propagation
of gravitation and its amazing penetrating
, ability. But, unfortunately, these prob-
f;;gn' 0.?1& g‘;ﬂe& lems require so complex a mathematical
sight near the apparatus that it is far beyond the scope of
sun. The ray of this book. We shall therefore . deal only
light from star with two of the remarkable results of the
‘:}]e‘:t;’f’:lti;p::r‘: general theory of relativity obtained by
to be displaced Einstein theoretically and later brilliantly
from the sun (to confirmed experimentally.
position A’) On Einstein’s theory, not only ordinary

material bodies, but also light rays are sub-
ject to the attraction of material bodies and for this reason
should deviate (though very slightly) from their recti-
linear path when passing near celestial bodies. The prop-
agation of light is mot precisely rectilinear. This sounds
very strange at first thought and seems to contradict
our everyday experience here on earth. No one had ever
observed this to be the case. Yet Einstein proved to be
right. During solar eclipses one can observe stars right
near the limb of the sun. Accurate measurements of the
positions of these stars during eclipses show that they are
not in their usual places but slightly displaced from

has only to take a piece of thread, connect the two points and measure
the length of the thread. On the plame, it will lie on a straight line,
while on the sphere the line will be curved—the arc of a large eircle

oni this sphere.
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the sun (Fig. 51). This displacement is small (roughly
2") but it is exactly as predicted by Einstein's theory.

Einstein’s theory of gravitation is also confirmed by
certain peculiarities in the motion of Mercury.

As far back as the middle of the nineteenth century, Le-
verrier noted that Mercury’s observed position was slightly
different from that predicted by Newtonian theory with
account taken of the perturbations produced by all planets.
This discrepancy had to do with the secular motion of the
line of apsides of Mercury’s orbit, and it was exceedingly
small: Mercury’s perihelion was moving 43" faster per cen-
tury than syggested by classical theory, This problem was
the subject of many studies in celestial mechanics. Attempts
were made to explain this divergence by the fact that New-
ton’s law was not altogether exact, that the force of gravi-
tation did not vary exactly in inverse proportion to the
square of the distance. But if this change helped to harmon-
ize calculations and observations in the case of Mercury, it
yielded divergences between theory and observations with
respect to the other planets. And other attempts were made
to eliminate this discrepancy, but not one of them produced
the desired result. '

Einstein’s theory of gravitation gave the clue to the mys-
terious motion of Mercury. This theory says that in a two-
body problem (the sun and a planet) the orbit of the planet
is an ellipse which slowly turns in space. The rate of this
motion depends on the mass of the sun and the distance of
the planet. For Mercury, the line of apsides should turn 43"
in one century, which is exactly the amount that was lacking
in the earlier theories of motion of Mercury. Thus, the former
riddle became a remarkable confirmation both of the accura-
cy of the analytical theories of the major planets and of the
correctness of Einstein’s theory of gravitation.

Though Einstein’s theory of relativity changes our every-
day views concerning space, time, the motions of bodies
and their interactions, and, as far as the fundamentals go,
departs radically from the classical mechanics and gravita-
tional theory of Newton, its practical application produces
nearly the same result in the majority of cases. But in what
cases? Only when the velocity of motion of the body is rela-
tively small in comparison with that of light (300,000 km/
sec.), and also when we have to do with comparatively small
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masses. If we disregard the velocities of motion of the bodies
v as compared to the speed of light, that is, if we take the
ratio v/c to be zero, then all of Einstein’s equations and
ratios convert to the ordinary omes of classical mechanics,
-in which case all the concepts of classical mechanics, includ-
ing Newton’s law of gravitation, are valid. For this reason,
when we consider the motions of bodies under terrestrial
conditions, and the motions of planets, asteroids, satellites
in the solar system, and stars in the Galaxy, whose veloci-
ties are far below that of light, the results obtained by the
Newtonian law of gravitation are very close to those based
on Einstein’s theory of gravitation. But there still are discrep-
ancies. If we have both a precise theory of motion based
on Newtonian law and sufficiently accurate observations ob-
tained over a long period of time, these divergences may be
detected, as witness the motion of Mercury.

If we consider the motions of material particles due to
the force of gravity near the surface of the earth, the various
Einstein effects are practically absent due to the earth’s
comparatively small mass. But if we wanted to study the
motion of such a particle on the solar surface, these effects
would have to be taken into account in view of the sun’s
huge mass. '

At this point we may ask: is Einstein’s theory absolutely
correct? Of course not, since no mathematical theory of the
phenomena of nature is capable of taking into account and
describing the infinite diversity and countless interrela-
tionships of these phenomena. Any concrete scientific theory
is a certain approximation to reality, it is a step along the
path of man’s penetration into the phenomena of nature.
Newton’s law of gravitation was the first step in the study
of the interaction of heavenly bodies. Einstein's
theory is a deeper reflection of reality, but it, too, represents
but a further step along the endless path leading to truth.
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APPENDIX

In sections 3 and 4 we applied. several theorems without
proof. We now examine the proofs of these theorems con-
tained in Newton's Principia. In the main, we shall adduce
the proofs by the methods that Newton himself used. In
this case, elementary mathematics proves to be insuffi-
cient, and Newton used his own, new methods that laid
the foundation of higher mathematics (the differential
and integral calculus). However, Newton clothed these in-
volved methods in a rather simple geometrical form, thereby
making the proofs readily comprehensible to readers with-
out a knowledge of higher mathematics in its present form.

Theorem I

The areas which revolving bodies describe by radii drawn
to an immovable centre of force lie in the same immovable
plane, and are proportional to the times in which they are
described. ‘ -

Proof

Let us designate by § an immovable centre of force, and
by P a material body moving under the attraction of this
centre (Fig. 52). Let us first assume that the force does nos
act on P continually but only by momentary impulses that
occur in equal intervals of time At. Let usdesignate by ¢,
I3, t3, etc., the equally spaced instants at which the force of
attraction of the centre S acts. ;

During the first interval of time, from t, to t,, during
which the force does not act, the body P will move by iner-
tia uniformly and in a straight line with a velocity v, and
will cover the distance P, P,=w," At. At the instant t;, P
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will arrive at P,. If at this point the body P were not acted
upon by a force it would continue to move along the line
P, P, with the same velocity vo; at the instant #; it would
have arrived at point a (Pya=P; P,).But by definition when
body P arrives at point P, at instant I; it is instantaneously
acted upon by an attracting force (“at once with a great
impulse,” as Newton writes). This force will accelerate
the body in the direction P; § and will deviate it from rec-

Fig. 6§2. Proof of Theorem I

tilinear motion along the line P,a. But since the force acts
instantaneously ceasing immediately, the body acquires at
once a certain additional velocity », in the direction P,S,
and will then aghin be in uniform and rectilinear motion
(but mow with another speed and in another direction).
Thus, the velocity of the body, P, during the interval of
time from ¢, to ¢, will be compounded of the velocity », in
the direction P,a and the velocity », in the direction P,S.
If the body were moving with a velocity of only »,, it would
cover the distance P,a during the time A¢; and if it had a
welocity of », only, it would cover during this time the
distance Pyb=v,At. But due tothe composition of these ve-
locities the body will move along the diagonal P,P; of a
parallelogram constructed on the sides P,z and Pyb and
during. the interval of time from ¢, to &g it will arrive at
point Pj,.

Naturally, the diagonal P,P; lies in the same plane as
Pia and P,b, that is, in the plane of the triangle SP; P, in
which the body moved during the interval of time from ¢,
to tz- ’
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Let us denote the altitudes SN and SM-of the triangles
§P, P, and SbP; by k and h,. Then MN=h — k, will be the
altitude of triangle bP,P;. The area of the triangle SP, Py
is equal tot/,h P, P, Now the area of the triangle SP,P; is:

area SbPg -} area bPyP,.

bP3=Pga=p1pg,
the area of the triangle SbP; is equal to—;— hy- Py Py, aind

However, since

the atea of the triangle bP,P; is equal to -2]— (h— hy). PPy,

Thus, area Spgps - %hl'Plpﬂ—l- ';—. (h"—hl)°P1P2= '%
hP\P,, so that the area of the triangles SP,P, and SP,P,
are equal.

By similar reasoning we see that if the attracting force
acts instantaneously at points Py, P,, Py . . . and makes
the body move alomg PgP,, P; Py . . ., all these latter
sections will lie in a single plane, and the areas of the trian-
gles SPyPy, SPgPy . . . will be equal. But the areas of all
these triangles are areas described in equal intervals of time
by radius vectors from the centre S to the body P.

Now let us take the intervals of time not between adja-
cent instants, but, for example, between instants #;, and ¢,
t3 and ;, etc., which are also equal to each other. During the
interval of time ¢; ¢; the body P will describe the broker
line P, P, Pg, and during the interval of time ¢, t5, the bro-
ken line Py P; Py. The areas of the figures SP,P,P; and
SPy P, Py will be equal since they consist of equivalent
triangles. And, in the general case, no matter what equal
intervals of time between any equally spaced moments of
aetion of a force we take, the radius vector of the body P
will describe equal areas during these intervals.

Let us row reduce more and more the intervals of time be-
tween the impulses of force. The impulse force will themrap-
proach more and more a continually acting force. And the
lengths P, P,, Py P, ... will also diminish, and the broken line
described by the body will differ less and less from a smooth
curve. But the deduced property of motion will be retained
since the size of the sections did not play any role in the deri-
- vatidon. Summarizing, we can make our impulse force as close
to a continually acting force as we like, and our broken }ine a3
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eldse to an actudl curve described by a body under the
influence of the attraction of S, and the property that has
been proved will be retained. It will, consequently, hold
in the limit, whenthe intervals, At, between the force im-
pulses tend to zero, that is, for the case of a con-
tinually acting force. The body P will move along
a curve lying in a single plane and concave towardssS.
In equal intervals of time the radius vector SP should de-
seribe equal ‘areas. In other words, given a central force, the
areas described by a radius vector are proportional to the
times. These areas are equal to the product k(t'—t"). Where
kis a constant called the area constant and t'—¢" is a
corresponding interval of time. Theorem I is thus proven.

Theorem 11

If a material body moves in a curved line in a plane so
that the radii drawn to a certain immovable point describe
equal areas in equal intervals of time, this body is acted

upon by a force directed towards this immovable point.

Proof

Figure 53 shows a portion of the path of body P and an
immovable point O. On this curve we note positions a;, a,,
as . . . which P occupies in equally separated instants of
time t,, &, t3 . . . and connect a;, a3, @3 . . . with O, thus
dividing the sector Oa,a, into a large number of small (ele-
mentary) sectors. On the one hand, insofar as the instants
of time are equally separated, the areas of any two elemen-
: - tary sectors are equal. On
the other hand, insofar as
all portions of the arcs a;4a,,
a,a;, etc., are very small
and differ but very slightly
from the sections of straight
lines, the areas of these sec-
tors hardly at all differ
from the areas of the

. corresponding triangles
¢ : Oa,a, as13, - - . .
¢ #ig. 63. Proof of Theorem II In the limit, when the in-
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tervals of time between
instants ¢, &, I3, . . .
tend to zero, the ratio:
.area of elem. sector to
area of elem. triangle, is
equal to unity. There-
fore, in the limit the areas
of all elementary trian-
gles are equal.

Now let us replace mo- Fig. 54. Proof of Theorem II
tion " along our curved
line by motion along the broken line a,a,a, . . ., ay. But this
motion along the broken line is to be regarded as occurring
under the action not of a continuous force, but of an impulse
force acting at instants ¢, t,, t3, . . . The subsequent reason-
ing is just about the same as in the proof of the preceding
theorem. .

To make the idea clear Fig. 54 gives a magnified section
of the path a,a;a;. During the interval of time ¢;¢, the body
P covers a;a, and at instant £, reaches position a;. We ex-

tend section a,a, an equal distance to point b. If the body
were not acted on by a force it would move further along
agb and at instant #; would arrive at point b. But at instant
t, the body is acted on by a force that alters the. direction
of motion, and the body arrives at point a; at instant ;. The
portion ba; determines the direction of the additional veloci-
ty acquired by the body due to the action of the central force
S at time #,, that is, the direction of this force at the given
instant. We draw asc parallel to a,b and compare the trian-
gles Oa,a, and Oa,a;. Then, doing the same calculations used
in the proof of Theorem I it can be demonstrated that the
areas of these triangles are equal only when the
figure asbazc is a parallelogram. The portion ba; should
therefore be parallel to asc.

Thus, the force which attracts P at the instant it is

- at point a, should be directed along the line a,0. A consider-
ation of the succeeding triangles shows that the force acting
at the instant a; should be directed along the line a,0, and
so forth.

Now let us pass to the limit by reducing the intervals of
time Af. We see that in the limit: a) motion along the broken
line coincides with the actual motion along the curved
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line; b) the areas of the triangles under consideration
are equal and coincide with the areas of the corresponding
sectors; c) the force that makes P move is directed towards
point O. In other words, body P moves under the action of an
attracting force emanating from point O.*

Theorem I !

If a body, P, is in motion due to the action of an attract-
ing force of a centre, .S, located in one of the foci of an
ellipse, the force with which the centre § attracts the body P is
inversely proportional to the square of the distance of
P from §.

Proof

We shall divide the proof of this theorem into three
parts. First we shall derive an important formula that
will permit us to relate the force of attraction of an immov-
able centre, S, and the geometric properties of the curve
that the body P describes under the action of this force.
After this we shall examine some of the properties of an ellipse
and then prove the theorem.

We consider a body £ of mass m moving under the action
of attraction to a centre S along a certain curve (Fig. 55).
Let us assume that the body moves in the direction indicat-
ed in Fig. 55 by the arrow, arriving at a certain instant
of time ¢, at point #,, and in a very small interval of time
At at point P,.** We draw a tangent P N to the curve
"at point P,. If at the instant the body arrived at point P,
the attracting force ceased to act, the body P would con-
tinue to move with the same velocity (in direction and

* Note the essential difference between the broken lines in Figs,
52 and 53. The broken line a,, a3, ..., an, in Fig. 53 is inscribed in
the curved line that represents the actual path of the body, while points
P,, P,, ... in Fig. 52 donot, generally speaking, lie on the curve de-
scribed by the moving body, so that the broken line P,, P,, ... Py will
neither be inscribed nor circumscribed with respect to this curve. It
will only approach it when the intervals of time At are reduced and
coincide with it in the limit.

** To make the idea more evident, the length of the arc Po P; in
Fig. 55 is greatly enlarged.
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magnitude) as it had at this
point, that is to say, it would N
move along the tangent P IV
and in an interval of time
At would reach point V. On rm

the other hand, if the body 2,

on arriving at point P,, lost

its velocity entirely, it would ‘
move only in the direction Fig. 55. Proof of Theorem III
PoS due to attraction towards

S, and during the time interval At it would cover the dis-
tance P, M. :

Inasmuch as the interval Az and the PoP, distance cov-
ered by P are very small we may regard the force acting during
this interval of time on body 2 as not having changed. Then
the acceleration ; of the body P, which according to New-
ton’s Second Law is equal to j=F/m, will also remain
constant. Applying a well-known formula for the path in
the case of uniformly accelerated motion, we find:

PM =1, j(atp=1L casp.

Reasoning more rigorously, we must say that when At
tends to zero the ratio of P,M to % F[m (At) is equal

to unity. Since in this ratio the quantities P, M and At
vary while F and m are constant, the limit of the ratio

PoM isequal tog
(Az)2 1 2m’

Due to the composition of these two motions, the body
P will arrive (within the time At) at point P,, which
should be the vertex of a parallelogram constructed on
lines P M and P _N. Thus, NP,= M.

Besides, we know that motion due to a central attracting
force obeys the law of areas. For this reason, the area of
sector SP_P, is proportional to the time:

area SPyP;=k. AL.

But if the portion of the arc £ P, is small, the area of sec-
tor SP,P,, is, in magnitude, close to the area of the triangle

SPoP,, which is equal to 1/2 SP,. P,T; these areas coincide
in the limit. '
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Hence it follows that
P,M _ k*PM — g NP, . (1, SPP\T)
(At)* ~ (areaSP,P, )¢ " (1,8P,.P,T)? ~ (area SP,P,

PoM
(anE’
F [2m, coincides with the limit of the ratio 4k? —+—

Thus we see that the limit of the ratio equ

al to

NP,

SP,.P.T)*

And the force itself is equal, in magnitude, to the
. o NP,
of the ratio 8k M By BTy
Utilizing accepted mathematical symbols and n
that only NP, and P,T vary when P_ tends to Py, we
write

Fe 8k*m lim NP,
_(SPD)H P,—> P, (P,T)*

limit

oting
may

This limit is obviously dependent only on the geometric

properties of the given curve.

This equation enables us to find the magnitude o
force that makes a body move if the path of the bo
known.

Now let us assume that the curve along which the
P is moving is a portion of an arc of an ellipse with a
at & and the centre at O (Fig. 56). We denote the sem
of this ellipse by a and 5. We draw the diameter d

f the
dy is

body
focus
-axes
f the

ellipse P,D** and continue the straight line P, M wuntil it
intersects the straight line 2 _D in a point L. Then, on the

basis of the properties of an ellipse, we may write the 1
PN a PD ( P.L )2_

P,

@1~ " 2DL

This ratio is not at all apparent and is derived as fol
Through the centre of the ellipse we draw a dia
CG, which is conjugate with the diameter P,D. A dias
parallel to the tangents drawn through the ends of a {
diameter (in this case, through points £, and D) is ¢

ratio:

(1)

lows.
meter
meter
riven

alled

* The notation lim y (z)=a signifies that “y(z) tends to a( limit

>,
equal to ¢ when z, approaches zo."

*# The diameter of an ellipse is a straight line connecting two
of the ellipse and passing through its centre.

156

points




B _nseatesdo it

a diameter conjugate with
the given diameter. Let
us introduce the desig-
nations P40 =a, CO=b,.

We shall first show
that if E is the point of
intersection of the dia-
meter CG and the
straight line P,S, then
the length P_E is equal
to the semi-major axis
of the ellipse a.x

From the properties
of an ellipse we know Fig. 56. Proof of Theorem III
that a tangent to the el-
lipse forms equal angles with radius vectors drawn from
the foci to the point of tangency.

For this reason, if we connect P, with the other focus
of the ellipse S’ and continue this line to an intersection
with the continuation of the diameter CG, then P E=PF F.
We draw S’Q parallel to £oS. The triangles SOE and S'0Q
are equal, and the triangle S'QF is an isosceles triangle.
Consequently, SE=S'Q=S'F and SPo+PoS =Py E+PoF,
i. e,

SP,+P,S’
pE=SRAEE

But the sum SP,+ P,S’ is equal to 21 for the ellipse; hence,
PoE=aqa.
oFrom the similarity of triangles P,ML and P,EO it fol-
lows that
PM_PE PM_a DN_o 2
PL PO PL " TPL a (2)
Now, we drop from P, a perpendicular P,R onto the
diameter CG, and from P, onto SF,. Since the triangles
P,TM and P,ER are similar,
P,T PR
P.M~ PE

Designating the angle between P,0 and OF by a we find,
from the well-known property of conjugated diameters that
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ay by sin a=ab. And in the triangle P,OR, the side P{R=a,

sin «. Therefore, POR=E;_I’
1
and, consequently,

P,T ab b
PH ha "5 )
According to the properties of conjugated diameters

OL? (P,L)
a,? + b,?

=1.
From this equality we obtain:
(PLY =22 % —012) =2 4, { OL)(a,—0OL).
a3, %(° a,¥(

(P,L)? b,°
P,L DL ="Ji"2' (%)
-Using equalities (2), (3), and (4) as a basis, we obtain

; . PN o
from the ratio TR the following:

PN ppae ¥y ea A (PLE s PD (PL2,
C(PTE T VoY et BPM) 5 DL (P,M)*~ % 2DL° (P|M)?

Thus, we bave derived the required ratio (1).

If we now make point £, approach P, point L will tend to
P, while point M will tend towards point L. Thus, |inthe
limit, when £,—£,, we obtain :

lm PN _ a
PP, (P, T2 2%

Comparing this expression with the earlier obtained
expression for the force ¥, we see that when moving|along
an ellipse

4k 1
F= m—bii '(—mz. : (5)

Since the quantities %, a, and b are constant when moving
along the given ellipse, it follows that the force pacting
on P varies in inverse proportion to the square of the distance
between P and S, which proves the theorem.

158




Theorem IV

If several material bodies are in motion in ellipses due
to the action of an attracting centre of force, §, which varies
in inverse proportion to the square of the distance from .S,

"the squares of the orbital periods of these bodies are as the
cubes of the semi-major axes of their elliptical orbits.

Proof

The theorem states that a centre of force S attracts any
material body P of massm, at a distance r, with a force.

F=m—I.},
r

L being the constant of proportionality.

If this body is moving in an ellipse with a focus at S,
then from equation (D). obtained in the proof of the pre-
ceding theorem, it follows that the constant of proportiona-
lity L is equal to 442 a /b®, where k is the “area constant”
whose magnitude is determined by the rate of motion in
the given ellipse, and a and b are the semi-axes of the ellipse.
Thus, in the case of motion along different ellipses the
area constant and the semi-axes of the ellipse can differ,
but the ratio 4k%a [b® retains a constant value equal to L.

During the time equal to the orbital period T, the body
P will complete one full circuit about S and its radius vec-
tor will describe an area equal to the area of the entire
ellipse, = ab, in which P revolves about S.

According to the definition of the area constant k

mab=kT or Tj/a=m bjk,
We raise this equality to the second power
T3 x2p?

Bk

and rewrite the equality obtained in the following. form:

T2 4n2pd
@ T 4la
or
T"__‘ﬂ’.
a3 L
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Summarizing, the ratio 72 [a® remains constant in th

of motion along different ellipses. And if we have s¢

P case
veral

material bodies moving about 5 in ellipses with different

semi-major axes (a,, a3,...) and with different orbital p
7y, T, , ..., then

whence follows Theorem IV.

Theorem V

If several material bodies are in uniform revol

priods

ution

about a centre of force, S, in circles with the centre at
S and if the squares of their orbital periods are proportional

to the cubes of the radii of their circular orbits, thes
terial bodies are attracted to the centre, S, with

6 ma-
forces

that are inversely proportional to the square of the dis-

tances from S.
Proof

We utilize the expression for the force, F, derived in the

proof of Theorem III and, noting that
a= b=P0S =r,.
where r is the radius of the circle, we obtain
4k2

r3’

F=m

This relationship connects the magnitude of the

force

with the area constant and the radius of the circle in which
the body is moving. Since the area constant is related to

the orbital period and the area of the circle by the

tion kT =nr%, the expression for F may be rewritten as:

4mr

F=m —-.

* It is possible to arrive at a similar result on the basis of th

equa-

6 well-

known equation for acceleration in uniform circular motion ws=2%/ r.
This equation was first derived by Huygens (1673) and, independently,

by Newton.
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If we have two bodies with masses m, and m, revolving
in circles with radii ry, r;, the orbital periods of which are
T, and T,, then

F, _m r T2
F, m, ro T2

And if Kepler's Third Law is satisfied:

2
T ,=r3,

) 3
0

then

‘ - Theorem VI

A particle placed without a material homogeneous spher-
ical surface is attracted to its centre with a force inverse-
ly proportional to the square of the distance from its
cenfre.

Proof

Fig. 57 (e and b) depicts two identical material spher-
jcal surfaces and the positions of material particles P
and p attracted by these surfaces (in the figure, the spher-
ical surfaces are shown only in part).

Fig, 57. Proof of Theorem VI
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We draw the secants PHK, PIL and phk, pil suffi
ly close to each other so that the corresponding choi
the two surfaces should be equal:

HK=hk, TL=il.

We will then have the equalities: DO=do, E!
From the similar triangles P/R and FFFD we find

PI _ RI
PF — DF
and from the similar triangles P/Q and PEO,
PI__IQ
PO~ EO

In the very same way we find analogous equaliti
the other spherical surface (Fig. 57, b)
of _df g Po_e0 _EO
i ri and pi  ig ig

cient-
rds on

es for

Multiplying the left-hand and right-hand sides of the four

equalities that have been derived, we obtain

PI*. pf-po_ RI-IQ.df
pi® - PF-PO™ ri-ig- DF~

It may be noted that in the limit,when angles ¢ and ¢’ b¢

xtween

the secants tend to zero, the ratio df /DF tends to
In addition, it may be shown (this we leave to the

unity.
eader)

that by virtue of the equality HK=Fhk, the secants PH
and ph will intersect the spherical surface at the same angles,
that is, the angles between PH and ph and the tangents at
points H and . are equal. The very same thing applies fo the
secants P/ and pi. Forthisreason, if the arcs /H and|ih are
sufficiently small and if they may be identified with lengths
of straight lines, the triangles RH/ and rhi will be similar,

that is, in the limit, when H—>7 and h—i,

n_i
ri giC

The result is that in the limit

‘ PI*. pf. po _HI-IQ
pi?- PF. PO~ Ji-ig
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Now let us examine el —
the attraction of spher- p x =S» 4, ' o
ical shells of radii /Q "
and iq, which may be aF TSl :
obtained by the rotation .yt
of arcs HT and ki about Fig. 58. Proof of Theorem VI

the diameters QB and gb.

The forces with which individual elements of these shells
attract points £ and p are proportional to the masses of
the shells (that is, to their areas) and inversely proportion-
al to the square of the distance to them. Let us take
symmetrically situated elementary sections on each of
these shells, forexample, near the points 7,7, i, i’. The sec-
tions near / and /' attract the points P and p with forces
A F and AF' (Fig. 58), equal in magnitude to p le—;z- where p
is the constant of proportionality, and As is the area of each
of these sections.

When H—I and H'—I’, the directions of these forces in
the limit coincide with the straight lines P/ and P’I’. The
total attraction of these two symmetrical elementary sec-
tions is directed along line PO to the centre of the sphere
and is equal to AF,. But AFp=2AF cos a. Insofar as

As
AFp=p.-Im-, cosa%,

we have

2A¢  PQ
AFp=ppp pr-

By summing, in pairs, the attraction of all elementary
sections of this spherical shell we find that its attraction
Fy is directed to the centre of the sphere O and equal to

S
Fr—vpn o
where S is the area of this shell.

For a spherical shell in Fig. 574 we similarly find that
its attraction is equal to



Taking the ratio of these forces, we find that in the limit
Fp _§ pi# PQ pi ‘

P i e P

Since the triangles P/Q and POF are similar in the limit,

PQ_PF
PI PO’
Similarly, l;,gi-=—1’;—£-.

The areas § and S’ of our spherical shells are equal
to 2x IQ.-HI and 2rig-hi, respectively. And therefore

Fp_IQ-HI pi* PF-po
F, ig-m PI* pf-PO’

Comparing this equality with equality (6) we find that

Fp PI*.pf-po pi* PF-po _ po®
F, " pi*- PF-PO "PIF "p;-PO  PO?
.which means that the forces of attraction of these spheri-
cal shells are inversely proportional to the squares of the
distances of PO and po.
A similar result may be obtained for spherical shells
constructed by the rotation of portions of arcs AL and kl.
Thus, the shells of spherical surfaces that have been
isolated attract the material points £ and p with forces
that are inversely proportional to the distances of these
points from the centres of the spherical surfaces. But we are
able to divide the entire spherical surface into similar spheri-
cal shells. The attraction of each shell, and, hence, the at-
traction of the entire spherical surface is inversely proporti-
onal to the square of the distance of the attracting point
from its centre.

Corollary from Theorem VI

A particle placed without a sphere with spherical dis-
tribution of densities is attracted to its centre with a force
that is inversely proportional to the square of the distance
to the centre of the sphere.
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Proof

We divide the sphere into a large number of thin spher-
ical layers which may be considered homogeneocus. In
accordance with Theorem VI, just proved above, each layer
attracts a point without it with a force that is inversely
proportional to the square of the distance of this point to
the centre of the layer, which means that the attraction
of the entire sphere, which is the integrated attraction of
all the layers, will also be directed to the centre of the
sphere and, in magnitude, it will be inversely proportional
to the square of the distance from the centre of the sphere.
Since the attraction of any material particles is propor-
tional to their masses, it may be said that a material par-
ticle placed in the centre of a sphere and of mass equal
to the mass of the sphere attracts exactly like the entire
sphere.
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