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PREFACE.

It has been made a matter of surprise, that considering the

great capabilities of many individuals in these countries, so few

are conversant with the contents of a work of such acknowledged

eminence, as the Celestial Mechanics. Without adverting to

other causes, it may be safely asserted, that the chief obstacle

to a more general knowledge of the work, arises from the sum-

mary manner in which the Author passes over the intermediate

steps in several of his most interesting investigations. To re-

move this obstacle, is the design of the present treatise,

in which the translator endeavours to elucidate every diffi-

culty in the text, and to expand the different operations

which are taken for granted. He has not attempted to

follow the principles into all their details; but he has occasionally

adverted to some useful applications of them, which occur in

different Authors. He is aware that those conversant with such

subjects will find much observation that may be dispensed with
;

but when it is considered that his object was to render this work

accessible to the general class of readers, he trusts that he will

not be deemed unnecessarily diffiise, if he has insisted longer on

some points than the experienced reader may think neces-

sary. As many of the propositions which Newton announced se-

parately are so many different results, which are all comprised
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under the same general law analytically investigated, he

has also taken occasion to notice, in the notes, those propo-

sitions of Newton, which are embraced in the general analysis

of the text, which he was induced to do, in order to show

the great superiority of the analytic mode of investigating

problems. The Work will be divided into five parts,

which will be published in separate volumes. The first volume

contains the first book, which treats of the general prin-

ciples of the equilibrium and motion of bodies. The number

of notes which was necessary for the elucidation of these prin-

ciples is much greater than will be required in any of the

subsequent volumes. The second volume will contain the second

and third books of the original ; the third volume, the fourth

and fifth books ; the fourth volume will contain the sixth,

seventh, and eighth books ; and the last volume will contain

the ninth and tenth books, together with the supplement to

the tenth book.

Trin. Coll.

April, 18S2,
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A TREATISE

OB

CELESTIAL MECHANICS,

&c. &c,

JNEWTON published, towards the close of the seventeenth century, the

discovery of universal gravitation. Since that period. Philosophers have

reduced all the known phenomena of the system of the world to this

great law of nature, and have thus succeeded in giving to the theories and

astronomical tables a precision which could never have been anticipated.

I propose in this present treatise to exhibit in one point of view, these

theories which are scattered through a great number of works,

of which the whole comprising the results of universal gravi-

tation, on the equilibrium and motion of the bodies both solid

and fluid, composing the solar and similar systems, constitutes The

Celestial Mechanics. Astronomy, considered in the most general

manner, is a great problem of Mechanics, of which the arbitrary

quantities are the elements of the motions of the heavenly bodies j its

solution depends, at the same time, on the precision of the observations,

and on the perfection of analysis ; and it is of the last importance to

banish all empiricism, and to reduce it, so that it may borrow nothing

from observation, but the indispensable data. The object of this work,

is, as far as it is in my power, to accomplish this interesting end. I

trust that, in consideration of the difficulties and importance of the
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subject, Philosophers and Mathematicians will receive it with indulgence,

and that they will find the results sufficiently simple to be employed

in their investigations. It will be divided into two parts. In the first,

I will give the methods, and formulas, for determining the motions of

the centres of gravity of the heavenly bodies, their figures, the oscillations

of the fluids which are spread over them, and their motions about their

proper centres of gravity. In the second part, I will apply the formulse

which have been found in the first, to the planets, the satellites and the

comets -, and I will conclude with a discussion of several questions

relative to the system of the world, and by a historical notice of the

labours of Mathematicians on this subject. I will adopt the decimal

division of the quadrant, and of the day, and I will refer the linear

measures, to the length of the metre, determined by the arc of the ter-

restrial meridian comprised between Dunkirk and Barcelona.
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TREATISE

ON

CELESTIAL MECHAJVICS,

S(c. Sfc.

PART I.—BOOK I.

In this book, the general principles of the equilibrium and motion

of bodies are established, and those problems in Mechanics are solved,

the solution of which is indispensable in the theoiy of the system of

^le world.

CHAPTER I.

Of the equilibrium and of the composition of forces which

act on a material point.

1. A body appears to us to move, when it changes its situation

with respect to a system of bodies which we suppose to be at rest;

but as all bodies, even those which seem to us to be in a state of the
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most absolute rest, may be in motion ; we, in imagination, refer the

position of bodies to a space which is supposed to be boundless, im-

moveable, and penetrable to matter ; and when they answer succes-

sively to diflPerent parts of this real or ideal space, we conceive them to

be in motion.

The nature of that singular modification, in consequence of which a

body is transferred from one place to another is, and always will be, un-

known : we have designated it by the name force ; but we can only

detennine its effects and the laws of its action. The effect of a force

acting on a material point, is, if no obstacle opposes, to put it in mo-

tion ; the direction of tlie force is the right line which it tends to make

the point describe. It is evident that when two forces act in the

same direction, their effect to move the point is the sum of the two

forces, and that when they act in opposite directions, the point is

moved by a force represented by their difference. If their directions

form an angle with each other, a force results, the direction of which

is intermediate between the directions of the composing forces. Let

us investigate this resultant and its direction.

For this purpose, let us consider two forces :c and J/ acting at the

same time on the material point AI, and forming a right angle with

each other. Let z represent their resultant, and the angle which it

makes witli the direction of the force x ; the two forces ^ and 1/

being given, the angle 6 will be determined, and also the resultant z,

so that there exists between these three quantities j:, t/, z, a relation

which it is required to ascertain.

Let us suppose at first the forces x and 1/ infinitely small, and equal

to the differentials dJ! and dy ; let us suppose afterwards that a: becom-

ing successively dx, Q.dx, Sdx, &c. y becomes dy, '2dy, Sdy, &c. it is

evident that the angle 9 will always remain the same, and that the

resultant a; will becone successively rf^, 2dz,^3dz, &c. ; thus in the

successive incremen's of tlie three forces x, y, and z, the ratio ol x

to « will be constat, ^ and can be expressed by a function of fl which

we will desig!iate by ^(6) ; therefore we shall have x = z 9(9), in
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which equation x may be changed into y, provided that in like manner

the angle is changed into — 8, w being the semi-circumference of

a circle whose radius is equal to unity.

Now, we can consider the force x as the resultant of two forces 'x'

and J*, of which the first ^'"is in the direction of the resultant z, the

second x' being perpendicular to this resultant. The force x which

results from these two new forces, forming the angle 6 with the force

J?', and the angle— —9, with the force x" we shall have

therefore we can substitute these two forces, for the force x. In like

manner we can substitute for the force y, two new forces y' and y\ of

which the first is equal to — and in the direction of 2;, and of which

the second is equal to li and perpendicular to z, thus we shall have in

place of the two forces x and y the four following,

x* y"^ xy xy

z z z z

the two last acting in opposite directions, destroy each other ; the two

first acting in the same direction, when added together constitute the

resultant z ; we shall have therefore

x»+3/»— jt.

from which it follows that the resultant of the two forces x and y n
represented in quantity by the diagonal, of a rectangle, of which the

sides represent the new forces.

Let us now proceed to determine the angle 6. If the force x is

B2
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increased by its differential, without altering the force y,* this angle

will be diminished by the indefinitely small quantity J9, but it is pos-

sible to suppose the force dx resolved into two, one dx' in the direc-

tion of s, the other dx'' perpendicular to z; the point Mwill then be

acted on by the forces z + dx' and dx' perpendicular to each other,

and the resultant of those two forces, which we represent by z\ will

make with dx" the angle ~— rffl ; therefore by what precedes we shall

have dx" = z'. f^—

—

d&j, consequently the function (pfZ d^'\

is indefinitely small, and of the form — Kd^ ; K being a constant

quantity independent of the angle 6 ; therefore we have

dx"
=1 — Kd^ ; z' differing by an indefinitely small quantity from z

;

moreover as dx" forms an angle with dx equal to —— we have

dx" = dx <p( 9 j = 1/. dx ;

therefore

rf6 =
—ydx
Kz*

* Since the direction of the resultant depends on the relation which exists between

composing forces, if one force be increased, while the other remains unaltered, the angle

contained between the direction of the increased force and resultant, will be diminished by

a quantity of the same order with that by which the force was increased. And when

the force y receives the increase, the angle contained between the resultant and this

increased force, will be diminished, therefore its complement, the angle i, will be increased

by the same quantity ; and this is the reason why the expressions for the variations of

6 corresponding to the respective variations of x and y are affected with contrary signs.

If X and y are increased or diminished simultaneously, d6 will always vanish when dx, dy

are respectively proportional to the quantities varied ; this follows immediately from th«

expression for di.
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If the force y is varied by its differential dy, x being supposed to be

constant, we shall have the corresponding variation of the angle 6, by

changing x into y, y into x, and fl into ——9, in the preceding equa-

tion ; which then gives

xdy

therefore by making x and y to vary at the same time, the total va-

riation of the angle 6 will be -^ JL .and we shall have

xdy—ydx _ ^^^

If we substitute for x;* its value .r* +^', and then* integrate we shall

have

-^ - tan. (ii:fi + p)
X

f being a constant arbitrary quantity. This equation being combined

with the equation j^'+j/' =2^ gives

vT = 2. cos. (iiCS+p)

* xd\i—y dx ^ xdv—y dx j / U \ du

1 +^ 1 +£_
I» x^

, J—= u \ therefore f—J^!— { - arc tang. = « ) rzf K di =

\ X J COS. Kl+(
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It is only now required to know the two constant quantities A" and p

;

but if we suppose y to vanish we have evidently z = a\ and ^ = o,

therefore cos. /> = 1 and x -zz z. cos. K^. If we suppose x to vanish,

then z =. y, and 9 — —w ; cos. K^ being then equal to nothing, K

*must be equal to 2«4-l, n being an integral number; and in this

case .r will vanish as often as 9 will be equal to
^^

; but x being no-

thing we have evidently 9 zz A-ct ; therefore 2«+l zz 1, or n zz o,

consequently

X = z. COS. 9.

From which it follows that the diagonal of a rectangle described on

the right lines which represent the forces x and y, represents not

only, the quantity but also the direction of their reluctant. Thus we

can substitute for any force whatever two other forces which form the

sides of a rectangle, of which that force is the diagonal ; and it is easy

to infer from thence that it is possible to resolve a force into three

others, which form the sides of a rectangular parallelipiped of which

it is the diagonal.

t

Let therefore a b and c represent the three rectangular coordi-

nates of the extremity of a right line, which represents any force what-

ever, and of which the origin is that of the coordinates ; this force

will be represented by the function s/a*-\-h''' -\-c*, and by resolving it

* In this case K6 is some odd multiple of -— and therefore K must be of the form 2n-|- 1

.

f Tlie given force being resolved into two, of which one is perpendicular to a plane given

in position, the other being parallel to tliis plane, if this second partial force be decom-

posed into two others, parallel to two axes situated in this plane, and perpendicular to

each other ; it is evident that the three partial forces will be at right angles to each other,

and that the sum of the squares of the lines representing these forces, will be equal to

the square of the line representing the given force, therefore this last force is the diago-

nal of a rectangular parallulUpiped, of which the partial forces constitute the sides.
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parallel to the axes of a o£ b and of c, the partial forces will be ex

pressed respectively by these coordinates.

Let a', b', &, be the coordinates of a second force ; a-\-a', b-\-b',

c+c', will be the coordinates of the resultant of the two forces, and

will represent the partial forces into which it can be resolved parallel

to the three axes, from whence it is easy to conclude that this resultant

is the diagonal of a parallelogram, of which the two forces are the

sides.*

In general a, b, c ; a', b>, C ; a", b«, &'
; &c. being the coordinates

of any number of forces ; a -{ a' { a" -^ , &c. b+b'+b''+, kc.c-\-c'-\-c"-\-

&c. will be the coordinates of the resultant ; the square of which will

be equal to the sum of the squares of these last coordinates ; thus we

shall have both the quantity and the position of the resultant.

t

* The coordinates of the extremity of this diagonal are evidently equal to n+a', h-\-b',

c+c, therefore tliis diagonal must be equal to the resultant of the two forces. We are

enabled to derive an expression for the cosine of the angle, contained between the given

forces, in terms of the cosines of the angles which these forces make with the coordi-

nates, for calling the forces S and S', and the angles which S makes with the three axes,

A, A', A", and B, B\ B", the angles which S' makes with the same axes we have

o=Scos. A, b=S COS. A, c=S cos. A",a'=-S cos.B,c'=S cos. 5', c'= S' cos. B'

;

the square of the line connecting the extremities of S and S = S*

—

Q,SS. cos. il+.S '
;

^ being the angle contained between S and S, the square of this line is also equal to

(S cos. A—S cos. BY + {S cos. A'—S' cos. £')=+ (S cos. A'—S cos. B')* ;

=» S'+ S"^—2 SS' (cos. A. cos. B + cos. A. cos. 5'4-cos. A', cos. B",)

consequently we have

cos. A = cos. A. cos. B + cos. A . cos. B + cos. A", cos. B',

therefore when the two forces are perpendicular to each other, the second member of this

equation is equal to nothing.

t Let S S' S", &c. represent the forces of wliich the coordinates are respectively

a, 6, c ; a, V , c' ; a", b", c", &c. then by what precedes a-\-a', b-\-b', c+c', are the co-

ordinates of the resultant of S and S', a+a'+a", b-\-b'-\-b", c+c'+c', .are the coor-

dinates of the resultant of this last force, and the force S" &c. : therefore the resultant

f of any number of forces is the diagonal of a rectangular parallelipiped of which
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2. From any point whatever of the direction of a force S, which

point we will take for the origin of this force, let us draw a right line,

which we will call 5, to the material point M ; let x, y, z, be the three

rectangular coordinates which determine the position of the point M,
and a, b, c, the coordinates of the origin of the force ; we shall have

If we resolve the force S parallel to the axes of .«, of i/, and of z,

the corresponding partial forces will be by the preceding number

S r S ' S ' \izJ ySl/J WS^

the coordinates are equal respectively to the sum of the coordinates of the composing

forces,

V F»= (a+a'+a" +&c.y- + (6+*'+*" &c.)* + {c+c +c' + &c.)'.

Let m,n, p = the angles which V makes with the rectangular axes

a4-fl'+o"+ &'C h+ b'+ b"+&c. c+c'+ c"+ &c.
COS. m = ^ y— cos. m = ^ ^^JE cos. p = _L_X,_L

—

•. • we have both the quantity and direction of the resultant.

From the preceding composition of forces it follows, that if a polygon is constructed,

of which the sides, (which may be in different planes) are respectively proportional to

these forces, and parallel to their directions, the last side of this polygon represents the

resultant of all the forces in quantity and in direction.

* S being considered as a function of x, y, and k, S« ^ ( T~ J
^''''^

{ s" J
^^'''

(
T~} ^^

and when s = V{x-ay+(y-by+(z-c-' [jj = -j- j^
= '-^ ' jr =-^

' &c. are evidently the expressions for the cosines of the angles which s
s s

makes with the coordinates x, y, and s, since
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>;> -i, expressing according to the received notation
Ws

^ _ { is

tlie coefficients of the variations of Sx, Sy, Sz, in tlie variation of the

preceding expression of s.

If, in like manner, we name s' the distance of M from any point iu

the direction of another force iS', that point being taken for the origin

of this force ; S'. \——l will be this force resolved parallel to the axes

I SxS

of .r, and just so the rest ; therefore the sum of the forces S, S', S", kc.

V

'{ |)

=

M-^)

+

s-(t; )

+

*'(t^) +
'"

by iiuiltiplying these equations by Sx, 3y, h, respectively, and adding them together,

we get

>''«=
K(^).''+(|>'.+(t:)'-0

+.S'Y (l!l)ix+/!^^ 3y )-( ^)y Sz+&c.=Sls-t-.S'?.v' + .S'3,v"+ &c.=-Z.S.h.

Now since these equation have phice whatever be the variations 3x, Si/; h, one of then;

may exist while the other two vanish, therefore the equation (a) is equivalent to the tliree

Kiuations which precede it. We shall see liereafter that the introductio)i of the coeffi-

cient
(
Y^ ) is of the greatest consequence, for from the equation (4) which tbllows

immediately from the equation (a), we deduce the equation (/) of No. li, which involves

the principle of vertual velocities, and this principle combined with that of D'Alembert,

lias given to Mechanics all the perfection of which it was susceptible, for by means of it

tTie investigation of the motions of any system of bodies is reduced to the integration

of differential equations. .See No. 18.



10 CELESTIAL MECHANICS,

resolved parallel to this axis will be 2. S.(— ), the characteristic 2: of

(is \ ( Ss'

)

Sx ( Sxi

Let F be the resultant of all the forces S, S', &c. and u the distance

of the point M from any point in the direction of this resultant, which

is taken for its origin ; V. < > will be the expression of this re-
' aX J

sultant resolved parallel to the axis of x; therefore by the precedhig

number we shall have V.< —'-> = H. S.<
( Sx ) l

we shall have in like manner

Ss_

\ Sy
^

^ SyS ' Ws ^ ^ cT^

from which we may obtain, by multiplying these equations respectively

by to, Sy, Sz, and adding them together

VJu = 1. S. is;

As this last equation has place whatever be the variations Sx, Sy, Sz it is

equivalent to the three preceding. If its second member is an exact

variation of a fuction <p, we shall have F. Su = S({>, and consequently

Stp

which indicates that the sum of all the forces resolved parallel to the

axis of >- is equal to the partial difference ) —^ i .
* This case ob-

* If we mult;ply h the variation of any quantity by any function of that quantity, such

^
as -a— ' ^.s™, &c. the product is evidently an exact variation, however this is not true of

every species of function, for there are some transcendental and exponential functions.

such as which are not exact variations.
log. .?.
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tains generally, when the forces are respectively functions oF the dis-

tance of their origin from the point M. In order to have the resultant

of all these forces resolved parallel to any right line whatever, we shall

take the integral S. /." S. is, and naming <p this integral, we shall consi-

der it as a function of .v, and of two right lines perpendicular to each

other and to x ; the partial difference < —^ > will be the resultant
I Sx ^

of the forces S S' S", &c. resolved parallel to the right line x.

3. When the point AI is in equilibrio, in consequence of the action

of the forces which solicit it ; their resultant vanishes, and the equa-

tion (a) becomes

O = £. S. Ss {b)

which indicates, that in the case of the equilibriiun of a point acted on

by any number of forces, the sum of the products of each force by the

element of its direction is nothing.*

c2

* Since the forces parallel to the coordinates .c, y, z, are independant of each other, It

follows from the notes to the preceding number, that M'hen the point M is in equilibrio

-• -S
-J
-—

J-
2. S. -! —1 !• 2. i>.

I
__ I. are = respectively to nothing.

t. c. ,S. cos. A^S. COS. B-^S" COS. C+ etc. =
S. COS. A'-\-S' cbs. 5'+S" cos. C'+&c. = 0.

a. COS. A''-\-&'. COS. £"+ S'' COS. C" = 0.

{A, A', A" ; B, B', B", &c. are the angles which the direction* of ,S', S>, &c.niake with

J-, y, z,) ; these are the equations of equilibrium of a system of forces applied to a mate-

rial point which is entirely free. The independence which exists between these equations

is ejttremely advantageous, it only obtains \\hen the forces are resoh'ed paralle! to three

rectangular coordinates. 2. S. ) -z— > =0 indicates that M is at an invuriable dis-

t Sx 3

tance from the plane of y, z ; in this case the forces are reducible to two rectangular ones,

in the plane y, z.

When the point M is in equilibrio any one of the forces acting on it is equal ami

contrary to the resultant of all the remaining forces, for naming V the resultant of the

forces .S', S"-)-itc. and n, h, c, the angles which it makes with the coordmates x, y, z, by
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If the point M is forced to be on a curved surface, it will experi-

ence a reaction, which we will designate by R. This reaction is equal

and directly contrary to the pressure with which the point presses on

the surface ; for by conceiving it acted on by two forces R and —R,

it is possible to suppose that the force R is destroyed by the reaction

of the surface, and that thus the point presses the surface witli the

force R ; but the force of pressure of a point on a surface is perpen-

dicular to it, otherwise it might be resolved into two, one perpendicular

to the surface, which would be destroyed by it, the other parallel to the

surface, in consequence of which the point would have no action on

this surface, which is contrary to the hypothesis ; consequently if r be

tlie perpendicular drawn from the point ^/ to the surface, and termi-

nated in any point whate\''er of its direction, the force R will be di-

rected along this perpendicular ; therefore it will be necessary to add

R.Sr to the second member of the equation (c) which thus becomes

O = Z, S. Ss-{-RAr {c)

— R being then the resultant of all the forces .V, S', &c. it is perpen-

dicular to the surface.

If we suppose that the arbitrary variations Sx, Sij, Sz belong to the

cui'ved surface on which the point is subjected to remain, we shall have

h- — O, since r is perpendicular to the surface, therefore RJr vanishes

from the preceding equation, in consequence of which the equation (b)

obtains in this case, provided that one of the three variations Sx, St/, Sx,

be eliminated by means of the equation to the surface ; but then, tht-

what precedes we shall have V'. cos a = S' cos. B-\-S" cos. C^&c. /'' cos. c = S'

COS. B'-fS". COS. C'-\-&c. and since S. cos. A+S. cos. B+S". cos. C-f&c. zz 0. We
have v. cos. a=— 6'. cos. A ; in like manner it may be shewn that f" cos. b= —S. cos. B,

and v. COS. c = — S. cos. C ; if we add together the squares of these equations we

shall obtain F'"=S*, because cos. *a -f cos. *i -|- 'c = 1 = cos. -4+ cos. 'B 4-

cos. *C.-. we have cos. a = — cos. A &c. •.• a = 200'

—

A, iu like manner it follows,

that b = 20O

—

B, c = 200— C, v the forces S and V are equal, and act in opposite

directions.
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equation (b) which in the general case is equivalent to three, is only

equivalent to two distinct equations, which may be obtained by putting

the coefficients of the two remaining differentials separately equal to

nothing. Let m = be the equation of the surface, the two equations

Sr—0, and SuzzO will have place at the same time ; this requires that h-

should be equal to \Su, N being a function of x, i/, and z. Naming

a, b, c, the coordinates of the origin of r we shall have to determine it

from which wc may obtaui -^— > + < — , + { j
— I, and

consequently

therefore by making

I

X :r
R

^ (- Sx ^ ^ Sy ^ ^ Sz ^

the term R.Sr of the equation (c) will be changed into xiu, and this

equation will become

r: I. iS'. h-irxiii

in which equation we ought to put the coefficients of the variations Sx, ii/,

iz, separately equal to nothing, which gives three equations ; but on ac-

count of the indeterminate quantity a, which they contain, they are equi-

valent to only two between x, y, and a. Therefore instead of extracting

from the equation {hi) one of the variations Sx, Sy, Sz, by means of the

differential equation of the surface, we may add to it this equation multi-

plied by the indeterminate quantity a, and then consider the variations

Sx, %, and Sz, as independant. This method, which also results from



14 CELESTIAL MECHANICS,

the tlieory of elimination combines the advantage of simplifying the

calculation with that of indicating the force —R with which the point

il/ presses the surface.*

* When the point M is on a curved surface, then all that is required for its equilibrium

is, that the direction of the resultant of all the forces which act on it should be perpen-

dicular to this surface, but the intensity of this resultant is altogether undetermined,

since the reaction is equal and contrary to the pressure of the point on the surface, by

adding to 2. S. is the quantity R. Sr we may consider the material point as entirely tree.

3r vanishes because the perpendicular is the shortest line which can be drawn from a

given point to the surface.

Since the same values of x, y, and z, satisfy the equations 2r = S« = 0, it follows

from the theory of equations that 'N = is a function of .r, y, and z,

"ill

this function

it follows from the expression that is given for Jr,' that the cosines of the angles wliit-h the

noi-mal makes with the coordinates are equal respectively to iV. < " ' A'. > Jf i .V. j 1: ^

.

iix' ^ »y ^ ^"

See notes to No. 9.

\%z S \^z S \ %z )

then 2. S. S.s -f y.%u=Ci will be equal to X. ix-\- Y. Jy+ 2. 5-- +

and on account of the independance of the variables x, y, z, we shall have

eliminating a we liave the following equations

:

y. ??i-x.i!i=o, Z. ^JL-X.h =0.
3x ly Ji ^~
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Let us conceive this point to be contained in a canal of simple or

double curvature ; the reaction of the canal which we will denote by k,

will be equal and directly contrary to the pressure with which the point

acts against the canal, the direction of which is perpendicular to its

side ; but the curve formed by this canal, is the intersection of two sur-

faces of which the equations express its nature, therefore we may con-

sider the force k as the resultant of two forces R, R', which express the

reactions of the two surfaces on the point M ; since the directions of

the three forces li, R', /., being respectively perpendicular to the side

of the curve they are in the same plane, therefore by naming h; Sr' the

elements of the directions of the forces R, R', which directions are

respectively perpendicular to each surface ; we must add to the equation

(A) the two terms RSr, R'Sr, which, will change it into the following

:

Q-^.SSs + R.Sr-^R'.h'. (dj

These are the equations of equilibrium of a material point solicited by any number of forces

S, S, S', and constrained to move on a curved surface : if the position of M on the sur-

face is not given, then the two equations, resulting from the elimination of a, combined

with the equation of the surface, m:=0, are sufficient to determine the three coordinates of

the point. Wlien the forces and position of the point are given we obtain a by means of

one of the three preceding equations, from which we can collect immediately the value of

R, and consequently the pressure ; the investigation of R would be considerably abridged

f ^" 1 (
^" I

by making the axis of j- to coincide with the normal, for then a. < y- >•
, x.-\ |r~ (

' are

equal respectively to nothing, and a -! -i— r = i? A'. 4 — > = /f , for in this case

""•Vi] = li] = ^= ^'"^'^

^il'r ^{4}' '"^ = '" ""''^^' '^^ '•*'"

have y = 0, Z = 0, which indicate that the forces resolved respectively parallel to two

lines in the plane which touches the surface in the given point, are equal to nothing ; this

also follows from considering that the resultant of the forces is necessarily perpendicular to

the surface. If the variations 5.r, ly, Iz, are supposed to belong to the surface then we

shall have XS-r-J- Y'^y\-Z'iz = 0, and substituting for Sz its value in terms of ?x and 5^,

which we get by means of the equation \ -r- f • ^-^ + ^ "j" !" • ^^ + "!
"sT (

' ^^ ~ ^•

we can obtain immediately the equations of condition

ix dy dx iz
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If we deterniiue the variations ix, Si/, Sz, so that they may appertain

at the same time to the two surfaces, and consequently to the curve

formed by the canal ; Sr and Sr' will vanish, and the preceding equation

will be reduced to the equation (^b) which therefore obtains in the case

where the point is constrained to move in a canal
;

provided that we

make two of the variations ix, Sy, Sz, to disappear by means of the two

equations which express the nature of this canal.

Let us suppose that u= 0, ?/— are the equations of the tAvo surfaces

whose intersection forms the canal. If we make

R

V(|)
Su \- / hi \ *

, , Su
^

Sx Sy oz

' the equation (d) will become

0=2. S. Ss.+ A. Su + x'.Su',

in which the coefficients of each of the variations Sd; Sy, Sz, will be se-

parately equal to nothing ; thus three equations will be obtained, by

means of which the values of a and x' may be determined, which will

give R and R' the reaction of the two surfaces, and by composing them

we shall have the reaction k of the canal on the point AI, and conse-

quently the pressure of this point against the canal. The reaction re-

solved parallel to the axis of a: is equal to

^ Sx'
'

^ Sx ^ Sx ^ Sx •'

* When the point is forced to be on a canal of simple or double curvature there is

only one equation of condition, which is obtained by eliminating A and >'
; this equation

combined with the equations m = 0, «'= are sufficient to detmiine the coordinates of the
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therefore the equation of condition u = 0, u'=0, to which the motion of

the point M is subjected, express by means of the partial differentials

of functions, which are equal to nothing in consequence of tliese equa-

tions, the resistances with which the point is affected in consequence of

the conditions of its motion.

It appears from what precedes that the equation (/>) of equilibrium

obtains universally, provided, that the variations Sj:, Sy^ Sz, are subjected

to the conditions of equilibrium. This equation may be made the foun-

dation of the following principle.

" If an indefinitely small variation be made in the position of the

" point M, so that it still remains on the curve or surface along which

" it ought to move, if it is not entirely free ; the sum of tiie forces

" which solicit it, each multiplied by the space through which the

" point moves in its direction, is equal to nothing, in the case of an

" equilibrium."*

The variations Sx, Sy, iz, being supposed arbitrary and independant,

it is possible to substitute for the coordinates .r, y, z, in the equation

(a), three other quantities which are functions of them, and to equal

the coefficients of the variations of these quantities to nothing. Thus

naming p the radius drawn from the origin of the coordinates, to the

D

point of the canal where the given forces constitute an equilibrium, in this case it is only

required for the equilibrium of the point that the resultant of the forces should exist in a

plane perpendicular to the element of the curve on which the point is situated, from

whence it appears that the position of the resultant is more undetermined than when the

point exists on a curved surface. See Notes to No. 9.

We might simplify the investigation of the pressures and obtain immediately the

equation of equilibrium between ths forces by taking two of the axes in the plane of

the normals of the surfaces whose intersection constitutes the curve, for then we shall

have at once Z—O, the third axis is in the direction of the tangent to the curve

formed by the intersection of the two given surfaces.

* The equation (b) obtains universally, but under different circumstances, according at

tlie point is free, or constrained to move on a surface ; in the former case V the resultan:

of all the forces vanishes, and vS.S.Ji. r= V.hi must vanish; in the latter case Fhasfe
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projection of the point M, on the plane of x and y, and it the angle

formed by p and the axis of x, we shall have

T=p. COS. TT
; yzzfi. sin. v.

If, therefore in the equation [a), we consider 2^, s, sf as functions of

-

f.
It, and 2 ; and then compare the coefficients of Si?, we shall have

_1S^ ^ is the expression for the force V resolved in the direction o(

the element p. S-ar. Let V be this force resolved parallel to the plane

of X and y, and P the perpendicular demitted from the axis of z on

PV'
direction of V', parallel to the same plane ; will be a second ex-

P

pression for the force V resolved in the direction of the element fJw ;

therefore we shall have

PF.= V.
Su

\-

If we conceive the force V to be applied to the extremity of the per-

pendicular P, it will tend to make it turn about the axis of Z ; the

product of this force, by the perpendicular, is denominated the moment

of the force V with respect to the axis of z ; therefore this moment is

equal to V.\ —1 ; and it appears from the equation (e), that the

moment of the resultant of any number of forces is equal to the sum

of the moments of these forces.*

finite value, but its direction being perpendicular to the surface or the variation of this per-

pendicular must be equal to nothing, and consequently in this case also ^.Sis^ Viu

must vanish.

* The force V resolved parallel to the axis of a = -^-^ =, by substituting for
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X its vftlue V.^ '
) this last force resolved in the direction of the elemeni

u

f. dv, i. e. perpentBcuter to ^= V.— l^_i'-^ tr (by substituting for 1/ its value)
u ^

V. iSl
'.

• sin. a- in like manner if we resolve the force V parallel to the axis of «,

and then this last force in the direction of 5 3»-, it frill be equal to V.
U'^'";""— ). ^j^g^ ^

ti

These forces in the direction of j. Stt act in opposite directions, therefore their difference

^^ ((? sin. a-

—

I)). COS. T—(j. cos. ?r—a), sin. ?r)_) is the expression for that part of die

force V in the direction of the element ^.Jjr, which is really efficient, this expression

"""{£}' ^""^ "'" ^^' ^"^' '^—")"+(?•*'"• ^—l>'+(z—cy (by substituting for

J and 1/ their values) ; therefore taking the derivitive function, a- being considered as the

variable, we shall have, u. i -r—
f
=— g. sin. a-. (5. cos. a-—0)+^. cos. v. (5. sin. 3- 6y.

•••—
\ ^\ =—

U<^"^-
'^- («• ^'°- 'r—6J—sin. T. (?. COS. ^—a)),= for conceiv-

g t OTT J U p

ing the force V to be resolved into two, of which one is perpendicular to ^ , tlie otlier

being in the direction of 5, the triangle constituted by tliese forces will be similar to a

triangle, two of whose sides are ^ and P, and the third side = F' produced to meet P,

that part of the force V wliich is perpendicular to 5 is to V as P to 5
•.• it is equal to

PV

From the definition that has been given in this No. of the moment of a force

with respect to an axis, it appears that it can be geometrically exliibited by means of a

triangle, whose vertex is in this axis, and whose base represents the intensity of the

,

force, it vanishes when the resultant V vanishes, and also when P vanishes, i. e. when

the resultant piisses through the origin of the coordinates. See Notes to No. 6.

Let X and Vindicate, as in the preceding notes, the force V, resolved respectively pa-

rallel to the axes of x and 3^, X=F.ifi:±l, Y^ V.^MlI^, the expression for these
u u

forces resolved perpendicular to e=F. i^^llii-- -, V.liUJ. f, their difference

« J " f

= = ^
; we are enabled by means of tliis expression to deduce the equa-

tion of the right line, along which the resultant is directed, for the equations of its pro-

d2
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jection V on the plane of x y isy—^ =—— . ( x

—

a), Xy—Xh = Yx— Ylc. Let L be
A.

equal to Yx—Xy, and the preceding equation will become b =— .a " we might
\ A

derive similar expressions for the projection of V on the planes of r and 2, and y and z,

from whence it is easy to collect the equation of the right line along which V is directed,

—
Y" indicates the distance of the origin of the coordinates from the intersection of V

with the axis of y, and -^ indicates the distance of the origin of the coordiaates from the

intersection of the resultant V with the axis of x. Yx—Xy= Ya—Xh shews that it is

indifferent what point of the direction of V is considered. Yx—Xy = when V = 0,

and also when its direction passes through the axis o z.
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CHAPTE21 II.

Of the motion of a material point.

4. A point in repose cannot excite any motion in itself, because there

is nothing in its nature to determine it to move in one direction in pre-

ference to another. When solicited by any force, and tlien left to itself,

it will move constantly, and uniformly in the direction of that force, if it

meets with no resistance. This tendency of matter to persevere in its

state of motion or rest, is what is termed its inertia ; it is the first

law of the motion of bodies.

The direction of the motion in a right line follows necessarily from

this, that there is no reason why the point should deviate to the right,

rather than to the left of its primitive direction ; but the uniformity of

its motion is not equally evident. The nature of the moving force

being unknown, it is impossible to know a priori, whether this force

should continue without intermission or not. Indeed, as a body is in-

capable of exciting any motion in itself, it seems equally incapable of

producing any change in that which it has received, so that the law of

inertia is at least the most natural and the most simple which can be

imagined ; it is also confirmed by experience. In fact, we observe on

the earth that the motions are perpetuated for a longer time, in pro-

portion as the obstacles which oppose them are diminished ; which

induces us to think that if these obstacles were entirely removed, the

motions would never cease. But the inertia of matter is most remark-

able in the motions of the heavenly bodies, which for a great number of

ages have not experienced any perceptible alteration. For these rea-

sons we shall consider the inertia of bodies as a law of nature ;
and

when we observe any change in the motion of a body we shall conclude

that it arises from the action of some foreign cause.
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In uniform motions the spaces described are proportional to the

times. But the times employed in describing a given space are longer

or shorter according to the magnitude of the moving force. From these

differences has arisen the idea of velocity, which, in uniform motions

is the ratio of the space to the time employed in describing it. Thus s

representing the space, / the time, and v the velocity, we have v— —

.

Time and space being heterogeneal and consequently not comparable

quantities, a determinate interval of time, such as a second, is taken for

a unit of time, and in like manner a portion of space, such as a metre

for an unit of space, and then time and space become abstract numbeis,

which express how often they contain units of their species, and thus

they may be compared one with another. By this means the velocity

becomes the ratio of two abstract numbers, aiad its unity is the velocity

of a body vi^hlch describes a metre in one second.

5. Force being only known to us by the space which it causes to be

described in a given time, it is natural to take this space for its measure,

but this supposes, that several forces acting in the same direction, would

cause to be described in a second of time, a space equal to the sum of

the spaces which each would have caused to be described separately in

the same time, or in other words, that the force is proportional to the

velocity ; but of this we cannot be assured a p7~iori, in consequence of

our ignorance of the nature of the moving force. Therefore it is ne-

cessary on this subject also to have recourse to experience, for whatever

is not a necessary consequence of the few data which we have on tke

nature of things, must be to us the result of observation.

Let us name v the velocity of the earth, which is common to all the

bodies on its surface, letf be the force with which one of these bodies.

M is actuated in consequence of this velocity, and let us suppose that

V ~ f'9{,fy is the relation which exists between the velocity and the

force, ^f) being a function oif which must be determined by expe-

rience. Let a, b, c. be the three partial forces into which the force /
may be resolved parallel to three axes which are perpendicular to each

other. Let us then suppose the moving body M to be solicited by s
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new force, f, which may be resolved into three others a', h', c, pa-

rallel to the same axis. The forces by which this body will be soli-

cited parallel to these axis will be a-\-a', b-\-b\ c-{-c', naming F the

sole resulting force, by what precedes we shall have

F = y^^'l « + (6+i,')« + (c-t-cO*

If the velocity corresponding to i<'be named U ;
* —— will

be this velocity resolved parallel to the axes of a, thus the relative velo-

city of the body on the earth parallel to this axis will be -^

—

——— '—

or(a + «')' 'P'i.P) — <^' ff- The most considerable forces which can

be impressed on bodies at the surface of the earth being much smaller

than those by which they are actuated in consequence of the motion oi'

the earth, we may consider «', 7/, c', as indefinitely small quantities

relative to f; therefore we shall have F ^f •\ „ t and ?

(F) = <p. (/) 4- (««'+^^^+cc^ ^^j.^ . ^_^^,^ . j^^.^^ ^j^^ differential

* The velocity of a body moving in a given direction is to its velocity, estimated in any

other direction, as radius to the cosine of the angle which the two directions make with one

another, that is, in this case as F to a+a', therefore the velocity U resolved parallel

to the axis of a will be equal to U "l

f F. = ^{a4-a')»-(-(i4-J')*4.(c-l.c')« = v/a'+5*+c^+2;(rt'+266'+2cc', the

squares of a, b', and c being rejected as indefinitely small, if this radical is expanded by

the binomial theorem (all the terms except the two first being neglected as involving the

squares, products, and higher powers of a', V, c',) it will become

\/a'+6*+c«+ 2 {aa'+bb'+cc) —f +aa'bb'+cc,

2 ya'+6»+^, /
and (p (F) = ?.(/+ "1±^*I1^) equal by Taylor's tlieprem to
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of (p.(f) divided by d.f. I'hc rcLitive velocity of M in the direction

of the axis of a will thus beconie

a-<^-(J') + 4 {
««' + ^''' + «' }• <?'- CfJ

its relative velocities in the directions of b and c will be

(/^Cf) + y { .7f/ f- W/ + cc'l 9' (/)

;

The position of the axes of a of ^ and of c being arbitrary, we may

take the direction of the impressed force for the axis of a, and then b and

c will vanish ; the preceding relative velocities will be changed into the

following

a
I

<?.{/) +^ . p' C/) } .^. a'.<p' (/) ; -^- . </ <p' (/).

If (p' [f) does not vanish, the moving body in consequence of the

impressed force a' will have a relative velocity perpendicular to the direc-

tion of this force, provided that a and b do not vanish,—that is to say,

provided that the direction of this force does not coincide with that of

the motion of the earth. Thus, conceiving that a globe at rest upon a

very smooth horizontal plane is struck by the base of a right angle cy-

linder, moving in the direction of its axis, which is supposed to be ho-

rizontal, the apparent relative motion of the globe will not be parallel

to this axis in all positions of this axis relative to the horizon. We
have thus an easy means of determining by experiment whether ip'{J')

has a perceptible value on the earth ; but the most accurate i xperiments

have not indicated in the apparent motion of the globe any deviation

from the direction of the force impressed ; from which it follows that on

the earth <p'{f) is very nearly nothing. If its value was at all per-

ceptible, it would particularly be shewn in the duration of the csciila-
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tions of a pendulum, which duration would alter according as the po-

sition of the plane of its motion differed from the direction of the mo-

tion of the earth. As the most exact observations have not evinced

any such difference, we ought to conclude that <p'{J) is insensible,

and at the surface of the earth ought to be supposed equal to nothing.*

If the equation <p' (_/) = has place whatever be the magnitude of

the force J", ?>.(/') will be constant, and the velocity will be pro-

portional to the force ; it will be also proportional to it if the function

<?•{./) is composed of only one term, as otherwise ^'.(/") would

not vanish unless J" did ; therefore if. the velocity is not proportional

to the force, it is necessary to suppose that, in nature, the function of

the velocity which expresses the force consists of several terms, which

is very improbable ; we must moreover suppose that the velocity of the

earth is exactly such as corresponds to the equation (pXX) ^^ ^'^ which

is contrary to all probability. Besides, the velocity of the earth varies

during the different seasons of the year ; it is a thirtieth part greater

in winter than in summer. This variation is even more considerable if,

as every thing appears to indicate, the solar system be in motion in

space ; for according as this progressive motion conspires with that of

the earth, or is contrary to it, there must result in the course of the

year, very sensible variations in the absolute motion of the earth, which

would alter the equation which we are considering, and the ratio of the

force impressed to the absolute velocity which results from it, if this equa-

tion and this ratio were not independant of the motion of the earth.

Nevertheless, the smallest difference has not been discovered by observation.

* These experiments evince that the appearances of bodies in motion are independant

of the direction of the motion of the earth ; and from the preceding investigation it follows,

that in order this should be the case, the small increase of the force by which the earth

is actuated should be to the corresponding increase of the velocity, in the ratio of the

quantities themselves; thus our experiments only prove the reality of this proportion, which

if it had place, whatever the velocity of the earth might be, would give the law of the

velocity proportional to the force.

t <p' {/) = 0, not only when <p ( /) is constant, but also in other cases, such as

when ip (y) is a maximum or minimum, in the former case the force _/ may be of any

magnitude whatever ; in the latter case the value ofy is unique ; but since the velocity
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Thus we have two laws of motion ; the law of inertia, and that of the

force proportional to the velocity, which are both given by observation.

They are the most natural and the most simple which can be imagined,

and are, without doubt, derived from the nature itself of matter, but

this nature being unknown, they are, with respect to us, solely the re-

sult of observation, and the only observed facts which the science of

Mechanics borrows from experience.*

6. The velocity being proportional to the force, those two quantities

may be represented one by the other, and we may apply to the compo-

sition of velocities all that has been previously established respecting

the composition of forces.t Thus it follows, that the relative motions

of a system of bodies actuated by any force whatever, are the same

whatever be their common motion, for this last motion decomposed into

three othei-s, parallel to three fixed axes, only increases by the same

quantity the partial velocities of each body parallel to these axes, and as

their relative velocities only depend on the difference of these partial

velocities, it will be the same whatever be the motion common to all

bodies ; it is therefore impossible to judge of the absolute motion of the

system, of which we make a part by the appearances which can be

observed, which circumstance characterises the law of the force propor-

tional to the velocity.

of the earth is different in different points of its orbit, the value of / corresponding to

this velocity must also vary.

If (p (y) is an algebraic function ofyj and consists of only one term, then a' ( f)

will not vanish unlessy vanishes ; but if ip vcas a transcendental function, then / might

have a finite value, tfiXJ') vanisihing, or vice versa,

* In this respect, therefore, the theory of motion is less extensive than the theory of

equilibrium, which does not involve any hypothesis whatever.

f Let V, V, v", represent the uniform velocities parallel to the coordinates x, y, z, after

any time t, x =-. v t, y = v'.f, z = v".t, tlie resulting motion will be uniform, and its di-

rection rectilinear, the equation of,?, the line described, will be s =t ^v--i-v''-\-v''', the ve-

locity in the direction of s = \/i;''-f-u' --J-u"^, the cosines of the angles which this di-

rection makes with x, y, and z, are equal respectively to

\/v' -Jfv'-+v"^, v/v^-f-v * + «'*, ^v'+v'^+v"' ;

thus the composition and resolution of velocities are effected in the same manner as the

composition and resolution of forces.
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It follows also from No. 3, that, if we project each force and their

resultant on a lixed plane, the sum of the moments of the composing

forces thus projected with respect to a fixed point taken on the plane, is

equal to the moment of the projection of the resultant ; but if we draw

from this point to the moving body a radius, which we shall call the

radius vector, this radius projected on a fixed plane will trace, in con-

sequence of each force acting separately, an area equal to the product

of the projection of the line which the moving body is made to describe,

into half the perpendicular let fall from the fixed point on this pro-

jection ; therefore this area is proportional to the time ; it is also in a

given time* proportional to the moment of the projection of the force
;

thus the sum of the areas which the projection of the radius vector

would describe, if each composing force acted separately, is equal to the

area which the resultant makes this radius to describe. It follows from

this, that if a body is first projected in a right line, and then solicited by

any forces whatever, directed towards a fixed point, its radius vector will

always describe about this point areas proportional to the times, because

the areas which the new composing forcest make this radius to describe

will vanish. It appears conversely, that if the moving body describes

areas proportional to the times about the fixed point, the resultant of

the new forces which solicit it is constantly directed towards this point.?

E 2

* The area varies as the base muUiplied into the altitude ; the base varies as the time

multiplied into the projection of the force ; therefore the area varies as the continued pro-

duct of the altitude, projection of force, and time, or (by substituting the moment for

the altitude multiplied into the projection of the force ) as the moment multiplied into

the time.

f If the forces directed to the fixed point did not act, the moving point would evi-

dently describe areas proportional to the times ; but these forces being supposed to act,

the areas which are describ'id about the fixed point, in consequence of the action of these

forces, ai-e nothing ; for tlie perpendicular from the fixed point on the direction of the force

in this case vanishes, consequently the proportionality of the areas to the times is not

disturbed by the action of those forces.

X By means of the equations, -r— =P.- —^ = Q. which are established in the sub-

sequent number, we can exhibit immediately the relation which exists between the areas
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7. Let us now considei- the motion of a material point solicited by

forces which seem to act continually, such as gravity. The causes of this

and similar forces which have place in nature being unknown, it is im-

possible to know whether they act without interruption, or whether

their successive actions are separated by imperceptible intervals of time
;

and moments ; for if we multiply the first of these equations by y, and the second by

X, and then subtract, we shall have, by concinnating

—

—— — + yP—xQ) = 0; if

this equation he integrated, we shall obtain

—

-^""-^
-^ Jl dt (yP—xQ)=c; yP—xQ.

is the moment of the projection of the force on the plane x and y (see last note to No. 3)

;

it vanishes when the force is directed to the origin of the coordinates, and also when P
and Q vanish, that is when the point is not solicited by any accelerating force, -consequently

in both these cases, xdy—ydx = cdt and is •/ proportional to the time ; in the second case

the origin of the coordinates may be any point whatever ; but in the first case, the origin

must be in the^xerf point, to which the forces soliciting the point are directed; [xdy—ydx

= the elementaiy area which the projection of tlie radius vector on the plane x y describes

\r dt; for X = 5. cos. TT, y zz. ^. sin. 5r ; therefore dx =: d^. cos. 5r

—

d-n, sin. a-.g. dy^d^.

sin. jr-\-d'!r. cos. 57.^. consequently xdy—y.dx ziz d^. sin. iv. cos. ;r.^-f-(/ir. cos.^jt.j-—d^.

sin. ?r. COS. 3-.j+c?5r. sin. ^!r.§^=c?7r,g- ; but since ^dir is the elementary arc described by

the projection of the radius vector on the plane x, y, g.-rfjrwill be the expression for the

elementary area.) Since, wlien the areas are proportional to the times^P—-rQrrO, it fol-

lows that the magnitude of the area described m a given time is not affected by the in-

tensity of the accelerating force.

By a similar process of reasoning it may be shewn, that the projections of the elemen-

tary area on the plane x, 2, y, 2, which are equal to xdz— zdx, ydz—zdy generally, are

equal respectively to c'.dt, d'.dt. when the forces soliciting the point are directed towards

the origin of the coordinates. When the areas are proportional to the times, the curve

described is of single curvature ; for then we have xdy—ydx=cdt, xdz—zdxzuc'dt, ydz—
zdy=id'dt ; if the first of these equations be multiplied by z, the second by y, and the

third by x, we shall obtain, by adding them together, the equation cz-\-c'y'rcf'x = 0, which

belongs to a plane.

The velocities are inversly as the perpendiculars when the areas are proportional to the

tmies ; for if we call the perpendicular p, and the elementary arc of the curve described

ds, we will have p.ds = x.dy—y.dx = cdt •.• p = —= — .

The constant quantities c, c, c', depend on the species of the curve described ; in conic

sections when the force is directed to the focus, they are to the squaje roots of the para-

meters as the cosines of inclinations of the planes x,y, x,z, yz, to the plane of the section

to radius. See No. 3, book 2.
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but it is easy to be assured that the phenomena ought to be very nearly

the same on the two hypotheses ; for if we represent the velocity of a body

solicited by a force whose action is continued by the ordinate of a curve

of which the abscissa represents the time, this curve, on the second

hypothesis will be changed into a polygon, having a great number of

sides, which for this reason may be confounded with the curve. We
shall, with geometers, adopt the first hypothesis, and suppose that the

interval between two consecutive actions is equal to the element dt of

the time, which we will denote by t. It is evident that the action of

a force ought to be more considerable accoi'ding as the interval is greater

which separates its successive actions, in order that after the same time

t the velocity may be always the same. Therefore the instantaneous

action of a force ought to be supposed to be in the ratio of its intensity,

and of the element of time during which it is supposed to act. Thus

P, representing this intensity at the commencement of each instant, dt,

the point, will be solicited by the force Pdt, and its motion will be uni-

form during this instant. This being agreed upon.

All the forces which solicit a point AI may be reduced to three,

P, Q, R, acting parallel to three rectangular coordinates x, y, z, which

determine the position of this point ;* we shall suppose these forces to

act in a contrary direction from the origin of the coordinates, or to tend

to increase them. At the commencement of a new instant dt, the

moving point receives in the direction of each of its coordinates incre-

ments of force or velocity, Fdt, Q.dt, Rdt. The velocities of the point

M, parallel to these coordinates, are -1- ' -^>^ ,t for during an inde-
^

dt dt dt
*'

* By thus referring the position of a point in space to rectangular coordinates, all

curvilinear motion may be reduced to two or three rectilinear motions, according as the

curve described is of simple or double curvature. For the position of the moving point is

completely determined when we are able to assign the position of its projections on three

rectangular axes, each coordinate represents the rectilinear space described by the point

parallel to the axes to which it is referred, it will consequently be a given function of the

time ; and if we could determine these functions with respect to the three coordinates, the

species of the curve described might be assigned by eliminating the time by means of the

three equations between the coordinates and the time.

t The space being a function of the time, dx = v.dt is the limit of the value ofthe incre-
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finitely small portion of time, they may be considered as uniform, and

therefore eijual to the elementary spaces divided by the element of the

time. Consequently the velocity with which the moving body is solicited

at the connneii; enient of a new instant, is

—+P.dt ; ^ +Q.di; Jl+Rdt;
dt ' dt dt

or

^+d.^-d.^+P.dt;
dt dt dt

±+d.-^-d.^ + Q.dh
dt dt dt

^
,

^A.d.J^^d.— +R.dt;dt^dt dt
^

but in this new instant, the velocities with which the moving body is

actuated parallel to the coordinates x, y, z, are evidently

dx , dx dii J dy dz , ^ dz
1- d. ; —^ + d. -i^; +«• —z ;

dt dt ' dt dt ' dt ^ dt'

ment of the space, when dt becomes indefiiiitely small ; we can assign tJie actual value by means

of Taylor's theorem ; for if i receive the increment dt, then {x=f{t) becomes x'=f{t^di)

^ , s dx , d-x df^ , d'x dl^
, ^ , ,.

... x'-x = / {i+dt)-f (t) = — . dt+--r- . _+--•—-+ &c. by malong
dt' ^ df 1.2 ' dt^ 1.2.3

I sinrp ^

dt

dx
dt indefinitely small all the terms but the two first may be rejected

; and since -— is the

d^x
CoefiScient of dt it represents the velocity, and since is the coefficient of dt^,

it is proportional to the force; consequently if the action of the forces solicit-

d^t
ing the point should cease suddenly —j^ would vanish, and the point would move

d 'jc d^x
with an uniform velocity, if instead of vanishing -—• became constant, then —— , and

all subsequent coefficients would vanish, and the motion of the point would be composed

of an uniform motion, and of one uniformly accelerated, both commencing at the same

instant.
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therefore the forces

-d.— + V.dt, —d -^+ Ci-dt, -d. ^+B.dt,
dt - dt dt

must be destroyed, so that, if the point was actuated by these sole forces

it would be in equilibriuiu. Thus if we denote by So:, St/, Sz, any varia-

tions whatever of the three coordinates jt, t/, z, which variations are

not necessarily the same with the differentials d^, dy, dz, that express

the spaces described by the moving body parallel to the three coordi-

nates during the instant dt, the equation {b) of No. 3, will become

0=,^;^. \d. ——P.dl.l -\-Sy, \d. !k—Q.dt.l +Sz.\d. ^—R.dtX. (/)*
i dt i i dt 3 L dt )

We may put the coefficients of ^.r, Sy, Sz, separately equal to nothing

;

if the point M be free, and the element dt of the time being supposed

constant, the differential equations will become

dt ' dt" dt»

* From the equation (J~) it appears that the laws of the motion of a material point may

be reduced to those of their equilibrium, we shall see in No. 18, that the laws of the mo-

tion of any system of bodies are reducible to the laws of their equiUbrium.

f If P, Q, R, are given in functions of the coordinates, then by integrating twice we

shall obtain the values of x, y, and z, in functions of the time ; two constant quantities

are introduced by these integrations, the first depends on the velocity of the point at a

given instant, the second depends on the position of the point at the same instant.

If the values of the coordinates x, y, z, which are determined by these integrations, give

equations of this form, x=a.f{t), yz:^b.f (t), z=c. fit), the point will move in a right

line, the cosines of the angles which the direction of this line makes with x, y, and z, are

respectively equal to — —
. .
—

. the constant

quantities «, b, c, depend' on the nature of the function y(0. if/(0 ='; a, b, c, re-

present the uniform velocities parallel to x, y, and z, the uniform velocity of the point

= \/a*+F+cs" if/(0 =<S then a, b, c, are proportional to the accelerating forces

parallel to .r, y, z, aiul the point will be moved with a motion uniformly accelerated, repre-
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If the point M be not free, but subjected to move on a curve or on

ii surface, then by means of the equations to the curve or surface, there

must be eliminated from the equation (f) as many of the variations

Sx, Sy, Sz, as there are equations, and th% coefficients of the remaining

variations must be put separately equal to nothing.*

8. We may suppose the variations Sx, Sy, Sz, in the equation (fj equal

to the differentials dz, dy, dz, since these differentials are necessarily

subjected to the conditions of the motion of the point M. By making

this supposition, and then integrating the equation (J"), we shall havet

dx» + dy^dz^_ ^^ g_ f<^P,dx+Q.dy+Rdz,
dt*

sented by ^a^+b^+c^. If ^-a. f{t)-^hf (t), y=c. f(t)+d.(/'t), z=,.f(t)+g.

f (0) the point will move in a curved line; however, this curve is of single curvature;

for by eliminating t we obtain an equation of the form a'x-}-6'y+ c'2=0, which is the equa-

tion of a plane. The simplest case of this form is x=a {t)-\-b {f), y=h (t) -\-d {t^),

2=£. (t) -{-<r (t^), eliminating t between the two first equations we shall obtain an equation

of the second order between a; and y, and from the relation which exists between the co-

efficients of the three first terms of this equation, it is evident that the curve is a parabola.

l[ x=f(t), u^:F{t), ~=:J'J'(t), all the points of the ciu-ve will not exist in the same

plane.

* The law of the force being given, the investigation of the curve which this force

makes the body describe, is much more difficult than the reverse problem of determining

the velocity, and force the nature of the curve described being given ; as the integrations

which are required in the first case, are much more difficult than the diiferentials which

determine the velocity and force in the second case.

f We have seen in No. 7, that when a point moves in a right line, its velocity is equa

to the element of the space divided by the element of the time ; this is also true when the

motion is curvilinear ; for if P.Q.R, the forces soliciting the point parallel to the tliree co-

ordinates, should suddenly cease, then the velocity in the direction of each of the coor-

dinates will be uniform, and equal to -^> -i^> -^ , respectively, (see second note to

at at (it

the preceding number) consequently the motion of the point will become uniform, and its

direction rectilinear, •.• if v express this velocity we will have, by first note to No. 6.

t
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c being a constant quantity. — ^ T-_!: is the square of the ve-

locityofi/, which velocity we will denote byu; therefore if Pdx,+
Q.dij, + i2(/2, is an exact differential of a function ?>, we shall have

This case obtains when the forces which solicit the point M are func-

tions of the distances of their origins from this point. In fact, if ^, 5',

&c.* represent these forces, s, s', being the distances of the point M
F

(See Lacroix Traite Elementaire, No 139.) The rectilinear direction is that of the tan-

gent, for if A, B, C, denote the angles which this direction makes respectively with x,y, z,

we shall have v. cos. A = -j-, v. cos. B = —^ , v. cos. C= —^ , by substituting

dx
for V. its value, which has been given above, and tlien dividing we obtain cos. A = — j

ds

COS.B =-j— , COS. C = —^; but these are the cosines of the angles which the tangent

makes with the coordinates .• the tangent coincides with the hne along which the point

moves when the forces cease.

* If P.dx-\-Q.dy+ Rdz =f[x, y, z, ) then u^ =c+2,/ ( j, y, z,) let A be the velocity

corresponding to the coordinates a,h,c; then A = c+2. y (a, b, c,) •.• v-— A':m'2. f
{x, y, z)—2./(n, h, c,) •.• the difference of the squares of the velocities depends only on

the coordinates of the extreme points of the line described ; consequently when the point

describes a curve, the pressure of the moving point on the curve does not affect the

velocity.

The constant quantity c depends on the values of v, and of x, y, z, at any given

instant.

When the moving point describes a curve returning into itself, the velocity is always the

same at the same point.

If the velocities of two points, of which one describes a curve, while the other de-

scribes a right line, are equal at equal distances from the centre of force in any one

case, they will be equal at all other equal distances.

If the force varies as the ^i* power of the distance from the centre, then s and / be-

ing any two distances, (p or f(x, y, z,) := /'+ ^' •.• v*—A\ s" '^^ — s'"'^^ .

In tills case also the differential of the velocity r= s.^ds, therefore by erecting ordinates
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from their origins ; the resultant of all these forces multiplied by the

variation of its direction will, by No. 2, be equal to X.SJs ; it is also

equal to PJ-v + QJ/j +RJz; therefore we have

Pj:i:+QJij+ E.Sz=^l.S.Ss.

and as the second member of this equation is an exact variation, the

first will be so likewise.

From the equation (g)* it follows, 1st, that if the point M is not

proportional to s", we can exliibit the figure which represents the square o^ the velocity,

\rhen n is positive the figure is of the parabolic species, when negative it is hyperbolic.

It' the distaiices increase in arithmetical progi'ession, while the lorce decreases in geo-

metric progression, the figure representing the square of tlie velocity will be the logarith-

mic curve. See Principia Matthematica, lib. 1, prop. 40, 39.

If P(/j;-+-Q.(/y-l-iJcfe be an exact differential, then -;— ZZ —— ; —;— — —;— + &c.
"^

dj/ dx dz dx

P,Q,R, must be functions of ^, y, and z, independant of the time •.• if the centres to which

the forces were directed had a motion in space, the time would be involved, and conse-

quently P.f/j4- Q.r/y-f/i.f/;:, would not he an exact differential, for then the equations

dP dR ^— 1- &c. would not obtam.
dz dx

When the forces P,Q,R, arise from friction or the resistance of a fluid, the equation P.dx-\-

Q,.dy\-R.dz, does not satisfy the'preceding conditions of integrability, for since P.Q,R, de-

pend on the velocities > -j^, — in tliis case ; it is evident that P.dx-\- Q.dt/-\-Rdz cannot

be an exact differential of a function of x, y, and ;::, considered as independant varia-

bles ••• to integrate P.dx+Q.dy-[-R.dz, we should substitute the values of these va-

riables and their difTerentials in a function of the time, which supposes that we have

solved the problem ; consequently when the centre to which the force is directed is in mo-

tion, and when the force arises from friction or resistance, the velocity is not independant

of the curve described.

* The velocity is constant when/ (x,i/,z) is constant ; and also when f{x,y,z,) vanishes;

when the point is put in motion by an initial impulse, the motion is unifonn, and its direction

rectilinear, a.ndv'^— A'^, = c,
— •- = c. -^ =.c", for then -I

—— > = P,
(it dt dt \ I'f )

{d'lJ 1 I d'z ~>

—j-~- ( ^^ Q-'\ I 2 ( = ^^ are equal respectively to nothing.

The velocity lost by a body, in its passage from one plane to another, is proportional to



PART I.—BOOK I. - 35

solicited by any forces, its velocity is constant, because then iprzO. It

is easy to be assured of this otherwise, by observing, that a body

moving on a surface or on a curved line, looses, at each rencounter with

the indefinitely small [)lane of the surface, or indefinitely small side of

the curve, but an indefinitely small part of its velocity of the second

order. 2dly. That the point M, in passing from a given point with a

given velocity, will have, when it attains another point, the same velo-

city, whatever may be the curve which it shall have described.

But if the point is not constrained to move on a determined curve,

then the curve described possesses a singular property, to which we have

been led by metaphysical considerations, and which is, in fact, but a

remarkable consequence of the preceding differential equations. It con-

sists in this, that the integral./t'.r/5 comprised between the two extreme

points of the curve described, is less than on any other curve if the

point is free, or than on any other curve subjected to the same surface

if the point is not entirely free.

To make this appear we shall observe, that P.dx-^Q.dy + Rdzhemg
supposed an exact differential, the equation (^'•) gives

f.J'u = P.Sx-irQJy+RSz.

in like manner the equation {f) of the preceding number becomes,

dx dii d"
= §x.d.-^ + Si/.d.-^ + Sz.d.— —v.dt. Sv.

dt ^ dt dt

naming ds the element of the curve described by the moving point, we

shall have

v.d(=ds ; ds = .ykt'^+dj/^-tdz*,

f2

the tliffercnce between radius and cosine of the indination of the planes, i. e. to the versed

sine, or to tlie square of the sine ; and when th.e curvature is continuous the sine is an

indefinitely small quantity of first the order, •.• the velocity lost, is an indefinitely small

quantity of the second order.
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consequently

=li:d.~- + Sy.d. JL + Sz.d.-^ ds.Sv, (li)
dt dt dt ' V. /

by differentiating with respect to <5', the expression for ds, we have

ds . r dx . J ,
dy . ^ dz ^ r

dt dt ' dt ^ dt.

The characteristics d and S being independant, it is indifferent which

precedes the other ; therefore the preceding equation may be made to

assume the following form :

, , , (dxSx+ dy.Sy+ dz.Sz)
, ^ f/^r ^ r dy

, r dz
v.S.ds=d. ^ -^ -^ —^x.d. —Si/.d. -^ —Sz.d. -— ,

,

dt dt ^ dt dt

by substracting from the first member of this equation the second member

of the equation (//) we shall have

. . , , d. (dxJj: + dy.hi + dz.SzY
S irds) zr ^

This last equation integrated with respect to the characteristic d, gives

I. fv.ds = const.+
^^•^^+^.^%+^^-~-^^

^

*Ford.i±if±±M±if)^ <I.J^Ss.+d. p^+d^h; +'^d. ^.+ ^ 'l.hj

dt dl dt -^ ^ dt at dt

+ Jld.^x i^j!lhdx+-^hdi,+^^.dz.'l, : by performing the operations

dt \ dt ' dt ^ dt 3

» > jx , <: dx.lx-X-dy.h/-i-dz-^=\
prescribed m the text, v.e obtain v.d.ds-j-ds.iv=i.{v,dsi= d. i ^ <

•

This equation being integrated with respect to the characteristic d gives/. d.{v.ds.)

const.-)-
'^^•''+('?Ay+dz-^z

_ ^^j^^^^ ^j^^ ^^^.^ extreme points of the curve are fixed,

the variations 3x, Jy, 2z, ot the coordinates must be equal to nothing at these points ;
con-

sequently the variation o{/.(v.ds) is equal to nothing, and •.• r(v.ds) is either a maxi-

muni or niininium ; but it is evident from the nature of function /. (v.ds.) that it does not

admit a maximum.
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If we extend this integral to the entire curve described by the moving

point, and if we suppose the extreme points of this curve invariable,

we will have S.J'v.ds= 0, that is to say, of all the curves, which a point

solicited by the forces P, Q, R, can describe in its passage from one

given point to another, it describes that in which the variation of the

integral yt'.cf*, is equal to nothing, and in which, consequently, this

integral is a minimum.

If the point moves on a given surface without being solicited by

any force, its velocity is constant, and the integral fv.ds becomes

v.fds. Therefore in this case the curve described by the moving

point is the shortest which it is possible to trace on the surface from the

point of departure to that of arrival.*.

9. Let us determine the pressure of a point moving on a curved

surface. Instead of eliminating from the equation [J") of No. 7> one

of the variations Sx, Sy, Sz, by means of the equation to the surface, we

can by No. 3 add to this equation, the differential equation of the sur-

* Wlien the velocity is constant the integral fv.ds, becomes v. f. ds=v.s ; and since s

is a minimum, the time of describing s, which is proportional to s in consequence of the

iinifomiify of the motion, will be a minimum in like manner. Since the equation

l.J.{v.ds.) =0, has place when Pdx-\-Qfly-\-R.dz is an exact differential, it belongs to all

curves that are described by the actions of forces directed to Jixed centres, the forces being

functions of tlie distance fiom those centres ; and if the fomi of these functions was given

we could determine the species of the curye described, by substituting for v its value in

terms of the force, (which we have by a preceding note), and then investigating by the

calculus of variations, the relation existing between the coordinates of the curve

which answers to the minimum of the expressiony(Ti.rf«). If S the force varied as —,- by

making use of Polar coordinates we would arrive at the polar equation of a conic section,

in which the origin of the coordinates would be at the focus of the section ; if S was

proportional to s the resulting equation would be also that of a conic section, the origin

of the coordinates being at the centre of the section. From the preceding property the

known laws of refi-action and reflection have been deduced. Mr. Laplace has also suc-

cessfully applied it to the investigation of the law of double refraction of Iceland chrystal,

which was first announced by Huyghens, and afterwards confTrmed by the celebrated ex-

periments of Malus on the polarization of light. See a paper of Laplace's in the volume

of the Institute for the year 1809.
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face multiplied by the indeterminate

—

xdt, and then consider the three

variations Sx, Sjj, Sz, as independant quantities. Therefore let ii = be

the equation of the surface, by adding to the equation (J') the term

—aSu, (It. the pressure will, by No. 3, be equal to

/ \du }

I dx )

« C f/M / « ) dii )^

I

At first let us suppose that the point is not solicited by any force ; its

velocity » will be constant, and since v.dt=ds; the element of the time

being supposed constant, the element ds of the curve will be so like-

wise, and by adding to the equation (./) the term —xJu.dt, we will

obtain the three followino- :

= V.
d'^x { du } ^ , d~y S ^"

ds»

from which we may collect

, d"y \ du
I

du I

ds"- ( dx ) ds^ <^ dy

n » d'Z= w.

ax

but ds beino- constant, the radius of curvature of the curve described

by the moving point is equal to

ds' t

• By substituting for iW its value -r-^^ we eliminate the time i, if the resultin-r

equations be squared, we obtain, by adding their corresponding members,

_ _. '' ^^ j
^ \ dy S

"^
\ dz f

f This expression for the radius of the osculating curve may be thus investigated : let

a, b, c, express the coordinates of the centre of this circle, its radius being equal to r,
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••• by naming this radius r we shall have

* c <r/^' 3 ^ dy ' ^ dz > r

then r*={x—aY-\-{ij—bY-^[z—cY ; dx. {x—a)-{-dy.{y—b)-\-dz. (2—c), the differential

of tills equation is equal to nothing, as any one of these coordiiuites may be considered

as a function of the two remaining, we can obtain the following equations of partial dif-

ferences dx. {x—a)Jr^z. (z—(•)=0, cii/.{j/—b)+dz. (z—c) =0, (the values of dz in these

equations are evidently different,) consequently we have cf'x. (j—a)-{-d^z. (z—c)+dx*

+dz^-=0;d-y {y—b)J^d--z.{z-c)-\-dy-^+ dz'==0, V (x-«)=—£ {z—c), (y-b) =

dz . .

-7—, (z—e), and since ds is supposed to be constant, we have d^x,dx-\-d''y.dy+dfz.dz

=0, (d'z in this equation refers to the entire variation of rfz,) consequently z being consi-

dered as a function of x and y, we obtain

d^x.dx+d^z.dz==0;d^y.dy+d^z.dz = 0; .^=-p^; ^— ^^ '^

these values being substituted in place of -7^ -; in the preceding equations we shall

dx dy
have

d"^X d^y

•.• by adding together the two preceding differential equations of the second order, sub-

stituting for (x

—

a) (y
— b) their values, and observing that the whole variation of z is equal

to the sum of the partial ones in these equations, we obtain,

~ . (z

—

c)+dx- -i-dy- -\-dz'=0, consequently

- (dx-+du^+dz'')^

d^ x^ d*y~
by substituting for (.r

—

aY {y—b^ their values -—-;-. )s—c)- ; J^^ .(z—c =
), whicli

have been given, we obtain

{x-a)-+{y-by-M—cy=.^^̂ fli'^^T, . {d^x^'-^d^y^^H')
d^x^-\-d'yi-d- 1

ds''
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consequently the pressure which the point exercises against the surface

is equal to the square of the velocity divided by the radius of curvature

of the curve described.

If the point moves on a spheric sui'face,* it will describe the circum-

ference of a great circle of the sphere,, which passes through the pri-

mitive direction of its motion ; since there is no reason why it should

deviate to the right rather than to the left of the plane of this circle
;

therefore its pressure against the surface, or what amounts to the same,

against the circumference which it describes, is equal to the square of

the velocity divided by the radius of this circle.

If we conceive the point attached to the extremity of a thread desti-

tute of mass, having the other extremity fiistened to the centre of the

surface, it is evident that the force with which the point presses

the circumference is equal to the force with which the String would be

tended if the point was retained by it alone. The effort' which this

point would make to tend the string, and to increase its distance from

the centre of the circle, is denominated the centrifugal force ; there-

fore the centrifugal is equal to the square of the velocity divided by the

radius.

The centrifugal force! of a point moving on any curve whatever is

* If the point move on a spherical surface, the motion will be necessarily performed

on a great circle, for the deflection can only take place in the direction of radius, and in

the plane in wliich the~body moves.

-f-
If the body moves on any curve whatever, the centrifugal force =: — , this force

acts in the direction of a normal to the curve, and if all the acceleratiag forces which act

on the point be resolved into two, of which one is in the direction of the normal, and the

other in the direction of the tangent, the resultant of the centrifugal force, and of the

former of these decomposed forces, is the entire pressure with which the point acts

against the curve, and the resistance of the cui^ve is an accelerating force equal and con-

trary to this resultant. If we denote this normal force by L, and if A, B, C, be the angles

which it makes with the coordinates x, y, z, respectively, then by the equation (y) and

No. 3, we have

'^=P+L. cos. A; -^ = Q+L. cos. B; ~ = R+L. cos. C;
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equal to the square of the velocity divided by the radius of curvature of

the curve ; because the indefinitely small arc of this curve is confounded

with the circumference of the osculating circle. Therefore we shall

and since
-J—,

—--' —j- , express tlie cosines of the angles which the tangent makes"

with X, y, and s, ^-. cos .<4+-,- . cos.i?+—'^. cos. C.=0; because the tangent is per-
ds - lis as '

pendicular to the normal. (See last note to No. 1). We liave also cos ^A-\- cos. -B-\-

cos. ^C=l, and the four undetermined quantities L, A, B, C, being eliminated between

the five preceding equations, the resulting equation will be one of the second order be-

tween x, y, I, and / ; this equation combined with the two equations of the trajector}'

which are given in each particular case, are sufficient to determine the coordinates in a

function of the time. See notes to No. 3, and No. 7.

The elimination of L, A, B, C, might be effected by one operation ; for multiplying

the three preceding equations by dx, dy, dz, respectively, and adding them together, we

obtain the following equation

:

^'

dt^
~'

'^

' ~ ^•'^^+ ^•^'/•+ ^'^--i- ^- ('^os- ^•(1^+ COS. B.dy+ cos.C.ffe.)

(the latter part of this second member is equal to nothing, as has been already remarked ;)

and since ds-=dx~~ -\r dij\^ dz'- , d''s.ds=d''x.dx-{-d^y.dy+d^z.dz, ;• we shall have

d's _„ dx dy d^

df^-^-ir^^-'dT^^-ds

'

from this last equation it appears that tlie accelerating force resolved in the direction of

the tangent, is equal to the second differential coefficient of the arc considered as a func-

tion of the time, •.• this expression for the force has place whatever be the nature of the

line along which the point moves. See Notes to No. 7. In like manner it appears that the

expression for the force in the dii'ection of the tangent is altogether independant of L.

d's
It is also evident, that when there is no accelerating force -j-j- = 0, this also follows

from the circumstance of the velocity being uniform when P, Q, R, are equal to notliing.

Let V denote the resultant of all the accelerating forces which act on the point, and

6 the angle which this resultant makes with the normal, then V. cos. 6 will be the ex-

pression of the resultant resolved in the direction of the normal ; and when all the points

of the curve exist in the same plane, the entire pressure will be equal to the sum or dif-

ference of --— , and V. cos. 6, according as these two forces act in the same or in con-
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have the pressure of the point on the curve which it describes by add-

ing to the square of the velocity, divided by the radius of curvature,

the pressure produced by the forces which solicit this point. *t

traiy directions, •• +/,=: =fc: \. V. cos. «. We can express this pressure otherwise

by means of the rectangular coordinates ; for since P, Q, are the expressions for the force

V resolved parallel to x and _?/, these forces resolved in the direction of the normal are

equal respectively to P. -j-; Q. —z—, (the signs of —-, and -j-, are evidently dif-

ferent) consequently we have

r. cos. 6=JfP.-f- + Q.— , and v L = — -h P. -f- -fQ. -j-,
as (Is r as as

therefore if we know the equation of the trajectory, and if we have also the values ofP and

Q in terms of tlie cooi-dinates, we can determine the velocity, and consequently L, and

d'x d^v d^z
substituting this value of L in the expressions for -j—'

,
' —~ , which liave

been given in the foregoing part of this note, we might b)' integrating determine the velocity

in the direction of each of the coordinates, and also the position of the point at a given

moment.

If the point be attached to one extremity of a thread supposed without mass, of wliich the

other extremity is fixed in the evolufe of the curve described, then the point receiving such

an impulse, that the string remaining always tended, may unroll itself in the plane ofthe evo-

lute, it will describe the given curve ; the direction of the string is always perpendicular to

the curve, and its tension is equal to the normal pressure on the trajectorj^, and conse-

1 "* . P^du+ Qdv „ ... . - ^ ^ ,.
quently equal to 1 ^ . By equating this expression ot L to notmng,

we can derive the equation of those trajectories in wliich the motion is fi-ee, or in which

the trajectory may be described freely, i. e. it is not necessary to retain the point on the

curve by means of a ' thread, or a canal, or any perpendicular force.

* If the motion is performed in a resisting medium, this resistance may be considered

as a force acting in a direction contrary to that of the motion of the body, consequently it

must tend to some point in the tangent. If we denote tliis resistance by / its moment is

equal —7.Jj (j = >/{.T- 0'+ (.y—"')'+C~—")*' ^' "'j "> ^6 the .coordinates of the cen-

tre of the force 7. therefore 3J = ^-^^. Sx-f-^i!=^^. ^y+ ^^^^. h; if we suppose

.r

—

I dx
the centre of force in the tangent, then i— \/dx'+di/^+ds'' =ds •:

—~ — "^ '
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y—m^_ J) _
z—i_ __ _ ^^j j^. _ j^_^—1^^ J _^—^ ^ j^^ .^^j^g resisting nie-

i ds t as as as as

dium was in motion, its motion must be compounded with the motion of the body, in order

to have the direction of the resisting force. If da, db, dc, be the spaces described by the

medium, wliile the body describes ds, these quantities must be added or subducted from

dx, dy, dz, in order to have the relative motions, and as ds = y/dx'' +dij*-{-dz^, if Me

dx—da .

make d(r ;^ -/{dx—da)'--i-{cli/—db)'-]^(dx—dc)*, we shall have Si =—'^ °'^+

^ . jwJ

—

1 —, ^z. Tlie resistance / in general= i|/ (v), a function of the ve-
dr ^

da-

locity, in this case it is a function of the relative velcoity.

By the preceding investigation we ai-e enabled to apply our general formula to motions

made in resisting mediums without entering into a particular consideration of this species

of motion. However the analysis becomes very complicated when the forces which com-

pose P, Q. R, exist in different planes, and as in this case, the causes on which the va-

riation of the velocity depends, arise in some measiu-e from the velocities themselves, we

are not permitted to regard P.dx+ Q.d^ i-R.dz, as an exact differential of three inde-

pendant variables, which facilitates our investigations when the motion is performed in a

vacuo. See Notes to Nos. 8.

We might also reduce to our general formula, the differential equations of motion, when

the retardation arises from the friction against the sides of the canal.

f If the body moved on a surface we might, as before, abstract from the consideration

of the surface, and consider the material point entirely free by adding to the given forces

anotlier accelerating force, of lohich the intensity is unknown, and of which the direction

is normal to the surface, •.• if this force be denoted by L we shall have, by the equation

(y) of No. 7, and by No. 3, the following equations :

(m^O is the equation of the suface. See Notes to No. 3).

If we eliminate L between these three equations, N will also disappear ; and if the two

differential equations of the second order, which result from this elimination, be combined

v/ith the equation tc=:0 of the surface^ we can detennine the tliree coordinates of the

point in a function of the time. If we multiply the preceding equations by dx, dy, dz.

respectively, and then add together the corresponding members, we will obtain

d^x.dx+d'^M.du+d'z.dz „ , ^ , „ , ,t ^ f ^« 7 , . f ^" 1 >-~^^ = P.dx+Q.dy+Rdz+N.L.
\ f^ \ '^''+ \-^ \ '^V^

f 3u 1
\ Y7 W« ; but the last part of the second member is = to nothmg,

' g2
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When the point moves on a surface,* the pressure due to the centri-

fugal force, is • qual to the square of the velocity, divided by the radius

of the oscuiati .g circle, and multiplied by the sine of the inclination

of the plane of this circle, to the plane which touches the surface

;

therefore, if ve add to this pressure, that which arises from the action

of the forces which solicit the point, we shall hiive the entire force

with which the point presses the surface.

|sincerfi< = 0, and -!

-^ | = i -1 V v if V.dx-\-Q_.dy+R.dz is an exact difFeren-

tial, we shall have —r;= P-—,—h Q.~- -\-R.^, as before, and—— = r- = C4-
dt^ as dt ds dt^

y{P.dx-\-Q.d^-f-R.dz), audif P,Q,R, and consequently v were given in tenns of the

coordinates, we might obtain immediately the differential equations of the trajectory by

d^x f ^71 i '

multipljing the equation ---^;-= P+L.A^. } -r— j- , by di/ and dz successively, and
cit~ (. dx )

then subducting it from the two remaining equations multiplied by dx ; by concinnating

ds
the resulting equations, substituting for dt its value —, and for i; its value m a function

of the coordinates, we obtain two differential equations of the second order, fi-om which

eliminating the quantities LN there results a differential equation of the second order be-

tween the three coordinates z,y,z, solely; this equation, and the equation «^0 of the

surface will be the two equations of the trajectory.

* If a point moves on any curve the centrifugal force is always directed along the

radius of the osculating circle ; and since the pressure on the surface is always estimated

in the direction of a normal to the surface, (see No. 3) if the plane of the trajectory is

not at right angles to the surface, the radius of the osculating circle will not coincide

with the normal to the surface, and consequently the part of the centrifugal which pro-

duces a pressure on the surface is equal to , multiplied into the cosine of the an-

gle which the radius makes with the nonnal, but this angle is evidently the comple-

ment of the angle which the plane of tlie osculating circle makes with the plane

which touches the surface. If the forces soliciting the point are resolved into two,

of wliich one is perpendicular to the trajectory, then the resultant of this last force,

and of the ccntrifijgal force, will express the whole force of pressure on the curve;

if this curve was fixed, it would be sufficient for the pressure to be counteracted, that its

direction was in a plane perpendicular to this curve , but if the curve be one traced on a

given surface, then, in order that the pressure should be counteracted, it is necessary

that the resultant of the forces should be in the direction of a nornml to the surface. Sec

note to page 16.
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We have seen that when the point is not solicited by any forces, its

pressure against the surface, is equal to the square of the velocity, di-

vided by the radius of the osculating circle ; therefore the plane of this

circle, that is to say, the plane which passes through two consecutive

sides of the curve described by the point is then perpendicular to the

surface. This Curve on the surface of the earth is called the perpen-

dicular to the meridian ; and it has been proved (in No. 8) that it is

the shortest which can be drawn from one point to another on the

surface.*

* If we make the axis of one of the coordinates to coincide with the normal to the

surface, we can immediately determine the inclination of the plane of the osculating circle

to the plane touching the surface ; for if we denote by A, B, the angles which the radius of

the osculating circle makes with the normal and witli the coordinate which is in the plane

of the tangent, and by »i, n, I, the angles which the resultant V of all the forces makes with

the three coordinates, the force _ll resolved parallel to these coordinates is equal to

-—. cos. A, —. cos. B, A '-. COS. 100°, (because the angle between the radius and
r r r

tangent to the curve is equal to 100') in like manner the force V. resolved parallel to these

coordinates equals V. cos. m, V. cos. n, V. cos. I, since A and m denote the inclination*

of the radius of curvature, and of the resultant to the normal, . cos. A-\-V. cos. m,
r

express the pressure of the point on the siuface, V. cos. n-\--— cos. 100°, or V. cos. n

is the force by which the body is moved ; and since this motion is performed in the di-

rection of the tangent, V. cos. l-\ . cos. B, which expresses the motion perpendicular

to the tangent must vanish; consequently we have V. cos. /-|- cos. B~0, '.' if

F. I, V, and r were given we might determine B, which is = to the inclination of the

plane of the osculating circle to the plane touching the surface, it also foUoTvs, that when

the point is not soUcited by any accelerating force, cos. B=0, •.• B= 100", or the

plane of the osculating circle is perpendicular to the surface, which we have previously

established from other considerations.

Ifthe plane whose intersection with the surface produces the given curve is not perpen-

dicular to the surface, then the radius of curvature is equal to the sine of the inclination

of the cutting plane to the plane touching the surface, multiplied into the radius of cur-

vature of the section made by a plane passing through the normal to the surface, and

tlirough the intersection of the plane touching the surface and the cutting plane. See

LacroLx, No. SSi. ••• the pressure is the same whether the point move in a greater or
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10. Of all the forces that we observe on the earth, the most re-

markable is gravity ; it penetrates the most inward parts of bodies, and

would make them all fall with equal velocities, if the resistance of the air

was removed. Gravity is very neai'ly the same at the greatest heights

to which we are able to ascend, and at the lowest depths to which we

can descend ; its direction is perpendicular to the horizon, but on ac-

count of the small extent of the curves which projectiles describe rela-

tively to the circumference of the earth, we may, without sensible

error, suppose that it is constant, and that it acts in parallel lines.

These bodies being moved in a resisting fluid, we shall call b the resist-

ance which they experience ; it is directed along the side ds of the curve

which they describe ; moreover we will denote the gravity by g. This

being premised, let us resume the equation (fj of No. 7, and suppose

that tke plane of x and y is horizontal, and that the origin of ^ is at the

most elevated point ; the force b will produce in the^^direction of the

coordinates .r, y, z, the three forces —b.— ,
—b.-~ ,

—b.-^ •.' by
ds ds ds

No. 7 we shall have F=z—b. ~ ; Q--^b.^ ; R-^b.-^ +g-. *dx ^ ,
du -o 1

dz

ds ds as

and the equation CJ]) becomes

0=^;..^^. 't+b.^di.l+Sy.\d.± +b.^dt.l
I dt^ ds S ^ ^ dt ^ ds )

^Sz.\d.^x.b.~ dt.—g.dt. I

*

I dt^ ds ^ $

less circle, for the sine of inclination occurs both in the numerator and denominator of

the expresiion ; this also follows from considering the proportion of the sagiita of curva-

ture in a peipendicular and oblique plane.

The investigation of the shortest line which can be drawn between two given points on a

curved surface, whose equation is u—0, by the method of variations, leads us to the same

conclusions. ?ee Lacroix. The consideration of the shortest line which can be traced

cm a spheroidical surface is of great importance in the theory of the figure of the earth.

(See Book 3, No. 38.)

* Since the force b acts in tlie direction of the tangent or of the element ds of the

curve (see note to No. 9,)^ this force rs'solved parallel to the three coordinates jc, y, z,

dx dy dz ^ dx di) dz
, . ^ ,= "•~-ri"-~T'i O'—j— , \ot —r- , -y- , —— are =: to the cosmes of the angles

as ds ds ds ds ds "
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If the body be entirely free we shall have the three equations

, d.v , dx , ^ 1 dy
,

, dij ,.

Q—d,—— +b.---.dt; = d.-~- +b. -^. dt^
dt ds dt ds

= d.-^ +b.~.dt—g.dt,
dt ds

The two first give

±. d.±-^. d. <^ = 0.

dt dt dt dt

from which we obtain by integrating, dx^=.fdy, f being a constant arbi-

trary quantity. This equation belongs* to an horizontal right line,

therefore the body moves in a vertical jjlane.

By taking this plane for that of x, z, we shall have ?/=:0, the two

equations,

, dx ^ , dx
, ^ , rfs

. , dz ,^ J,= d.- hb. -r-.dt; O^d.—-. +b.—-~. dt— g. dt,
dt ds dt ds

will give, by making dx constant,

, ds.d»t ^ d*z dz.d*t
, , dz ,

'=-dF~' ""—dT rfF- +'• ^•^^-^••^^^-

From* which we obtain g.dt* = d*z, and by taking the differential

which the tangent makes with the three coordinates ; they are affected with negative sign*

because they tend to diminish the coordinates.

^ _. ... dt/ , dx dx , dii , tfi/* . ,* Dividing -f^. d.— . a.—T- =: 0, by -^ it becomes
^ dt dt dt dt ^ df^

dx

^'\~, ^^^^' • '^y integrating -r— =y" and dx==f.dy, since tlie equation of the

~dt

projection of the line wliich the projectile describes on a horizontal plane, is that of a

right line, the body must have moved in a vertical plane, otherwise its projection on an

horizontal plane would not be a right line ; this circumstance we might have anticipated

from the manner in which the forces act on the body.

^ -wc 1 ', , , dx dx dx,d^t
* It we make dt constant in the equation d. ^- + i. -=- . di= 0, we get -;

dt ds dt-
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^g.dt.dH=d'z, if we substitute for rf»nts value Af[fl, and for dt* hi
ds

d*z -
value .

—

—, we shall have

b ds.d^z

i~\%g 2(rf

This equation gives the law of the resistance b, which is necessary to

make the projectile describe a given curve.

If the resistance be * proportional to the square of the velocity, b is

ds*
equal to h, , h being constant, when the density of the medium is

dt*
'

,

unifoiTO. We shall have then

b h.ds* h.ds*

g g'dl* d*s.

d^z • d*"
therefore h.ds= , which gives by integrating—~ = Sa.c^.t

2.d*z da.*

+J.— . dt]= 0, '.• b — —
j
— , by substituting tliis quantity in place of b, and differen-

tiating, we get the expression

d^z dzJH ds.d't dz
, ,

d^z dz.d^f
,
dzJH

,

-Jt dir +-11^ 'd^'^-s-^' = —t dF- + -d?
-"'^'•=

d'z
-g.dt= 0, ••by differentiating we obtain d^z ='2g.dt.d^f, and substituting for

dt

d't its value 4.

—

~, and for dt' its value— , we arrive at the following equation,

ds g

2g.b. C d'z -\ ^ b dH
ds I g i g ^d^r

* The value of the consrant coefficient /; is obtained by experiment ; it is different in

different fluids, and when bodies of different figures move in the same fluid.

ds^

t Since the square of the velocity is equal to -^-j-, the resistance is expressed by

ds' , d'-z hds^ ds.d^z d-z
h.-j^, vby substituting for rf<= its value—

^ 'WT^ 2{d>z)*
''

"'" ""
"rf»7

'
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a being a constant arbitrary quantity, and c being the number whose

hyperbolic logarithm is unity. If we suppose the resistance of the me-

H

••• 2A.4 = log. d^z^log. F : g^"^ ^F.d'z, v -——= -—
. (Let 2a= -^r— ) and we

r.ax^ ax- F.d.r:^

shall have 2ac-*'=
^ ; dx being constant it is permitted to introduce dx- as a

divisor. The constant quantity a depends on the velocity of piojection, and on the angle

which its direction makes with the horizon ; for by substituting —g.dt^ in place of d-z we

dx^ n- dx^
shall have —= -2—.c—2'« is the velocity of the body in the direction of

the axis of x at the end of the time t ; let ii be the velocity of projection, and i the angle

which its direction makes with the horizon, we shall have at the same time t = 0,

.T=:0, 2=0, and —r- = u. cos. 6, : ii^. cos. *tf = — -~- . Let h be the height due
dt 2a °

to the velocity u, u^ =%/'> *• by substituting for u- its value, we deduce a=
4:k cos.^#

By making dz=pdx, ds becomes equal to dx.^i-i-p'- ,
•• —c-''K ds=2h. cos.* t. dp.

c d^z 7 c2*s.

VI +i^%i""' ''P = -J^ 5
*•• by integrating —— \-C=2h. cos.^ S.fdp.^l+p\

I
=2A. COS.' 6.f-^^J=^ + 2h. cos. e.fJ^^ } ='''• COS.' 6. log. (p + ^/H:^),

-|-.A. COS.- 6. p. \/l-[-p-, the constant quantity C is easily found; for since p is the

derivitive function of z considered as a function of x, at the commencement of the motion,

when 4=0, p~ the tangent of the angle of projection wliich is given, '.• C is equal to

h. cos.=^ 6. } (log. (tan. <-f-sec. 6) +tan. 6. sec. 6.) i + -y-.

By substituting for ;— its value, which we obtain from the equation r—= 2..
2A 2n

<ip . ,
cos. 2 (. —i-, we deduce

ax

dx =z , and rfz =r
'^/'•[^log.(/;+-^/l+p^)^-/J.^/ 1+/; j_q

p.dx=z

and since g.dt^=d^z=dp.dx we have <^<»=

2Aillog. (p+v/l+/^')+;;.x/l+p^)-d
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dium to vanish, h is equal to ; then by integrating* we will obtain the

equation to the parabola 2;= ajr*+/'^+c, i and c being constant arbi-

trary quantities.

The differential equation d'zzzg.dt^, will give dt'= dx^, from

g

v^,= '^P — X

{'2gh (log. (/;+^l+;;r)+;;Vl+P^)—<^]
"•

If the integrals for these values of dx, dy, dt, could be exhibited in a finite form, the pro.

blem would be complete!)' solved, for the integrations of tlie two first equations would give

the values of x and 2 in funciions of p ; and if p be eliminated between the resulting

equations, the relation between x and y would be had ; those integrations have hitherto

baffled the skill of the most celebrated analysts. However by means of the expressions

for dx and dz, we can describe the curve by a series of points, and the approximation wilj

be always more accurate, according as we divide the interval between the extreme values

of^ into a greater number of parts. We might collect some of the remarkable proper.

ties of the curve described from the preceding values of dx, dz ; for ifp be very great, log.

dp
iP^V^-VP') vanishes with respect to;;, and '.• the limit of dx, dz, and dt are ^——,

dp ''P 1 , , " 1 1

2^' """'^ >/5^ • ^^ ™'^S'''^S "^^ S^^ ^'="- p' - =" "^ '''^- ?'' '^^ + 2P"
•

log.;?, the first equation indicates that.j; has a limit, the vertical ordinate increases inde-

finitely, but in a less ratio than ;;, therefore'the descending branch has a vertical asymp-

tote. By eliminating log. ;j in the expression for t we get an expression for z fiom which

we may collect, that according as the direction of the motion approaches towards the

vertical, the motion of the body tends to become uniform.

When the angle of projection is very small, we can find by approximation the relation

which exists between .t, and 2, for that portion of the trajectory which is situated above the

horizontal axis ; in this case the tangent is very neai-ly horizontal, •.• p is very small, and

Vl+p =l,y.;;.-.-f/« = r/aVr+7- =dx, q.p. and s=,t, for they commence together,

and substituting x in place of ^, we have~ = — gT^^ ^"^ " ^^'"^ ^^ hypothesis very

small, cos.^ (t =-- 1, •.• dp =—^-. dx, by integrating this equation, when we know the

Ik

value of the constant arbitrary quantity which is introduced by the integitition we obtain

the value ofp and •.• of 2 =j p.dx. See a memoir of Legendre's in the Transactions ofthe

Academy of Beriin for the yeai- 1782.

• In this case-rr =5ia, v -^=2ax-t-i, v s=ax'-|-i.«+c.
d.X' dx
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which we may obtain t-zix. V — +f'- If *> •s, and t, commence to-

gather, we shall have c= 0, f'= O, and consequently

g
which gives

2 '2a

These three equations contain the whole theory of projectiles in a va-

cuum ; it follows, from what precedes, that the velocity is uniform in an

horizontal direction,* and that in the vertical direction the velocity is

the same as if the body fell down the vertical. If the body moves from

a state of repose b will vanish, and we shall have

dz _ _ 1

therefore the velocity acquired increases as the time, and the space in-

creases as the square of the time.

It is easy bymeans of these formula to compare the centrifugal force with

that of gravity. For v being the velocity of a body moving in the circum-

ference of a circle, of which the radius is r, it appears from No. 9, that its

^»
centrifugal force is equal to . Let h be the height from which the

body must fall to acquire the velocity v ; by what precedes we shall

have v' = 2g.h ; from which we obtain — «•. zJ—. The centrifugal

dx I fJ^
* ^^^ Hr ~ ^^ velocity in an horizontal direction =\/ - --, and -^ = the velocity

V ^ci (It

in a vertical direction = gt ,b.\/ _£..
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force will be equal to the gravity g, if h^ Therefore* a heavy

body attached to the extremity of a thread, which is fixed at its other

extremity, on an horizontal plane, will tend the string with the same

force as if it was suspended vertically
;
provided that it moves on this

plane, with a velocity equal to that which the body would acquire in

falling down a height equal to half the length of the thread.

1 1. Let us considej the motion of a heavy body on a spherical surface,

denoting its radius by r, and fixing the origin of the coordinates at its>

centre, we shall have r'— r'

—

j/'—^'=0; this equation being com-

pared with that of z^— 0, gives u = r'— a'"—y''—z"
; therefore ifwe add to

the equation (X) of No. 7, the function Su multiplied by the indeterrai-

nnte quantity —x.dt. we shall have

0=Ss. S'd. — + 'ixx.dt.
I
+ ^i/. I

d.-^ + 2x.ij.dt. l

+ Sz.
I

d.—^ Q.xz.dt—g.d/. I
*

In this equation we can put the coefficients of each of the variations

Sx, Sy, Sz, equal to nothing, which gives the three following equations

:

Q^d. — + 2\.xdt,
dt

= d. ^ + 2x.y.dt.
dt + ^'

d^
O = d. —^o- 2k.z.dt—g.dt,

dt

* The plane of the motion behig horizontal, the force with which the string is tended

arises entirely from the centrifugal force.

t Po.{^|=-...{^ ;=-.,. m=_..



PART I.~BOOK I. 53

The indeterminate a makes known the force with which the point

presses on the surface. This pressure by No. 9 is equal to

consequently it is equal to 2xr ; but by No. 8 we have

_ dx^+dy'^+dz'
c+2gz^ *

dt*

c being a constant arbitrary quantity ; by adding this equation to the

equations {A) divided by dl, and multiplied respectively by x, y, z, and

then observing that x.dx+y.dy-\-z.dz =0, x.d''x+y.d^i/-{-z.d'z +
dx^ + di/''+dz9=0, are the first and second diflPerential equations of the

surface, we shall obtain*

* For performing these operations we get c-{-2gz=

d? + "rfF ^d^"^ -5^+2^-(^=+y'+s')-g2, therefore we have

SAr'' = c-\-?igz, and '2xr = ^^
,

•.• the pressure is equal to
"*" °

, when the ini-

tial velocity c vanishes, the tension of the pendulum vibrating in a quadrantal arc is, at the

lowest point, = to three times the force of gravity ; — = the cosine of the angle wliich the
r

radius r makes with the vertical, therefore it follows that when a body falls from a

state of rest, the pressure on any point is proportional to the cosine, of the distance

from the lowest point, it is easy to collect, in like manner, that the accelerating force va-

ries as the rigiit sine of the angular distance from the lowest point ; we might from the

preceding expression for tlie pressure deternune the point where this pressure is in a given

ratio to the force of gravity.
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If we multiply the first of the equations (A) by — t/, and add it to

the second, multiplied by x, and then integrate their sum, we shall have

dr.rfj/

—

V'dx _. *

dt
"^^

d being a new arbitrary quantity.

Thus the motion of the point is reduced to three differential equa-

tions of the first order,

x.dx-\-y.dy =—z.dz,

x.dy—y.dx = c'.rf?,

dx* >- di/' + dz* ,a-J—J- = C+ 22-Z.

By squaring each member of the two first equations,t and then adding

them together, we shall have

i^^+y^) (dx^ + dy*) = c''dt' + z'dz\

* x.dy—y.dx = c .dt shews that the area described by a body moving on a spherical

surface, and projected on the plane x, y, is proportional to the time ; the same area pro-

jected on the plane x, 2, or y., z, is not constant in a given time ; for if we add to the

first of the equations {A) multiplied by —z, the third multiplied by x, and then integrate

x.dz—z,"x
y ,

their sum, it becomes equal to = c' \- f.{gx.d(), this might have been anti-

cipated, as the force ^ does not pass pei'pelually through the origin of the coordinates,

••• x.dz—z.dx, y.dz—z.dy are not proportional to the time, but as there is no force acting

parallel to the horizontal plane, x.dy—y.dx must be proportional to the time,

f For we have in this case

x'^ .dx'' \-y'^ Ay'' .\-2x.y.dx.dy = z'^.dz''.

x^dy^+y .dx^— ^x.y.dx.dy = c'*rfr.

\'(x''+y'^){dx''+ dy'') =^~c'''dF+z^Mz^.

dx^-{-dy'^
:• by substituting for x'^+y*, and 'J~^ ' ^^"^ values we obtain (r*—«»)

.
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If we substitute in place of.r'+3/% and '^'
' -^

^ their respective

dz*
values r*

—

z\ and c+ 2^'-2r
~rr''> "^^ ^'^^ '^^^^ on the supposition

that the body departs from the vertical

dt —
^(r'—z'). (c + 2gz)—c'\

The function* under the radical may be made to assume the form

(a

—

z). (b—s).(2o's+y)
; a, b,f, being determined by the equations

{cdt'+2gz.dt^—dz^) = c'^dt-+z\dz^, therefore (r«—=*) . {c+2gz) — c ^). dt^ =
r'.rfz^ +Z-&*

—

z'^.dz'^, consequently

—r.dz
dt =

^/{r^—z').(c+2gz)—c'^,

dz is affected with a negative sign, because tlie motion commencing when the body Is at

the lowest point, ^ decreases according as t increases.

* If we multiply the factors of the expression, and range them according to the

dimensions of z, .we get — 2gz^— c2^+2r^.g2+/-'c— c'S if the same operation be

performed on the expression (a—z).(z—b) . (,2gz+f) we will obtain — 2gz^+ {2g

(a+ b)—/). 2- + (y. («+ 6)

—

2g.ab) z—^fab, these two expressions being always equal,

their corresponding terms must be identical, consequently, by comparing the coefficients

of z, we havey = 2g. -—--—- by comparing the coefficients of s', and substituting

forf its value we get

2.g -( (a+A) --r—
J-

=—<^
'• ^y concmnaung

a-'-\-2ab-lfb--—r''4-ab „ f
r^—a^ah—b^ 1

2a. 1 — ! ——C = 2g. < — —

;

f

the comparison of the absolute quantities, gives, by substituting for/ and c their values,

which ha*e been already found,

—r'-.b^-+>-^.ab4-a''b- ) „ (r'—a').{r-
22. < '

'

J- = Jg. =
'

<:;
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a+b

We can thus substitute for the arbitrary quantities c and d, a and b,

which are also arbitrary, of which the first is the greatest value of z,

and the second the least. Then, by making

• « /^=^
sin. 9= V r '

«— Z>

the preceding differential equation will become

dt= r.^lTiTV) d^

these values of^ c, c' being possible, we are permitted to substitute the expression

{a~z) .{z—b) .{<2.gz-\.f) in place of (r^—2;-) . (c+2o;r)—e'S therefore^ =

—v/(^a—2^ . [z—b) .
(^ ^^; ^rJ)> ^ being a function of/, this differential coefficient vanishes

when a=s, and also when z=b; — = —^ (^a—z).{z—u) K^g^-rJ) — 0, has at least

txao real roots ; for as the point is constrained to move on the surface of the sphere, the

trajectorj' has necessarily a maximum and a minimum ; and as impossible roots enter

equations by pairs, it follows that all the roots are real, moreover it is manifest from the

variations of the signs, tliat one root is negative: _lf expresses the velocity of the point in

the direction of the vertical.

* The transformation sin . « = a/ is made in order to facilitate the integration.^ a—b

sin.* i = °~^
-, and cos.* 6= ^^^^ v z=:a. cos. ' «+6.(l—cos.* ^)= « cos.^ d-\-b sin.^ t,

a—

6

a—b
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y* being equal to

(a-\-b)i+r*—b', ~

The angle 6 gives the coordinate z by means of the equation
;

z=a. COS.* 9+ i. sin.* 6,

dt. COS. «r: == •% —dz=: 2dl. ^/ (a~z) . (z—6)

—r.dz
and ' - ^^^ ^ (substituting for /its value)

-/ (a-zXz-b).{2gz+f) ^ J
. ]

2rJe;^(a—z).(z—f>) 2r.d«

(substituting for e its value a. cos.M+5. sin.= «) we obtain

2r.de \/a+b

\/2g.(a".cos. ^S-j-ab.cos.'6^ab.sin.^e+b~.sin.*i+r*'i-ab

2r.de.^/a+ b

2r.d6.\/7+b

v/2g.(a-t-6)'-)-l?--—6^)+(A^—a'). sin.»«)'

for 4*— a - in the preceding expression we shall have dt =

""*''*"

^'=(7HiH^»^=)' ^'-'''=-((«+^)'-+('-«-6')).yS .-. substituting

2r.di.^ya+b

v/%U«+<' J-i-C-'—6--)—((a-t-6)^4-(r-~6^)).y».sin.M.

_ r.v/2.(»+i) di
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and the coordinate z divided by r, expresses the cosine of the angle

which the radius r makes with the vertical.

Let TB- be the angle which the vertical plane passing through the radius

r, makes with the vertical plane which passes through the axis of J j w«

shall have

XZZs/l^ 2*. COS. -ar; * y — ojT^—H^SWi. w;

which give

xdy—ydx=.{r'^'—!?'). d-cr,

.'. the equation xdy—ydx—c'dt will give

d.dt
dTszz.

r'—z^

we will obtain the angle Ts-in a function of S, by substituting for z and

dt their preceding values in terms of 6 ; thus we may know at any time

whatever, the two angles 9 and -cr, which is sufficient to determine the

position of the moving point.

T
Let us name, — , the time employed t in passing from the greatest

* X = the product of the projection of r, on the plane x, y, into the cosine of the

angle which x makes with the projected line, .•. as, \f r'—z'- =rr so projected, and » =
the angle which xmakes with ^Z

r'-—2^, x=icos. w. \/r»—i^, rfx= —\'r'^—s'. sin. w.

zf/z. cos. OT / —
. , /-:; 1 , *dz. sin. v»

d^, — .
, y = \f r'^—z'.sin. w, .•. dy=\/r^—s^.ttm. cos. o

—

2
. , , xrfz. sin. «7. cos. 33- ,

, , ., ,

xdy—ydi=\j^—z^) d'a cos. »ot. h (r«—2-)rf«. wa

z.dz. sin. ra cos. «r. , , , ^ j

f For evolving the expression for dt into a series, it becomes,

i.V«.sin.'«.rf«+|^V*.sin.*.«....
. 2^g

'••^^'"+^''
t/<i+ i.v«.sin.'«.rf«+i^v*.sin.«.«.rf«+^v«. Bin.* «*+*c.

v/^- ((,a+ 6)*+r»-6»

COS. 2« 1 . cos. 4 « 4. COS. 2«

but sin. •<= ^+ -2, sin. #=—g 5— + 2;^
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to the least value of z, a semi-oscillation. In order to determine it,

we should integrate the preceding value of dt from 9=0 to flzij.Tr, w

I 2

. . COS. 6* , 6. COS. 4« 15. COS. 2« , 10
'""•'= 32-+—32 32— +3-2'*'=-

4.
-r 2'^ • — 32 16 ^2.4'

^. . , sin 6* , 6. sin. i^ 15. sin. 2«, 10 « „

/^^-•'•'^*=—r92-+-i28 6r-+ 12-' '"'-

(See Lacroix, Traite Elementaire, No. 200.)

These quantities being integrated between the Umits fl^O, and 6=^. n, or between sin.

1=0, and sin. fl=l, i. e. between the greatest and least values of z, become respectively

«r 1 3x1 lOx 1 r3.5.!r l'?^^, .,-.v-
—.—,r-—i,-——•—= \ ~ .— , S- &c. for the parts m wluch the Sines of the multiple arcs
2 I 2.*.2 32 2 (_ 2.4.6 23
occur, vanish, being respectively = to sin. (2ir), sin. (ix), sin. (6ir), the numeral co-

efficients of ~ are equal to the corresponding coefficients in the expanded radical ; .*. these

integrals being substituted in the preceding series we obtain

2 Vg. V (a+6J^+lr»_6^) [2
"^ 2'^ 2-2 +2.4"^ "teg 5

,
1.3.5 , /1.3.5 :r. , ^

+ 2:1:6^ We 2)+^''-

Ifin the series, dtJf.-^ . y». sin. 'e.di+~ y*.sin.*«. dS+-^-^.y'^ sm.^i.d64-&c. theintegrali
* ^.* i2.4.D

being taken as above, between the limits sin. <—0,sin.tf=:± 1; «^ii, «=-— (271+1). »•,

(where A- and n are any numbers whatever) will satisfy these conditions ; from which indeter-

mination of k and n, it follows, that the vertical coordinate passes through its maximum and

minimum an indefinite number of times, and consequently, when all obstacles are removed,

the number of oscillations is infinite ; we would obtain an expression for the time intervening

between tlie commencement of the motion, and the successive transits through the greatest

13 5
and least values of 2, by taking i successively = ^jr, — t, —a-, these quantities differing

£1 £1 £*

by »-, and as in the preceding integral, the first power of i only occurs, it is evident that the

times of all oscillations are equal.
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being the semi-circumference of a circle, of which the radius is unity ;

we shall thus find >

Supposing the point suspended at the extremity of a thread without

mass, of which the other extremity is firmly fixed ; if the length of the

thread is r, the motion of the point will be the same as in the interior

of a spherical surface ; it will constitute with the thread a pendulum,

of which the cosine of the greatest deviation from the vertical will be

— . If we suppose that in this state, the velocity of the point is no-
r

thing J* it will vibrate in a vertical plane, and in this case we shall

* — expressing the cosine of the angle which the radius makes with the verti-

tical, when the deviation from the vertical is the greatest, z is then least, and consequently

it is equal to b, .: >- is the cosine of the greatest deviation, and as generally
'— =:

1—COS. A . , . . . r—b . ,

.

• /. 1 • »
, in this case it is r: to -jr— ,

y" — this quantity, lor making a = r in the

expression for v', it becomes

r-— Z^" (r—b){r+b) r—b

The pendulum described in the text is merely ideal, as every body has weight. How-

ever, philosophers have given a rule, by means of which we are able to determine th«

length of the imaginary pendulum, such as has been described, from the compound pen-

dulum which is isochronous with it. (See No. 31 of this book.)

From the equation cfar. (r*—z*)=c'.(/< it follows that the angular velocity is inversly

as the square of the distance; this is universally true, whenever the areas are propor-

c dt
tional to the times, for we have then ^•.d'a.= ddt .: d-n = -^. See note to No. 6.

dx-A-dv'^ 4-dz'^ ds''
'^^

From the equation c-f-Sgz = — , = -r—, we derive dt == / ,

"—
'^

dt dt^ \/c+2ga,
ds

when the velocity — vanishes before the tangent becomes a second time horizontal.
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have, a= r; v* = The fraction is the square of the sine

of half the greatest angle which the thread makes with the vertical
j

the entire duration Tof an oscillation of the pendulum will therefore be

T=:

; J)

If the oscillation is very small, is a very small fraction, which

may be neglected, and then we shall have

therefore the very small oscillations are isochronous, or of the sarrie' da-

ration, whatever may be their extent ; and by means of this duration, and

of the corresponding length of the pendulum, we can easily deter-

mine the variations of the intensity of gravity, in different parts of the

earth's surface.

Let z be the height through which a body would fall by the action of

gravity in the time T; by No. 10 we shall have 2z:=g T^, and conse-

quently ^= ^tt.^ r j thus we can obtain with the greatest precision, by

means of the length of a pendulum which vibrates seconds, the space

through which bodies descend by the action of gravity in the first se^

cond of their fall. It appears from experiments, very accurately made.

ds
the point describes only a part of a circle of the sphere, but if y be finite, when the

tangent becomes a second time horizontal, then the point describes the entire circumference.

These circumstances may be determined by means of the equation

dx"- 4- di/'^+dz'
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that the length of the pendulum which vibrates seconds is the same,

whatever may be the substances which are made to oscillate. From

which it follows that gravity acts equally on all bodies, and that it tends,

in the same place, to impress on them the same velocity, in the same

time.

• When the oscillations are very small T = t,*/ — , and if a body vibrated in a cy-

cloid whose length was equal to 2r, the time of an entire vibration would be equal to

"•• f./ — , ivhatever be the amplitude of the arc, for the equation of this curve is s'^zaz.
o

,_ dz ,

(See Lacroix Traite Elementaire, No. 102) .". dszz\/ a —=' ^"'l V 2g (A z) =
V 5r

— -r-j (^i equal to the value of r when ^rrO) .'. dt=— . ~—^ = —,\//^^^ \
'^^ V^i vh-7 '^ V/ (y;

^
k/ h >'

'

*'''~*' V V~~V arc COS. f -^^-—
j + C,ifwetake this integral between

the limits r=j^, z= 0,—= -
. ^y/— , ,*, if 2a=r, i, e, if the radius of the osculating circle

be equal to 2a, the small oscillations in this circle are equal to the oscillations in the cycloid,

and sipce /( does not occur in this integral, the time of describing all arcs of the cycloid are

equal, provided one extremity of these arcs be at the lowest point.

It appears from the foregoing investigation, that the time of vibration in a cycloidal arc,

is the hmit to vhich the time in a circular arc approaches, when the latter becomes inde-

finitely small. W hen great accuracy is required, all the terms after the two first in the series

expressing the time in a circular arch are rejected, and then the expression for T'=

V. w — S 1-j- f-^y (-n~)'' [ '^•"" which it appears that the aberration from

isochronism varies, as the square of the sine of half the amplitude.

We might determine the time of describing any given arc of a circle, if we knew the

coordinates a and b, and also z the coordinate of the extremity of the arc required, for

then the angle 6 w ould be determined. We might also, derive a general expression for

the time of describing any given arc of a ci/cloid. For if in the initial velocity be such, as

w ould be acquired in falling down a height equal to A, we shall have at any point in the

ds —__—
cycloid «»= 2g. {IHh—z) consequently —= \/'^g(,H-\-h—2) .. dt =

===== (by substituting for ds its value /T"(-- \
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12. The isochronism of the oscillations of the penduhnn, being

only an approximation ; it is interesting to know the curve on which a

heavy body ought to move, in order to arrive at the point where the

motion ceases, in the same time, whatever may be the arc which it

shall have described from the lowest point. But to solve this problem in

the most general manner, we will suppose, conformably to what has place

in nature, that the point moves in a resisting medium. Let s repre-

sent the arc described from the lowest point of the curve ; z the vertical

abscissa reckoned from this point ; dt the element of the time, and <r

the gravity. The retarding force along the arc of the curve will be,

v/— .arc. COS. =-Tr„-r7\ \- C; we determine C by making^ = 0, and* ^ //,
Qg \{H-]-h)

we might deduce from this general expression, the time of describing the whole cycloidal

arch; Cis equal to =Y/ —- -! arc- j cos. =-7—— , .•. when the initial velocity vanishee

C = 0, for then H vanishes.

In the precedirig investigations tlie motions are supposed to be performed in a nonresist'

ing medium, but this is not essentially necessary, in order that the oscillations should be iso-

chronous in the cycloid, or nearly so in the circle. For it is proved in No. 12, that the os-

cillations of a body moving in a medium, of which the resistance is as tiie velocity, are iso-

chronous when the curve described is a cycloid, and it has been demonstrated by M. Poisson,

tljat when a body describes a small circular arch, in a medium of which the resistance varies

as the square of the velocity, or as the two first powers of the velocity, the oscillations are

isochronous, the analytical expression indicates that the time of describing the first arc is as

much lengthened by the resistance, as the time of describing the ascending arc is dimi-

nished, so that the time of the entire vibration remains the same as if the body moved in

a vacuo, the amplitude of the arc perpetually lessens ; and it may be proved, that if the

intervals of time are taken in arithmetic progression, the amplitudes of the arcs described

decrease in geometric proportion.
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1st, the gravity resolved along the arc ds, which thus becomes equal to

dz
,g. — ; 2dly, the resistance of the medium, which we will express by

<p. );rf . -7- being the velocity of the point, and p. X -r— > being any

function of this velocity. By No. 7 the differential of this velocity

will be equal to —g. -^ <p. 5 -— f ; therefore, by making dt con-
Clo C Civ -^

stant we shall have

- d*s
,

dz , cc?5) ...

Let us suppose that 0.\—{ =m.— +«. -7-, and* =4/(5') > denoting
(a^j dt dt*

by i}/'(s') the differential oi ^ {s') divided by rf/; and by f (s') the dif-

ferential of ^'(s'") divided by ds\ we shall have

ds ds' ,,, ,.

di=dt-
'-(''

the equation (?) will become

• Substituting for ^. (c?i) its value in the equation (i), it becomes

substituting these values for -r- , and —— , we shall have*
dt- dt^'

A^r' /?/2 //c'* rft* ff'.rfl
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We make the term multiplied by —— , to disappear by means of the

equation

which gives by integrating

^{s') = \og. S(A(5'+y)^} zz-s;

h and q being arbitrary quantities. By making / commence with s we

shall have hq '^ = \, and if, for greater simplicity we make, hzzl, we

shall have ^—c"' — 1.*

K

V dividing all the terms by ^'.[s) and concinnating we obtain

* From the value of d^s which has been already given, we get

ds'^ ds*

ds
and by integrating we obtain, log. ds—log. ds'-{-ns = e or log. -^y = e—m ;

V -Tr= —^ J and ds = , mtegratuig again we shall nave s'+ y = ,

V \o^. (ji.{s'+q))—ns—e or dividing both sides by n; .

°^ '"^^—^ )=((log-(«-(*+9)»^))
n '

= «
, and if — , be made equal to —^ we obtain log. ((A. (/-f-y")) T = *. If we

,
1

suppose s to commence with s, they are = to at the same instant, •.• log. A.y n = 0, at this

instant, and consequently /i.y » = 1, y must be equal to uniiy since n is a constant

indetermined coefficient, •.• log. (i'+l)n = s = ^j.(«'), and / = c""— 1.
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c being the number whose hyperboHc logarithm is tmity ; the diffe-

rential equation (/) becomes then

dh'
,

ds' , „ dz ,^ ,.,

^ = ^+"-^+"^-^-(^+^^*-

By supposing s very small, we may develope the last term of this

equation into a series ascending according to the powers of 5' which will

be of this form, ks'+ls'' + , &c. ; i being greater than unity ; the last

equation then becomes

at^ (It

mt

This equation multiplied by c~^. (cos. y?+ y/_i. sin. yt), and then in-

tegrated, becomes (7 being supposed equal to w^y^-
"'*

_)

Jl f -) r (Is' f
c«-jcos. yt-\-^-\. sin. yt[. j-T^- + ("f- —rV— ^ • ^

C
=

—l.J^'dt. c^ ^cos. yt-\-\/—\.. sin. 7^. (—&c.t

* For since sf = C"—1, -77 = A'i.^^=—;jr
"^ . ,,.

•' \'\^V -

ds ^ ' tLc"" n.(l+s) ^^ ' K'.(l-j-/)='

, , ,
d's' '^^

.
dz

•.•the equation (I) becomes ——— + w.-7- +""^--77-' (!+*)> when ^ is veiy
(IZ CtC tto

small the variable part of the last temi of this equation may be expanded into a series

proceeding according to the ascending powers of s', for substituting in place of s' it be-

dz ...
comes = —- . c""*, when *• is very small s' is also veiy small, as is evident from the equa-

tion s' = c'"— 1 ".• —p = the sine of the inclination of the tangent to the horizon is

ds

very small, and as all the terms which occur in the expression -r— . (l-f-^')' are very small

it can be developed in a series of the form given in the text.

f Cos.yi+\^—\- sin. yi = c''
'^-'

_ ggg Lacroix Traite Elementaire, No. 164.,)

••• by substituting c'''v~' in place of the circular function, we obtain
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By comparing separately the real and imaginary parts, we will have

els'

two equations by means of which we can eliminate —— ; but it will be

k2

&c. If we multiply both sides of this equation by dt, and then partially integrate, we shall

have

(the integral of rf/c(l +yV-i)'- ^ ^,^(|+yvri) *.

substituting this value of/rff'.c(-1+''v/-0f- j^ jj^^ ggj,^jjj ^^^^jj ^^f ^1,^ preceding inte-

gral, and for k its value y«-4 , we obtain
4

= (-^_;»yV=i.+ v'.y.'.<f/.c(r +VV^)') __;.^,,,(| + '''^^)'-^,.

If we substitute for cV %/^ '•
its value cos. yt+ ^~, si„. .^,, and concinnate, we will obtain

^ * (cos.y*+^Z:i.sin.yO(-^+a-vV=T).0=-^/^'^'/^^(^

(COS.y<.+ y^_l. sin, yt.) &C.
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sufficient to consider here the following*

— <// —Cm ")

c 8 .—- . sin. yt+c - . *'. 1 — . sin. yt— y. cos. yt. >
cit ^ A y

z= — l.Js" dt.c~^ . sin. yt—&c.

the integrals of the second member being supposed to commence with t.

ds
Naming T the value of t at the end of the motion, when —r- vanishes,

at that instant we shall have

c . s'.< sin. yT—y. cos. yT. <r zz. — l-Js''. dt. c^ . sin. yt—&c.

When s' is indefinitely small, the second member of this equation va-

nishes, when compared with the first, and we shall have ;

O zz sin. yT—y. cos. yT,*

* As the imaginary parts of this equation cannot be equated \\ith the real parts, the

real and imaginary parts must be compared separately, which gives two distinct ecjaations,

the part of this equation which is considered, is the part which was multiplied by

f Partially integrating the expression —/. fs'.c —. sin. yt.dt-^ &c. we obtain

I- ^ ,. Im ^ ^ , ,. li ^ 'JL ,,•,,,
. C 2 .COS.yi. S' 7T- f-C 2 • (it. COS. yt. s' f.C 2 . COi.yt. S'~^ ds

,

if we integrate the second term of this expression, as before, we shall have

lin '^
. „ Im'^ ^ m , . , Imi ^ . , -i , ,— jr-;- c 2 . Sin. yt. s' -\- -—:^ f.C i dt.sm. yt. s'-\--—- fc a.sm. y/. «'. as',

Zy 4y ' 2y

in like manner the integration of the term in this last expression, which contains dt, would

give terms of the same foi-m as in the preceding integral ; consequently the value of

mt—I f.s' dt.c~T. sin. y<+&c. cannot be exliibited in a finite number of terms; but if the

mt

preceding intervals are taken from i r: to < = T, then the value of —IJs. cY. dt. sin.
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consequently

tang. yT= —IL,

m

and as the time T is, by hypothesis independant of the arc described.

yt=0, for by substituting m place ofcos. yTits value —-~ sin. yT, in the terms where ds
"y

occurs, these terms in two succeeding expressions will be equal, and affected with contrary

signs, consequently they destroy each other ; \nth lespect to those terms which are free

from the sign of integration f, we may remark that they resolve themselves into two de-

creasing geometric series, which are respectively of the following forms

/ m ,. Im'^ mt
. Im* J!^ ,. „ , . „ .—

. cos. yt.c 2 . s' - COS. yt.c~. s + ——r. COS. yt.c 2 . /', &c. ad mfinitum,
y iy^ lo.y*

Im . '"I Im^ ^ Im^ . ^— "H—:• sm. yt.c. ~. «.-*——. sin. yj.c a . s'— ^^ , . sm. yt.c 2 . «"-|-&c. ad infim'tum,Zy Hy* S^y"

by summing these series they come out equal respectively to

I Im

y mt 2y* ">'

cos. yt.c » . s'i —, sin. yt.c 2 . /«, by substituting

' 4y* ^ 4y»

7)1

for cos. yTits value — . sin. yT, the first expression becomes
2y

h,

l + I^il
4y-

sin. y T^.c". «', which is equal to tlie second with a contrary sign, consequently

7nt

it follows that whatever be the magnitude /;—^.yi',-. dtxT". sin. yt = 0, when the integral

is taken from f— to t=zT. The same reasoning applies to the other terms of the series,

which contain powers of s' superior to i.

I being independant of /, if it is equal to nothing when s' is very small it will be al-

mt
ways equal to nothing ; and since neither sin. yt, nor c T change their signs from f=0, to

mt
t=. T, it is evident that the evanescence o{Js''.c~2. sin. yt can only arise from I being

equal to nothing, in this case also the coefficients of the powers of s' greater than /'. i. e.

the subseqnent terms of the series vanish.
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this value of tang. yT has place for any arc whatever, therefore what-

ever be the value of *', we have

mt

0= /.//', dt.c~. sin. 7'/+ &c.

the integral being taken from t—0 to t=T. If we suppose s' very

small the second member of this equation will be reduced to its first

mt

term, and it can only be satisfied by making / =0 ; for the factor c~ .

sin. yt, being constantly positive from /— to t= T, the preceding

integral is necessarily positive in this interval. Therefore the tauto-

chronism is only possible on the supposition of

ds'

which gives for the equation of the tautochronous curve

g.dz-= (1—c
J

71

In a vacuum, and when the resistance is proportional to the velocity, n

* Substituting for 1+i' its value C", and ds' its value n.ds.C", we obtain

n'^S-dz. „.. , , _. _ , k.ds

n.ds.C^

1.2ns = ^(cnj_ J ) ._. gj^ _ J±± jl — c""" i ,
•.•

when the body moves in a vacuo, or in a medium of wliich the resistance is proportional

to the velocity, n=zo :• gdz — '

(1—c-"*) = ks.— , but if we express c-"* in a se-

nes Jt becomes = l ~-\ ——-, &c. •.• the general expression for

* n \ ^1 1.2 ^ 1.2.3 ; ,

when 7! = 0, lc.ds.s. From this equation it follows that k =
, ,

this is also g.p true,
ds.s

when n has a finite value, if s be taken very small, as is evident from the preceding series.
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is nothing ; and this equation becomes g.dzz=.hs.ds ; which is the equa-

tion of the cycloid.

It is remarkable * that the coefficient n of the part of the resistance,

which is proportional to the square of the velocity, does not enter into

the expression of the time T; and it is evident from the preceding

analysis that this expression will be the same, even though we should

add to the expression for the law of the resistance, which has been given

above, the terms,

ds'
, ds* c.

p. + q + &c.
' dt' ^ dt

If in general, R represents the retarding force along the curve, we,

shall have

s being a function of t, and of the entire arc described, which conse-

quently, is a function of t and of s. By differentiating this last function,

we obtain a differential equation of this form,

dt

V being a function of / and of s, which, by the conditions of the pro-

blem must vanish, when t has a determinate value, which is indepen-

dant of the whole arc described. Suppose, for example, V =. S.T, S

* Since the value of T is the same when the terms P.—H 4. n.—^+ &c. are added
rff 3

^ " tit*
'

to VI. —— -}- n.—— , it follows that the generality of the conclusion is not affected by

ds ds^ ( ds ^
substituting m. -7-+ n. -— - in place of ip ] -7-

j
•
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being a function of s only, and T being a function of t only ; we shall

have

d-s „ dS ds „ dT dS ds^
^ ^ dT ^= 1 . —;— • —r— + O. = . — - + *J«

,
• j

dt"^ ds dt dt S.ds if dt

but the equation —— = ST, gives t, and consequently —— equal to a
dt

^ at

function of -, which function we will denote by -—-, 4' » tttt i

therefore we shall have

d's ds' { dS ,1 ds

dt^ S.dt^ {f + *(^)} = -^-

Such is the expression for the resistance which corresponds to the

ds
differential equation — = ST; and it is easy to perceive that it

involves the case of the resistance proportional to the two first powers of

the velocity, multiplied respectively by constant coefficients. Other

differential equations would give different laws of resistance.!

* S being a function of x, which is a function of t, tlie differential coeflacient of S, with

resDect to ^ = —'— '—r > and substituting for T its value ^ ,
we obtain

•^
ds dt ii-as

d^s dS ds"^ „ dT
dt^

~
S.ds dt' ' dt

'

f In the precedhng investigation the body is supposed to ascend from the lowest point,

and the curve which then satisfies the condition of tautoclironism is U7iiqtte in a given

medium ; but if the body descended from the highest point, then it would oscillate at the

other side of the point where the tangent was horizontal, and the problem becomes

somewhat more indeterminate, in this case k may be announced more generally thus ; to

find the lines, the time of describing which will be given, whatever be the amplitude of

the arcli described ; the discussion of this problem is too long to be inserted here, the

reader will find a complete investigation of it by Euler in the Transactions of the Academy

of Petersburgh for the years 1764 and ITS*, he demonstrates tiiat the arcs at each side

•f the lowest poijit are not necessarily equal and similar, however, the sum of these arcs
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is proportional to the square root of the vertical coordinate, •.• the curve whose length

is equal to the sum of these arcs will be the common cycloid, in like manner, if we have

the differential equation of one of these arcs, we can determine the differential equation

of the other ; if the first arc be a cycloid, the second will also be the arc of a cycloid :

in this case the time of describing each of the cycloidal arcs will be constant, howevef

the generating circle of the second cycloid is not necessarily equal to that of the first.

If we combine the condition of tautochronism, with the condition of the two branches at

each side of the lowest point, being equal and similar, the curve will be then the vulgar

cycloid, therefore this is the only plane curve in which the sum of the times of the ascent and

descent is always the same in a vacuo ; but this property belongs to an indefinite number of

curves of double curvature which are formed by applying the cycloid to a vertical cylinder of

any base, the altitude of the curve above the horizon remaining the same as before, for «*

ds^ + ds
=: -—= c

—

2gz, '.' dt= — , consequently the value of t depends on the initial
'^** \/c—2gz

velocity, and on the relation between the vertical ordinates and arc of the curve •.' what-

ever changes are made in the curve compatible with the continuity, the value of dt will

not be changed, provided the preceding relation remains ; and it follows conversel}', that

the projection of any tautochronous curve of double curvature, on a vertical plane, will be

a cycloid with a horizontal base.

In the cycloid, if a body falls freely, the accelerating force along the tangent varies as

the distance from the lowest point, for 4*=4a2, '•'
g--f-

(= accelerating force =: -^ , I
Us ^(t J

the pressure arising from gravity= g. —— , and the pressure which is produced by the

centntugai torce—

-

for radius of curvature = I.kj a{a—2), and the square of
2.\/(i(a—2)

V \ / 1

the velocity = 'i-g-{a—r), see No. 9, (the coordinates of z are reckoned from the lowest

point ;) it follows from the preceding expression that the ivhole pressure at the lowest point,

and consequently the tension at this point of a body vibrating in a cycloid is r= to twice

the gravity.

When a body describes a cycloid, the accelerating force varies as the distance from the

lowest point, as has been stated above ; and if a body was solicited by a force varying

according to this law, the time of falling to the centre will be given, for we have

^ =— As V '^^2= — ^-5 ^. ••• "' = — -^«* + C, v=0, s = S, V Cz=AS', •••

dJt "i at

v=A. ^ s«_ii &^ •*= -7-. ^
, V ^*/ = arc. cos.^, and when s—O, t=T

V^ O S* i
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32,—^ , consequently the time of descent to the centre, is the same from whatever point,

the body begins to fall. From the preceding expression, it follows, that the time of de-

scribing any space s, varies as the arc, and the velocity acquired varies as the right sine.

Se« Princip. Mat. Prop. 38, Book 1st.
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CHAPTER III.

Of the equilibrium of a system of bodies.

13. The simplest case of the equilibrium of several bodies, is that

of two material points meeting each other with equal and directly con-

trary velocities ; their mutual impenetrability evidently annihilates their

motion, and reduces them to a state of rest.

Let us now suppose a number m of contiguous material points,

arranged in a right line, and moving in its direction with the velocity

u, and also another number ?«' of contiguous points, disposed in the

same line, and moving with the velocity u', directly contrary to u, so

that the two systems may strike each other ; there must exist a certain

relation between u and u', when both the systems remain at rest after

the shock.

In order to determine this condition, it may be observed that the system

m, moving with the velocity u, will constitute an equilibrium with a

single material point, moving in a contrary direction with the velocity

mu ; for every point of the system would destroy in this last point, a

velocity equal to u, and consequently the m points would destroy the

whole velocity mu ; we may therefore substitute for this system a

single point, moving with the velocity mu. In like manner we may

substitute for the system m', a single point moving with the velocity m'u' ;

now* the two systems being supposed to constitute an equilibrium, the

two points which are substituted in their place, ought to be also in

equilibrio, therefore their velocities must be equal j consequently we

L 2

* These two systems of contiguous material points, may be supposed to represent two

bodies M, M', of different masses, equal respectively to the sum of all the ms, and in',s.
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have for the condition of the equilibrium of the two systems,

mu-^m'u'.

The mass of a body is the number of its material points, and the

product of the mass by the velocity, is what is termed its quantity

of motion ; this is also what we understand by the force of a body in

motion. In order that the two bodies, or two systems of points whicli

strike each in contrary directions, may be in equilibrio, the quantities of

motion or the opposite forces must be equal, and consequently the ve-

locities must be inversely as the masses.

The density of bodies depends on the number of material points

which tliey contain in a given volume. In order to determine their ab-

solute density, we should compare their masses with that of a body t

which has no pores ; but as we know no such body, we can only deter-

mine the relative density of bodies, that is to say, tlie ratio of their

density, to that of a given substance. It is evident that the mass is in

the ratio of the volume and density ; therefore, if we denote the

mass of the body by M^ its volume by C/", and its density by D, we

shall have generally M= U. D ; in this equation the quantities AI,D,U,

relate to the units of their respective species.

In what precedes, we suppose that bodies are composed of similar

material points, and that they only differ in the relative situation of

these points. But the intimate nature of matter being unknown, this

supposition is at least very precarious, and it is possible that there

may be essential differences^ in their integrant molecules. Fortunately,

the truth of this hypothesis is of no consequence to the sci-

ence of mechanics, and we may adopt it without any apprehension of

7 Distilled water, at its greatest density, is the substance which has been selected for

the term of comparison, as being one of tlie most homogeneous substances, and tliat which

may be readily reduced to a pure state.

X By the integrant molecules of bodies, as contradistinguished from their constituent

parts, we understand those which arise from the subdivision of the body, into minuter por-

tions ; by the constituent parts are understood the elementary substances of which a body

it composed.
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error, provided that by similar material points, we understand points

which, when they meet with equal and opposite velocities, mutually con-

stitute equilibrium, whatever their nature may be.*

14. Two material points, of which the masses are m and »/, can only

act on each other in the direction of the line joining them. Indeed, if

the two points are connected by a thread passing over a fixed pully,

their reciprocal action cannot be directed along this line ; but the fixed

j)ully may be considered as having at its centre a mass of infinite den-

sity, which reacts on the two bodies, so that their mutual action may be

considered as indirect.

Let p denote the action which is exerted by in on rri by means of the

right line which joins them, which line we suppose to be inflexible and

without mass. Conceive this line to be actuated by two equal and op-

posite forces p and — p ; the force—p will destroy in the body m a force

equal top, and the force/? of the right line will be communicated entirely

to the body rri. This loss of force in m, occasioned by its action on m',

is termed the reaction of m' ; therefore in the communication of motions,

the reaction is ahvays equal and contrary to the action. It appears from

observation that this principle obtains for all the forces of nature.!

* It' there be actually essential differences in the integrant molecules, then it is noc

inconsistent to suppose, with some philosophers, that the planetary regions are filled with

a very subtle fluid destitute of pores, and of such a nature as not to oppose any resist-

ance to the motions of the planets. We can thus reconcile the permanency of these

motions, which is evinced by observation, with the opinion of those philosophers who

regard a vacuum as an impossibility ; however the plenum, for which De-Cartes contended,

is not confirmed by the preceding hypothesis, as he held that all matter was homogeneous,

and that the ether, which, according to him filled the planetary regions, differed from

other substances only in the form of the matter. See Princip, Math. Book 2, Prop. 4-0

;

Exper. l*, and Book 3, Prop. 6, Cor. 2 and 3 ; Newton's Optics, Queiy 18; and Systeme

de Monde, page 166. However, as extension and motion are the only properties which

are taken into accoimt in Mechanics, it is indifferent whether matter be considered as ho-

mogeneous or not.

f This equahty does not suppose any particular force inherent in matter, it follows ne-

cessarily fi-om this, that a body cannot be moved by another body, without depriving this

body of the quantity of motion which is acquired by the first body, in the same manner

as when two vessels communicate with each other, one cannot be filled but at the expense

of the other.
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Let us suppose two heavy bodies m and m' attached to the extremities

of an horizontal right line, supposed to be inflexible and without mass,

which can turn freely about a point assumed in this right line. In order

to conceive the action of those bodies on each other, when they are in

equilibrio, we must suppose the right line to be bent by an indefinitely

small quantity at the assumed point, so as to be formed of two right

lines, constituting at this point an angle, which differs from two right

angles by an indefinitely small quantity w. Let J' andj' represent the

distances of m and m' from the fixed point ; if we resolve the weight of

m into two forces, one acting on the fixed point, and the other directed

towards nz', this last force will be represented by
^

, g being

the force of gravity. In like manner the action of ni on m will be re-

presented by—'^
. , the two bodies constituting an equilibrium,

these two expressions will be equal, consequently we will have

7n/=m'J" ; this gives the known law of the equilibrium of the lever,

and at the same time, enables us to conceive the reciprocal action of pa-

rallel forces.

Let us now consider the equilibrium ofa system ofpointsactuated by any

forces whatever, and i-eacting on each other. Let^representthe distance of

m from ni \f' the distance of m from m\f" the distance of wj' from /«", &c.

* Gravity must be distinguished from weight ; the weight of a bedy is the product of the

gravity of a single particle^ by the number of particles.

If we conceive a line drawn from the fixed point, parallel to the direction of gravity, meet-

ing a line connecting ni and ?»', this last line will be q.'p., horizontal, and therefore perpen-

dicular to the vertical line, which will *.• be equal toy multiplied into the sine of the angle

whichymakes with the horizontal line, but as the sides are as the sines of the opposite

angles, we liave the sine of the angle whichymakes with the horizontal line, to the sine of

u, or its supplement, as, f':f-{-J'
•. it is equal to :i-^—j^:=q.p.-4——-,,nowi£tiie weight

be represented by the vertical line, then mg divided by sine of the angle whichymakes

with the horizontal line, i. e, —'^
., will be the force in the direction of/.

"J
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also let p be the reciprocal action of mon m'
;
p' that ofm on m'^

;
p'' that

of m' on m", &c. and lastly, let mS, m'S', rri'S", be the forces which act

on m, rri, m'' ; &c. 5, /, s", lines drawn from any fixed points in the di-

rection of these forces, to the bodies m, m', rd\ Sec. ; this being premised,

we may consider the point m as perfectly free, and in equilibrio in con-

sequence of the action of the force mS, and of the forces, which the

bodies m, ni, m\ communicate to it ; but if it was subjected to move on

a curve or on a surface, it would be necessary to add to these forces, the

reaction of the curve or of the surface. Therefore, let Ss be the varia-

tion of s, and let S^ f, denote the variation ofy, taken on the supposition

that rri is fixed. In like manner let S^f, be the variation of^', on the

supposition that iti' is fixed, &c. Let i?, B!, represent the reactions of

the two surfaces, which form by their intersection the curve on which the

point is constrained to move, and let J'r, Sr' be the variations of the di-

rections of these last forces. The equation {d) of No. 3, will give

:

Qz=.mS.Ss +p.S,f-\- p'JJ'+kc. +mr+ R'Sr' + &c.

In the same manner m' may be considered as a point perfectly free, re-

tained in equilibrio by means of the force niS', of the actions of

the bodies m, rri, iri', and of the reactions of the surfaces on which ni

is constrained to move, which reactions we will denote by R", and R".

Let, therefore, the variation of s' be called Ss', and the variations of^ and/^',

taken on the supposition that m and m" are fixed, be respectively S,,f,

J,y""; in like manner, let Sr", Sr'", be the respective variations of the

directions of R", R'", and we shall have for the equilibrium of ni

O= m'S, Ss'+pJ„f+ f.SJ"+ &c. + R'.Sr^' + R'aJr"'.

If we form similar equations relative to the equilibrium of m'',

and ml", &c. by adding them together, and observing that

ifv=i,f\i„f;iS'= lf^S,f',* &c. Sf, and Sf\ being the total

•3/"=3^/'+3„/; 3/"' - 3,/'+S„/'/ + &c. ; for/ and y are respectively functions

of the coordinates of their extreme points, and when these are moved by an indefinitely

fmall quantity, all the powers of the increments of the coordinates, after the first may be

rejected, and then the entire increment of_/ is equal to the sum of the partial incrementa
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variations ofyandy'+&c. we shall have

0=-z.m.SJs+ xp.if-^j:RJr; (k)

in this equation, the variations of the coordinates of the different point?

of the system are entirely arbitrary. It should be observed here, that

in consequence of the equation («) of No. 2, we may substitute in

place of mS.Ss, the sum of the products of all the partial forces by

which m is actuated, multiplied by the respective variations of their

directions. The same may be observed of the products m'Sis'
;

If the distances of the bodies from each other be invariable, i. e. if

J^y',jr'''',+ &c. are constant, this condition may be expressed by making

{/=0, Sf' = 0, &c. The variations of the coordinates in the equation

(k) being arbitrary, they may be subjected to satisfy these last equations,

and then the forces p, p',p'', &c. which depend on the reciprocal

action of the bodies composing tl:e system, will disappear from this

equation ; we can also make the terms li.Sr, R'Ji'. •+ &c. t to disap-

pear, by subjecting the variations of the coordinates to satisfy the equa-

tions of the surfaces, on which the body is constrained to move. The

equation (/.) will then become

0=T.mS.Ss; (I)

from which it follows that in case of equilibrium, the sum of the varia-

which are due to the separate variation of each coordinate, •• the entire variation ofy
is equal to the sura of the partial variations, which correspond to the characteristics 3,

and i^.

* From this it appears,' that the conditions of the equilibrium of a system of bodies, may
be always determined by the law of the composition of forces ; for we can conceive the

force by which each point is actuated to be applied to the point in its direction, where all

the forces concurring, constitute an equilibrium when the point is entirely free, or which

constitute a resultant, which is destroyed by the fixed points of the system, when the point

is not altogether free,

f See Notes to No. 3.

Tlie equation (/) obtains, whether the points are all free, or are subjected to move o*
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tions of the products of the forces, into the elementary variations of

their directions will be equal to nothing, whatever changes be made in

the position of tlie system compatible with the conditions of the con-

nection of the parts of the system

.

We have arrived at this theorem, on the particular supposition of the

parts of the system being at invariable distances from each other ; how-

ever it is true whatever may be the conditions of the connection of the

parts of the system. In order to prove this, it will be sufficient to shew

that when the variations, of the coordinates, are subjected to those con-

ditions, we have in the equation (Z,)

= I..p.Sf-^I..R.h-

;

but it is evident that Sr, Si^, &c. are equal to nothing, when these con-

ditions are satisfied ; therefore it is only necessary to prove that in the

same circumstances we liave

= i:.p.Sf.

Let us therefore suppose the system actuated by the sole forces

j9, pf, p, &c. and that the bodies are subjected to move on the curves,

which they can describe in consequence of the same conditions ; these

forces may be resolved into others, some of which q, q', q", &c.

acting in the direction of J,' J', f", &c. will mutually destroy each

other, without producihg any action on the curves described ; others

will be perpendicular to those curves ; and others again will act in the

direction of tangents to those curves, by the action of which the bodies

may be moved ; but it is easy to perceive that the sum of these last

forces ought to be equal to nothing ; since the system being by hypothe-

sis at liberty to move in their directions, they are not able to produce

either pressure on the curves described, or reaction between the bodies

;

M

curved smfaces ; in the former case, the forces S, S', S", constitute an equilibrium

;

in the latter case, these forces have a resultant, of which the direction is perpendicular to

the surface. (See Note to page 17.)

0*-

ro
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consequently they cannot constitute an equilibrium with the forces

—
P'
—

P'f
—

F^'t ^^' y> ?'» I"y ^^- T, T', T" ; therefore they must vanish,

and the system must be in equilibrio in consequence of the sole forces

py—p',—p", &c.
; q, q', q", &c. ; T, T', &c. Now, if Si, Si', &c. repre-

sent the variations of the directions of the forces T, T', Sec. we shall

have in consequence of the equation (A-)

= l.(q—p)Jf + i:.TJi
;

but the system being supposed to be at rest, in consequence of the sole

action of the forces q, q', &cc, without any action being produced on the

curves described, the equation (/c) gives us also — l.qJJ';* conse-

quently we have

= s:.pJf—I,.TJi

;

but as the variations of the coordinates are subjected to satisfy the con-

ditions of the curves described, we have Si, = 0, Si', = 0, &c. ; therefore

the preceding equation becomes

O =. l.p.Sf;f

as the curves described are themselves arbitrary, and are only subjected

to the conditions of the connection of the system, the preceding equa-

tion obtains, provided that we satisfy these conditions, and then the

equation (k) will be changed into the equation (/). The following

principle, known by the name of the principle of virtual velocities, when

analytically expressed, is represented by this equation. It is thus an-

* 0:= 2 y.S/, for q, q, q", are directed along the lines yjy'.y""; and are supposed to

destroy each other without producing any action on the curves described.

f The object of the second part of this demonstration is to shew, that if the system is

at rest, and acted on by the sole forces /), //, p"-, these forces may be so decomposed as to

afford forces equivalent to the reciprocal actions of the respective bodies, and that the

remaining portions of the forces, as well as these reciprocal actions, will balance each other,

in case of etjuilibrium, according to the terms of the proposition.

Since the equation {k\ is reduced to the equation (/), when we subject the variations of

tlie coordinates to satisfy the equations of the surfaces, on which the bodies are con-

strained to move, it follows that it is not necessary to compute the forces f, p, &c. in order

to derive the equations of equilibrium in each particular case.
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nounced: " If we make an indefinitely small variation in the position*

of a system of bodies, which are subjected to the conditions they ought

to fulfil, the sum of the forces which solicit it, multiplied respectively by

the space that the body to which it is applied, moves along its direction,

should be equal to nothing in the case of the equilibrium of the system."

This principle not only obtains in the case of equilibrium, but it also

insures its existence. Let us suppose, in fact, that whilst the equa-

tion (0 obtains, the points m, m', &c. acquire the velocities v, v', in

consequence of the action of the forces mS, m'S', which are applied to

them. The system will be in equilibrio in consequence of the action of

these forces, and of —7nv, —m'x/, &c. ; denoting by Sv, ix/, &c. the

variations of the directions of these new forces, we shall have in con-

sequence o£ the principle of virtual velocities

= l.mS.SS'—^.mvJv,

but by hypothesis l.mS.Ss.zzO, therefore we have 0=l.mv.5v. We may

suppose the variations Sv, Sx/, &c. equal to v.dt, i/dt, &c. since they are

necessarily subjected to the conditions of the system, and then we have

= I,.mv\ and consequently v=0, v' = 0, &c. that is to say, the system

is in equilibrio in consequence of the sole forces mS, m',S', &c.

The conditions of the connection of the parts of the system may be

always reduced to equations between the coordinates of the several bo-

dies. Let M= 0, m' = 0, &c. be these different equations, by No. 3,

we can add to the equation (Z), the function xSu, x'Suf, &c. or l\hi

;

\, x', being indeterminate functions of the coordinates of the bodies, the

m2

* When an indefinitely small change is made in the position of the system, so that the

conditions of the connections of the points of the system may be preserved, each point

advances in the direction of the force which solicits it by a quantity equal to a part of this

direction, contained between the first position of this point, and a perpendicular deraitted

from the second position on this direction ; these indefinitely small hnes are termed the

virtual velocities ; they have been denominated vertual, because the system being in

equilibrio, these changes may obtain without the equilibrium being disturbed.
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equation will then become

= I..mS.Ss-\-I,.xSu ;*

in this case the variations of all the coordinates are arbitrary, and we may
equal their coefficients to nothing ; which will give as many equations,

by means of which we can determine the functions x,x'. If we com-

pare this equation with the equation {k) we shall have

l.xJu = l.pJf+l.RJr;

by means of which we can easily determine the reciprocal actions of the

bodies m, m', &c. on each other, and also the forces—R,—R', with which

they press against the surfaces on which they are constrained to move.

15. If all the bodies of the system are firmly united to each other,

its position will be determined by that of three of its points which

are not in the same right line ; the position of ' each of these points de-

pends on three coordinates ; this produces nine indeterminate quan-

tities ; but we can reduce them to six others, because the mutual dis-

tances of the three points are given and invariable ; these being sub-

stituted in the equation (/)» will introduce six arbitrary variations ; by

supposing their coefficients to vanish, we shall obtain six equations,

which will contain all the conditions of the equilibrium of the system :

let us proceed to develope these equations.!

* By means of the formulae which are given in the notes to No. S, page H and 15, we

can determine A, >!, &c. when S, S^, S*, are given for each individual point ; and there-

fore ;;, p, p", k, k', ¥, by means of the equation 2.A. Jie = l.p^f-^- 'S.R.^r ; in the equa-

tion Z ?n.SJ«-f- 2.a.5m, m, m', m", &c. may be considered as entirely free ; and if we put

the coefficients of the variation of each variable equal to nothing, and then eliminate the

indeterminate quantities, A, /', A-^, &c. between these equations, the expressions which re-

sult, will give the relations which must exist bstween S, Sf, S", &c. and the coordinates,

when the system is in equilibrio.

f It follows immediately, from the demonstration of the principle of virtual velocities,

that it has place for all the indefinitely small motions which can be given to a solid body,

which is either free or constrained to certain conditions, for in all these motions the re-

spective distances of the points of the body remain the same.
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For this purpose, let x, y, z, be the coordinates of m ; x', i/, ^,

those of m' ; x", y", z", those of m''^ ; &c. ; we shall have then

f'= x/{^'^—x)*+(i/"—i/)*+iz'-zy

and if we suppose

ix = jy = sjo" = &c.

$y = Sy = Sy" — &c.

;

Sz — Sz' = Sz'' = &c.

;

we shall have $f= 0, Sf'= 0, Sf^^=^ O, &c. j* the required condi-

tions will therefore be satisfied, and from the equation (/) we may infer

we have thus obtained three of the six equations, which contain the

conditions of the equilbrium of the system. The second members of

these equations are the sum of the forces of the system, resolved pa-

rallel to the three axes of x, y, and z, therefore each of these sums

must vanish in the case of equilibrium.

And as the number of the equations of equilibrium, which are derived from the principle of

virtual velocities, is always equal to the number of possible motions, this number being equal

to six, in the case of a solid body, or of a body whose parts are invariably connected, the

number of equations of equilibrium will be six in like manner.

consequently when 3x'=5x, 3j/'=;3y, Sz'=h, &c. Sy=0, therefore 2m.S.
-j
— | = 0,

2^.S, S ^ I
= 0. &c. ; for when ix=i3f - Jx" ; iy—^Z^y ; 3^ == ?-' = ^^'= ^'^- •
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The equations Sf^ =0, if' = 0, $/"== 0, &c. will be also satisfied,

if we suppose, z, z', z", invariable, and then make

Sx = ySw
;

Sy = —x.Jw
;

Saf — yi.iu, &c. iy == —x'.Su, &c.

SiAt being any variation whatever. By substituting these values in the

equation (/)» we shall have

.0= ..„*.|^.(|)_,.(|)|.

It is evident that we may, in this equation, change either the coor-

dinates x, x', x", &c. or the coordinates y, y', y", &c, into z, z\ z",

which will give two other equations, and these reunited with the pre-

ceding equation, will constitute the following system of equations :

«=x»,5.^^.(A)_,.(|.)^i

2i».S.3*=:0, is equivalent to SmS. S -i \ .S^ — 0, 2mS. ^ -j^ | . J^ = 0,

2.OT.S. -! y-
f

-'^ :;^0. See Note to No. 2, page 9.

* In like manner, ifwe suppose, 3x=y.3«r, 'ixzzy'^n, Sy =—«?«, 3y:=—x'i», 'if, If,

&c. = 0, for substituting in the preceding expression for 'if, which has been given,

for >x, ix', iy, 'iy, and it becomes

^ (xW).0,'-y) + (y-3,).(x-xO ^^^ ^^^ j^^p^

By substituting in the equation, lm,Sis:z.O, for 2x, iy, &c. their values it becomes

-M» -11 -'{-¥}'-=»
When all the forces are applied to the same point, the three first equations suffice for

the equilibrium ; but when these forces act in different points of space, or when they are
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by No. 3, the function smSi/.]— i is the sum of the moments of all

the forces, parallel to the axes of x, which would cause the system to

c is ^
revolve about the axis of z. In Hke manner, the function ^m.S.r.) —[

is the sum of the moments of all the forces parallel to the axes of i/,

which would cause the system to revolve round the axis of z, but in a

direction contrary to that of the former forces ; therefore the first of the

equations CnJ indicates that the sum of the moments of the forces is

nothing with respect to the axis of z. The second and third equations

indicate, in a similar manner, that the sum of the moments of the forces

is nothing with respect to the axes of^ and x, respectively. If we com-

bine these three conditions with those, in which the sum of the forces pa-

rallel to those axes, was nothing with respect to each of them ; we shall

have the six conditions of the equilibrium of a system of bodies inva-

riably connected together.*

If the origin of the coordinates is fixed, and firmly attached to the

system, it will destroy the forces parallel to the three axes, and the

conditions of the equilibrium of the system about this origin, will be

reduced to the following, that the sum of the moments of the forces

which would make it turn about the three axes, be equal to nothing,

with respect to each of them.

t

applied to different parts of the same solid body, it is also requisite that the moments of

the forces with respect to axis of x, y, and z, should be respectively equal to nothing.

* If all the points exist in the plane of x, y, then 3z, J2', Si", are equal respectively to

nothing, consequently the equations of equilibrium are reduced to the three following :

..,.s.{^| =0, ...-...{^jro. -..s.{,.(|)}
-^.(l-j}

f When the origin of the coordinates is fixed and invariably attached to the system,

the number of possible motions is reduced to three, therefore the number of equations

of equilibrium will be three ; this also appears from considering that the number of inde-

terminate quantities may be reduced to three, because the distances of any three assumed

points in the system, not existing in the same right line, from the fixed origin of tht

coordinates, are given.
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f In this case, the resultant of all the forces which act on the body passes through the

fixed pomt, which resultant is therefore destroyed by the resistance of the fixed point,

and it expresses the force with which this point is pressed. (See last note to No. 3.)

WTien there are two points ofthe system fixed and invariable, then the only possible motion,

which can be impressed on the body, is that of rotation, about the line joining the given

points, consequently if this line be taken for the axis of z, there will be but one equation

of equilibrium, i. e. ^.mS. ^ i/. (-5—) — x. ( -r—) \ = 0, this is also manifest from the

circumstances of the indeterminate quantities, wliich were six in number when there

was no fixed point, being reducible to one, when the origin of the coordinates, and also

another point of the system, were fixed and invariable. The forces parallel to the axes of

z cannot produce any motion in the s)'stem, ".' it is only necessary to consider those

which exist in the plane of x, ^ ; and as to those, it is evident, fi'om the equation

2m. S. -'
„. (-r-) — X. f J-) j- = 0; that their resultant passes through the origin of

the coordinates, its direction will be perpendicular to the axis of z, and its intensity will

express the force with which it presses on this axis. When the number of fixed points is

three, there is evidently no equation of equilibrium.

If the forces S, S', S'', &c. do not constitute an equilibrium, in order to reduce them

to the least possible number, we should resolve them into three systems of forces, parallel

respectively to the axes of x, oiy, and of ;:, then reducing the forces parallel to the axes

of X, and ^, to forces — to them respectively, but acting in the same plane, which is

always possible, if this last system of forces, and also the forces parallel to the axis of z,

have separately unique resultants ; and if these resultants exist in the same plane, we can

compose them into one sole force, which will be the resultant of the given forces ; but if

the forces directed in the plane x, y, can only be reduced to two parallel forces, not re-

ducible into one, then if" we combine them with the force parallel to the axis of z, the en-

tire system of forces, will be reduced to two parallel ones acting in different planes, conse-

quently irreducible into a unique force. Denoting

S.m.S. |-^l ; S.m.S. |.^| ; 2.)n.S. | -i- i, by P, Q, R; respectively, and

-X. fii}]. 2...S. |,.]^} -=.{^}}, by L, M,N.,,x„ ,, be

the coordinates of that point in which the resultant of all the forces meets the plane of

the axes of x, y, we shall have by the last note to No. 3, P.y,, — Qx^, n L ; Ra^.,

M N= M; — Q.y^, — N; therefore x., = —tt-; v., =: — „ > substituting thtse ex-
R R

pressions for x^ and y^, In the equation P-y,, — Q-x/, =^ L, we will obtain the equa-
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•tion L.R+M.Q-{-N.P^O, which may be considered as an equation of condition

which must be satisfied, when the forces which act on the different points of the system,

have an unique resultant. We must however except the case where P, Q, R, are res-

pectively equal to nothing; for then the forces are reducible to two parallel forces zz., but

not directly opposed to each other. If only P, and Q vanish, then in order that the

preceding equation may be satisfied, it is necessary that L should vanish, consequently

since P, Q, and L vanish, the forces which are directed in the plane, .r, y, constitute an

equilibrium, •.• the unique resultant of the forces S, S', S", &c. must be the same with the

resultant R, of the forces parallel to the axes of z, •.' we conclude that if L does not

vanish when P and Q vanish, the forces have not an unique resultant, since the forces

in the plane of x, y, are in this case evidently irreducible to one sole force ; if however

only one of the three sums P, Q, R, vanish, then the forces in the plane .r, i/, and those

parallel to the axes of z, would have respectively unique resultants, consequently the pre-

ceding equation of condition would apply to this case.

When the forces have an unique resultant, it is very easy to determine its position

with respect to the coordinates, for if we denote this resultant by V, we shall have

V^ ^ P'-\-Q^-\- R-, and—jT-, —, — = the cosines of the angles which V makes

with the axes of x, y, and z, respectively, and —— , —
, are the distances of the in-

H R
tersection of V with the plane of x, y, trom the axes of j: and y, respectively.

Supposing the system to revolve round the axis of z, the elementary varia-

tions of X and y, Sic. are r: respectively to y'^a, —rSa ; if y be made the axis

of rotation, and J<p the variation of the angle, then we shall have 5x — —z.'^p ;Jz = -\-

x.'i^ ; in like manner, x being the axis of rotation, and 34- the corresponding va-

riation of the angle, «!y= -^-z.l^ ; iz = —y,'^^ ; &c. ; now if the three rotations be sup-

posed to take place together, we shall have the entire variation of x=y.Su—z.Jip, of

y := z.i-^— x.^ai of z = x-isp—y-i^^, and similar expressions may be derived for the va-

riations of x', y, z', x", &c. ; now if we substitute these values for Jx, ^y,-i- &c. in the

equation flj, we shall have the equation L2<p-^- M.J-J/, A'.S<a=:0, L, M, N, indicating

the same quantities as before ; this equation is evidently equivalent to the equation (?i) ;

when the coordinates x, y, z, of any point of the system are proportional to the elementaiy

variations i^, S.p, S«, ;: ^^=y.Su, z.Sij' = ^^^> x2p z=.y'^^.

And consequently Sa- := 0, Sy =^ 0, Jz ^ ;
'." this point and all others which have

the same property are immoveable, during the instant the point describes the angles 3^,

^, S«, by turning round the axes of x, y, and z ; all points possessing this property exist

in a right line passing through the origin of the coordinates, see No. 28, as the cosines

of the angles m, n, I, which this hne make with the axes of x, y, and 2, are

= in this case/ r in mis waBc —^-===;;^^=:=

V S«
t- -i:t-+

d± -i
.

.y _ C Sf }

N
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Let us suppose that the bodies m, m', m", are subject to the sole force

S ii I

:• the right line which makes with the axes, angles whose cosines are equal to those ex-

pressions, is the locus of all the points, which are quiescent during the instantaneous ro-

tation of the system. Making S«=-y/3<P+5^'-|-S«*, we obtain i4> = S«. cos. m\ ^p ~ J*.

cos. n ; S« = S«. cos. ^; consequently Sx = {y. cos. l—z. cos. w). Sfl; ij/ = (z. cos. m

—

X. cos. /.) ^6 ; Ss. = (x. COS. 71—7/. cos. m.) ^S, substituting for Sx, Si/, h, these values in the

expression Sx* + Sy*-)"^2^> which is equal to the indefinitely small space described by the

point whose coordinates are x, y, z, and observing that cos.* /+ cos.' j«-)-cos.^ n= 1,

it becomes equal to {x*-\-i/^+z^—(x. cos. m-\-y cos. }i-\-z. cos. l.y). Ss^ x. cos. l-\-y.

cos. m+z. cos. n. is proportional to the cosine of the angle which the line whose coordi-

nates are x, i/, z, makes with the right line which makes the angles /, in, n, with the

axes of X, y, z, '.' when the line drawn from the origin of the coordinates to the point

whose coordinates are x, y, z, is perpendicular, to the instantaneous axis of rotation, the

elementary space described by a point so circumstanced — ^x»-)-^* -f-z-. Ss, tliis agrees

with what is demonstrated in No. 28. Ifwe suppose d^, 2p, Sv, proportional to Z,, A/, A^,

and make H= ^ L^ + M'+N', then

L S^)/ M S(p N iu ,

~7y = -rr = COS. m ;
——-= -r— = cos. n. -— = -r— = COS I.H Ss H Si H Se

•• 1' = H.cosm; M= H. cos. n; N = H. cos. I; ••• if // = i, m = 0, n = 100°,

/ = 100° ; •.• L, the moment of the force is a maximum when = H, and the moments

whose axes are perpendicular to the axis of H, will be equal to nothing. Tliis will be more

•fially explained in Nos. 21, and 28, it is mentioned here in order to shew how the conditions

of the equilibrium of a solid body may be expressed by means of the greatest momt?nt, and

unique resultant; if this resultant, and this moment respectively vanish,then ij»=0, H=0,
i. e. P,Q,R ; L,M,N, which are equivalent to the equations (j») (re), are equal re4)ectively

to nothing ; consequently the evanescence of H and R contains the six equations of the

equilibrium of a system, whose parts are invariably connected ; and as by No. 3, the sum

of the moments of the composing forces with respect to an axis, is equal to the moment

of the projection of the resultant of these forces ; this resultant must necessarily exist in

that plane, in which the moment is the greatest possible, •.• the perpendicular to tliis plane

L M N
must be at right angles to the resultant, consequently, as —— , —ry, -77 , are equal toH H H
the cosines of the angles which the axis of the greatest moment make with the axis of

P Q It
X, y, and z, and as -rrr-, — ,— , are equal to the cosines of the angles which V, the

unique resultant makes with the same axes ; by note to No. 2, page 7, we have LR+MQ
+ NP=^0, wliich is the equation indicating that the forces have an unique resultant
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of gravity, as its acts equally on all bodies ; and as we may con-

ceive, tiiat its direction is the same, for all the bodies of the system,

we shall have

S, =S', = S^=8cc.;

whatever may be supposed the direction of s, or of the gravity, we

shall satisfy the thi'ee equations C^J' by means of the three following :*

O = S.m.-y ; O = l,.m.i/ ; = ^.m.z
; CoJ

N 2

• The force of gravity being uniform, and the direction of its action being always the

sa™e,5=S'=S'-&c.;|-^}={|;[=&c.{^}={|,}, (for these quan.

ties
I
-r- I &c. indicate the cosines of tlie angles which the directions of gravity makes

with the three coordinates,) the three equations (n) may be made to assume the following

form

:

they are satisfied by means of the three following: 0=2.mx; 0=^S.my ; 0=^2.mz. The
equations (m) will be reduced to the following
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The origin of the coordinates, being supposed fixed, it will destroy

parallel to each of the three axes, the forces

by composing these three forces, we shall obtain an unique force, equal

to S.T.m. i. e. to the weight of the system.

This origin of the coordinates about which we suppose the system in

equilibrio, is a very remarkable point in it, on this account, that being

supported, the system actuated by the sole force of gravity remains in

equilibrio, whatever position it may be made to assume about this point,

which is from thence denominated the centre of gravity of the system.

Its position may be determined by this property, that if we make any

plane whatever pass through this point, the sum of the products of each

body,* by its distance from this plane, is equal to nothing ; for this

S 5 S

these forces admit a resultant, see note to pace 89, and as -r— , .^ , -^ , are equal to the
ex dy dz

cosines of the angles which its direction makes with the axes of .r, of y, and of z, com-

bining those three expressions, the resultant is evidently = to Sim ; consequently the force

with which the fixed origin is pressed, in this case equals the weight of the bodies com-

posing the systems. S.lm. answers to the expression tng. in the first note to page 78.

It follows from note to page 88, that the resultant of all the forces must pass through the

ori^n for 2,rax ; l.my ; 2,n?2 ; are equal respectively to nothing. If another point in the

system \)e$ides the centre of gravity was fixed, then = S.\ — V i.my r— . l.mz. >

is the sole equation of equilibrium ; in this case the fixed axis of rotation must be vertical.

* If Ax' -{ By'-\-Cz'= 0, be the equation of a plane passing through the centre of gra-

vity, the cosines of the angles which this plane makes with the plane of the axes x y, of

X z, and of y z, respectively, i. e. the cosines of the angles which a perpendicular to

this plane makes with th,e axis of .r, and of y, of 2 =ABC
see LacroLx, tom. 1. No. 269,

in like manner the cosines of the angles, which lines drawn, from the point, whose coor-

dinates are x, y, z, make with the axes of x, of y, and of z,
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distance is a linear function of the coordinates x, y, z,, of the body

;

consequently by multiplying it by the mass of the body, the sum of

these products will be equal to nothing in consequence of the equa-

tions. CoJ

In order to determine the position of the centre of gravity, let

X, Y, Z, represent its three coordinates with respect to a given origin j

let x, y, z, be the coordinates of m with respect to the same point

;

'Z', y', z', those of m', &c. the equations (oj will then give

O = x.m.(r

—

X.)

but we have s.w.X=Xz.w, z.m being being the entire mass of the

system, therefore we have

y 7:.m.x

we shall have in like manner

s.wi.j/ ^.m.z
j ^ —

s.w ' -z.m
'

:• by note to No. 2, page 7, the cosine of the angle which the perpendicular to the given

plane, makes with the line whose coordinates are x, y, z,

xA+yB+zC

xA+yB+zC
let this angle = a and ^/x=-f^^+s» x cos. a'= ./ ^a i P2 , /-z = ^^^ distance ot

the point from the given plane, consequently, the sum of all the distances multiplied res-

pectively into their masses

A. ^.mx-\-B. J.my+ C. S.wz

in consequence of the equation (o).
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thus, as the coordinates X, Y, Z, determine only one point, it follows

that the centre of a system of bodies is an unique point.

The three preceding equations give

this equation may oe made to assume the following form :*

the finite integral s»zwj'[(y—or)* + (?/'—y)*+(:'—s)'] expresses the sum

of all the products similar to that, which is contained under tlie charac-

teristic s, and which is formed by considering all the combinations of

* The square of the sum of any number of quantities, being equal to the sum of the

squares of tho.-e quantities, and twice the sum of tUt; products of all the binary combi-

nations of the different quantities, we iiave

(2(m.r)) ' = 2()n^.T^ ) -|-2 ^[mm'.xx) ; Smm/. (x—x')')

denotes the products which are obtained, by taking on one part all the binary combinations

of the bodies mm , &c. in which the quantities mm are affected with different accents, and

then multiplying these by the square of (x

—

x), in which the terms have respectively the

same accents as tlie bodies which they are multiplied by, thus 2.(x—x')' = r^4-x'^-)-x*^ +
&c.—2xx'—2xx"—2x'x"—&cand ^{mm' x

—

.t'y)= mm'x'+mm'j/^ -\-mm".x' 4- nim"^"^ +
m'm"x'^-j-ni'ni'..i"'-^-S:c. —Imm'xx —Imn'xx" —Im'm" xfx" ; &c. zz'S^mm'.x')

—22( )H///'.(xx')) and as 2(mx*) =, mx* +jn'x'^ +m"x"^ +&c. 2(ot^- ). 2m.

=(jnx^+w't'*-; m''2x"» I &c.)-(»n+w'+''-f m"'-t-&c.) =:m-x^ + m"'x"--\-m"^x"' +&c,

+mmx- -f-mHj'x'+jwm'x'' +m"7n'.c'^-^7nm".x''' f-m'm'.x"^ -\-&c. =2(m*x')4.

2(wm'x2) •.• (_;„.i) == 2(wn = )+ 22(mm'xa')= 2(mx*). 2w —2(»nm'x')—2.ram'.(x—j;*)'

-j-2;wm')x^) == 2(inx-).2m —2OTm'(x—x )-, (by substituting lor 2(«i»r^) its value

2()nx")2m —2'wm'.(x^;, and for 25(?wm'.xx'). its value 2(mni'.(x2),) —2(^mm'.{x—x')\)

•-• the value of Jt*

(Smx)' (2»nx') 'Smm'^x—x)'

(2jnj* "" im (2?h)«
'

we might derive corresponding expressions for Y^, and Z*.

This method gives the position of the centre of gravity of any body of a given fonn>

•without being obliged, to refer the position of its molecules to coordinate planes.
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the different bodies of the system. We shall thus obtain the distance

of the centre of gravity from any fixed point, by means of the dis-

tances of the bodies of the system, from the same fixed axis, and of their

mutual distances. By determining in this manner the distance of the

centre of gravity from any three fixed points, we shall have its position

in space ; which suggests a new way of determining this point.

The denomination of centre of gravity has been extended to that

point, of any system of bodies, either with or without weight, which

is determined by the three coordinates X, Y, Z.

16. Is is easy to apply the preceding results to the equilibrium of a

solid body of any figure, by conceiving it made up of an indefinite

number of points, firmly united together. Therefore let dm be one of

these points, or an indefinitely small molecule of the body, and let

X, y, z, be the rectangular coordinates of this molecule ; also let

P, Q, R, represent the forces by which it is actuated parallel to the

axis of r, of J/, and of z, the equations (w?) and (ri) of the preceding

number will be changed into the following

:

=fP.dm ', O =fQ.dm ; ^fR.dm-*

^/C-Pi*—Q-^)- dm ; =f{Pz—Rx). dm ; O =f{Ry—Qz). dm

;

The sign of integration f is relative to the molecule dm, and ought to

be extended to tlie entire mass of the solid.

*
5 "V~ f

being the cosine of the angle which the direction of the force S makes

with the axis of x, S. ) — > = the force resolved parallel to the axis ofx, ••• it is equal to

P; and as^.m=/dm, 2m. -S.^-r^f =/ P.dm, and since 2.S. ^-^i.i/m=fPi/.dm;
OX t 0X

^.m.S.
{ y-

{^ } - ^- { -^ } =/ {P})- Q^) dm, &c.

From the values which have been given in the text for the coordinates of the centre of

gravity, it is manifest that the position of this centre remains unaltered, whatever change

may take place in the absolute force of gravity, •.• when bodies are transferred from one

latitude to another on the surface of the earth, though the absolute weight varies, still the

position of the centre of gravity is fixed.
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If the body could only turn about the origin of the coordinates, the

three last equations will be sufficient for its equilibrium.*

* When any system of homogeneous bodies is in equilibrio, the centre of gravity is

then the highest or lowest possible ; this is immediately evident from the principle of virtual

velocities, for let the weights ofany number of bodies m, ?h', m", be denoted by S, S', S"»

&c. and let y, s, s", &c. represent lines demitted from the centres of the several bodies

m, m', m", &c. on the horizontal plane; now if the position of the system be disturbed in

an indefinitely small degree, we shall have, when the bodies of the system are in equili-

brio, the equation of virtual velocities

Sh+ S'.h'+S.h"+&c. = 0,

consequently the quantity of which this expression is the variation, i. e. Si+ S'«'-f-S'V'-t.

&c. (= the entire weight of all the bodies composing the system, multiplied by the distance

of the centre of gravity of the system from the horizontal plane, = s^.S.'^m.) is a maximum

or mioimum, and as the weight of all the bodies of the system is always given, the distance

of the centre of gravity of the system from the horizontal plane must be either a maximum

or a minimum when the system is in equilibrio ; this being established, it is interesting to

know the equation of the curve, in which the centre of gravity is lower than in any other

curve whose points of suspension and length are given; the'investigation of this curve,

which is termed the catenary, is very easy, it occurs in all the elementary treatises, the

differential equationis of the following form [i^-\-g).dx~g. cos. c.vdx' -\-y'.

It might be proved conversely, that when the distance of the centre of gravity from an

horizontal plane is the greatest or least possible, the system is in equilibrio, for we shall

have SJ.<-(-i)'.Js' + &/''3.^''/-^-&c. = G.S.« , =0, however there is an essential difference be-

tween their states of equilibrium ; in the first case, the equilibrio is denominated instable, in

the second, it is termed stable, in order to determine these two different states, we should

attend to the species of the motion when the centre deviates by an indefinitely small quan-

tity from the vertical, see Xo. 30.

* In Physical and Astronomical problems, the method that is generally employed, to

determine the mean value between several observed ones, of wliich some are greater, and

some less than the true one, is to divide the sum of all the observed values by their number.

Tliis comes, in fact, to determine the distance of the centre of gravity from a given

plane. For if z, z, z", &c. represent the observed quantities, then ,
&c.

n

is the expression for the mean value, but if ^, 2', 7!', denote the distances of the centres of

zm-\-z'mi-\-z"m."-\-
gravity of n masses, equa each to m from the plane, then —

, arc. =
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the distance of the centre of gravity of the system of in masses from this plane

— '"

, &c. = the required mean value.

If several forces concurring in a point constitute an equilibrium, then supposing that,

at the extremities of lines, in the directions of these forces, and respectively proportional

to them, we place the centres of gravity of bodies equal to each other, the common

centre of gravity of these masses will' be the point where all the forces concur. For

since the forces are by hypothesis represented by lines taken their direction, and con-

curring in one point, it is evident that by making this point tlie origin of the coordi-

nates, we shall have the sum of the forces parallel to the three rectangular axes propor-

tional to 2(j), 2(!/), 2(3), these sums are ••• by the conditions of the problem = to nothing,

see note to page 11 ; and since the masses are all equal we shall have 2(x).m = 2(»a)

= 0, this also obtains for the other axes, consequently we shall have 2(ot.j-) = 0, ~{m^)

= 0, 'Z{mz) = 0, ••• the origin of the coordinates coincides with the centre of gravity of

the system of masses respectively equal to vi.

The centre of gravity of a body, oc system of bodies, is that point in space from which

if lines be drawn to the molecules of the body, the sum of their squares is the least pos-

sible. For if X, Y, Z, represent the coordinates of such a point, then the sura of the

squares of the distances of all the molecules of the system from this point is equal to

2((j;

—

X) *-f-(y— ^*(z

—

Z)'^)> 'f ^e take the differential of tliis expression with respect to

each of the coordinates, and multiply each of the terms of the sums which are respec-

tively equal to nothing, by the element of the mass, we shall have 2.m.(.i-—.Y) = 0,

2.»7i.(^— Y)=0, 2.«4z—Z,) = 0,

... A'=r ^Oa^. Y_ ^^^ Z— ""'"
-

2w 2»J ' 2ffi

and from what has been demonstrated in the preceding note it follows, that if we apply

to all the points of the system, forces directed towards the centre of gravity, and propor-

tional to the distances between those points and the centre of gravity, these forces will

constitute an equilibrium ; consequently when several forces constitute an equilibrium,

the sum of the squares of the distances of the point of concoiu-se of these forces, from

the extremities of lines representing these forces, i. e. the sum of the squares of these

Unes, is a minimum.

From the preceding property it appears, that if several observations give different values

for the position of a point in space, the mean position, i. e, the position which deviates

the least from the observed positions, is that in which the sum of the squares of its dis-

tances from the observed positions is the least possible. The problem is altogether similar

when we wish to combine several observations of a7iij kind whatever; for the distances of

the points correspond to the differences between the particular results and their mean

value ; and since it is impossible entirely to exterminate these differences, we are obliged to

select a mean result, such that the sums of the squares of these differences may be a mi-

O
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niniuni ; this is the principal of the method of the least squares, which was devised by

Le Gendre to combine the equations of conditions between the errors deduced from a.

comparison of the astronomical tables with observation ; it comes in fact to find the centre

of gravity of the observations which we compare together.

The general form of the equations of condition is as follows

:

~ a-\-bx-\-ci/-\-dz-\-&c. when we pass into one member all the terms which com-

pose them, a, b, c, are given numerical coefficients, if all these equations could be satis-

fied exactly, by the values of x, y, z, their first members would be necessarily reduced to

nothing by substituting for x, y, z, their values, but as this substitution does not render

them accurately equal to nothing, let E, E', E", represent the errors which remain, then we

shall liave E— a-\-bx-\-cy-\-dz-^&:z. ; E~ a'-hi'x-f c'y+ i/'s-f&c. ; E":=.a"\V'x-\-c'iy^

&c. the quantities x, y, z\ &c. are to be determined by tlie condition that the values

E, E', are either nothing, or very small ; the sum of the squares of the errors :=

i;=-fii=+£'-4-&c.= (a=-fa'--fa'''=4-&c.)-i-{i'+i'*+i''''*).x2+(c--f (' = -ff»'*-f&c.)/-

-f.(rf*-ha!"- -\-dff ' -f &c.)« ' -1- ;

2{abJro:b'^a"b"->r&c.)xJ(- 2 {acJra'c'+a"c«)y{- 2 {ad-\-dd'+a''d''-\-8cc.)z;

\-%bc+b'c' -\-b/'c"J^&c.) xy-{- ^(bd+ b'd'-^b"d'/)-{-^z+ &iC.

the minimum of this expression, with respect to x, will be

= 2.n6+x 'S-.h'^+y l..bc^z. 2.M-f&c.

the minimum with respect to j/ = 2.ac-|-x2.6c-|-y2c*-l- x.2.rfc= 0, we derive a cor-

responding value for the minimum of z, hence in order to form the equation of the

minimum with respect to one of the unknown quantities, we must multiply all the

terms of each proposed equation by the coefficient of the unknown term in that equa-

tion, and then put the sum of the products equal to nothing. Though this method

requires more numerical calculations, in order to form the particular equation relative

to each unknown quantity, than the method suggested by Mayer ; it is more direct in

its application, and requires no tentation on the resulting equations. Laplace has shenii

in his Theory of Probabilities, that when we would take the mean between a great number

of observations of the same quantity, obtained by different means, this is the only method

which the theory permits us to employ, see Le Gendres Memoir on the determination of

the orbits of the comets, ard Biot's Astronomic Physique, tome 2. page 200.
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CHAPTER IV.

Of the equilibrium of fluids.

17» In order to determine the laws of the equilibrium, and of the

motion of each of the molecules of a fluid, it would be necessary to

ascertain their figure, which is impossible ; but we have no occasion to

determine these laws, except for fluids* considered in a mass, and for

this purpose the knowledge of the figures of their molecules is useless.

Whatever may be the nature of these figures, and the properties which

depend on them in the integrant molecules, all fluids, considered in the

aggregate, ought to exhibit the same phenomena in their equilibrium,

and also in their motions, so that from the observation of these pheno-

mena, we are not able to discover any thing respecting the configura-

tion of the fluid molecules. These general phenomena depend on

o2

* Although the figure of the molecules of fluids are unknown to us, still there can be

no question but that they are material, and consequently that the general laws of the equili-

brium and motion of solid bodies are applicable to them. If we were able analytically to

express their characteristic property, to wit, extreme smallness, and perfect mobility, no

particular theory would be required in order to determine tiie laws of their equilibrium and

motion ; they would be then only a particular case of the general laws of Statics and Dy-

namics. But as we are not able to effect this, it is proposed to derive the theory of their

equilibrium and motion from the property which is peculiar to them, of transmitting

equally, and in every direction, the pressure to which their surface is subjected; this

property is a necessary consequence of the perfect mobility of the molecules of the fluids.

In the definition wliich has been given in the text there is no account made of the tena-

city or adhesion of the molecules, wloich is an obstacle to this free separation ; this adhe-

sion exists however between the molecules of most of the fluids with which we are ac-

quainted.
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the perpect mobility of these molecules, which are thus able to yield to

the slightest force This mobility is the characteristic property of

fluids ; it distinauishes them from solid bodies, and serves to de-

fine them. It follows from this, that when a fluid mass is' in

equilibrio each molecule must be in equilibrio in consequence

of the forces which * solicit it, and of the pressures to which it

is subjected by the action of the surrounding particles. Let us

proceed to develope the equations whicii may be deduced from this

property.

For this purpose, let us consider a system of fluid molecules, consti-

tuting an indefinitely small rectangular parallelepiped. Let x, y, z,

denote the three rectangular coordinates of that angle of the parallele-

piped, which is nearest to the origin of the coordinates. Let dx, dy,

dz, represent the three dimensions of this parallelepiped ; let p repre-

* When a fluid is contained in a vessel, the pressure to which it is subjected at its sur-

t'ace is transmitted in every direction, as has been just stated, but since the molecules ar^

material, 'they must have weight, therefore it also presses the sides of the vessel with a

force arising from the weight of the molecules, and different in every point of the sides

;

and if the fluid is contained in a vessel closed in every side, when the molecules are solicited

by any given accelerating forces, then the pressure is different for every particular point, its

direction is always perpendicular to the surface, since by No. 3, when the resistance of a

surface destroys the pressure on it, the direction of this pressure must be normal to the sur-

face. The intensity of this pressure depends on the given forces, and on the position of

the point.

Therefore it appears, that in the equilibrium of a fluid contained in a vessel, the entire

pressure in each point of the sides is the sura of two pressures altogether distinct ; one of

which arises from the pressure, exerted on the surface, and is the same on all the pomts

;

the other is owing to the motive forces of the particles of the fluids, and varies from one

point to another.

Fluids are generally distinguished into two classes, incompressible, and elastic; with

respect to the last class, they may press against the sides of the vessel in which they are

enclosed, although no motive forces act on the particles, or without any pressure urging

the surface of the fluid. For from their elasticity they tend perpetually to dilate them-

selves, which gives rise to a pressure on the sides of the vessel : however this is a constant

pressure in tlie same fluid ; it depends on the matter of ll>e fluid, its density and tem-

perature.
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seut the mean of all the pressures, to which the different points of the

side dy. dz of the parallelepiped, which is nearest to the origin of the

coordinates, is subjected ; and let f' be the corresponding quantity on

the opposite side. The parallelepiped, in consequence of the pressure to

which it is subjected, will be urged in the direction of x\ by a force

equal to (j)—;p')- dy.dz
; p—p is the difference of f, taken on the hy-

pothesis that .r alone is variable ; for although the pressure f acts in a

direction contrary to ^j, nevertheless the pressure to which a point is

subject being the same in every direction, p'*-p may be considered as

the difference of two forces infinitely near, and acting in the same di-

rection ; consequently we have*

p'^^zz < -J-^\.dx, and [p
—p'). dy. dz = — \~J^ \' ^'^' ^y' ^~'

Let P, Q, /»*, be the three accelerating forces which solicit the mo-

lecules of the fluid, independently of their connexion, parallel to the axe^

of X, of y, and oi z ; if the density of the parallelepiped be denoted by />,

its mass will be equal to p. dx. dy. dz. and the product of the force P by

this mass, will represent the whole motive force, which is derived from

• Since p, 5, P,Q,Il, generally vary from one point to another of the fluid mass, tliey

must be considered as functions of x, 7/, z. We distribute the fluid into parallelepipeds, in

order more easily to express in analytical language the fact of the equality of pressure,

which, as has been stated, is the fundamental principle from which we deduce the whole

theory of thtir equilibrium, and by supposing these parallelepipeds indefinitely small, we

ite permitted to consider all the points of the same side as equally pressed, and also

^ > Pt Q, R, as constant for each side respectively, by means of which we are able to

detennine the pressure p. x, y, z, being the coordinates of the angular point next the

origin, and p being a function of these coordinates, we shall have

the coefficient ) ~- [ = < -^ \ &c. they are taken negatively because they tend to

diijamish the coordinates.
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it ; consequently this mass will be solicited parallel to the axes of x\ by

the force jpP— f—f-1 C, dx.dy.dz. For similar reasons it will be so-
(. \ dx SS

licited parallel to the axes of j/, and of a, by the forces

ip.Q

—

\-~- 5 f . dx.dy.dz. and S^.R— 1-^|^. dx. dy. dz. &c.

therefore, by the equation [b) of No. 3, we shall have

or ip = p(P.<J*4-Q.J;j/+ii.J^).

The first member of this equation being an exact variation, the second

must be so likewise ; from which we may deduce the following equation

of partial differentials,*

I dy S~ I dx )' I dz ^ \ dx f I dz >~C dy i

. * Wheng (P.Jx+Q.Sy+/?.Ss.) is an exact difFerential, | —^|—1= < -~ \ &c.

(see Lacroix Traite Elementaire, Calcul. Differential and Integral, No. 261.)

'''~~clf"^ Ihj dx "^ dx ' dz "^ dz ~ dx "^ dx
'

SL—L . _^?:iL__ ±
1

i_Lj if we multiply the first equation by R, the second by
dz ~ dz dy dy

—Q, and the third by P, we shall obtain,

^.R.dP: JhP.d^ R-i-dQ R.Q.d^ ^.Q.dP Q.P.di _ ^.Q.dR

dy ^ dy ' dx dx ' dz dz dx

R.Q.d^ ^.P.dQ P.QJj _ ^.P.dR
I

R.P.di

dx ' dz dz '^ dy dy '
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from which we may obtain

This equation expresses the relation which must exist between the

forces P, Q, and R, in order that the equilibrium may be possible.

If the fluid be free at its surface, or in certain parts of this surface,

the value of p will be equal to nothing in those parts 5 therefore we

shall have Sp z: 0, provided that the variations Sx, Sy, iz, appertain to

this surface ; consequently when these conditions are satisfied, we shall

have

O = PJx + QJy+ RJz.

If Su — O, be the differential equation of the surface, we shall have

PJx+ QJt/ -jr R.iz= \Ju,

X being a function of r, 1/, z', from which it follows, by No. 3, that

by reducing all the terms in which Jj is involved to one side, and then adding them toge-

ther, we get

( RMP R.dQ Q.dP
,
Q.dR P.dQ P.dR

y. dy dx dz dx dz dy

_RP^ RQ.d^ QP.d^ RQ.d^ PQ.3g RP.d^ _
dy '^ dx

*
dz ~ dx ~~ dz + dy "^

^

*
by coacinnating

This equation shews whether the equilibrium is possible, though we are unable to as-

certain the density ;.
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the resultant of the forces P,Q,R,* must be a perpendicular to those

parts of the surface, in which the fluid is free.

Let us suppose that the variation P(}'x 4- Q.(r3/ + i?.(?s; is exact, this is

the case when P,Q,R, are the result of attractive forces. Denoting this

variation by J'<?, we shall have Sp = fS(p; therefore p must be a function

oip and of 9, and as the integration of this differential equation gives (p

If the relation indicated by this equation does not obtain between the forces P, Q, R,

the fluid will be in a perpetual state of agitation, whatever figure it may be made to as-

sume ; but when this relation is satisfied, the equilibrium will be possible, and vice versa ;

and as P,Q,,R, are functions of the coordinates, we can integrate the expression 5.(P.Sx+

Q.Sy-[- J?.S;.) by the method of quadratures, by means of which we can find the value of

the pressure for any given place of the fluid ; consequently we can obtain the force with

which any side of the vessel in which the fluid is enclosed is pressed. But though the

relation which exists between the forces must be such as to satisfy the preceding equa-

tion, when there is an equilibrium, still this is not suflicient, in most cases, to insure the

equilibrium, for the fluid must also assume a determined figure, depending on the nature

of the forces P, Q, R, which solicit the molecules.

* When an imcompressible fluid is free at its surface, and in a state of equilibrium, p
must vanish, v Sp—0, if the fluid is elastic this condition can never be satisfied, because g

being proportional to p, whilst the density has a finite value, p can never vanish. When p
vanishes, Or:J/^=P.Sx-{- Q.Sy-f ii.Sx, v when Sx, S^, 3;:, appertain to the surface, by sub-

stituting for P, Q, R, their values, the resulting expression will be the equation of the sur-

face. It follows from No. 3, that the resultant of the forces P, Q, R, must be perpendi-

cular to the surface ; it may be proved directly thus :

P Q R

y/p^^a'-VR" V/'^+ Q-fA'*' V P' + Q.''+R^'

are equal to the cosines of the angles, which the resultant makes with the axes of x, ofy,

and of z, but since P.Sx-j-Q.Jy+iJ.Jz, is the equation of the surface, they also express

the cosines of the angles which the normal make with the same axes respectively ; see

Notes to page li ; consequently the normal coincides with the resultant. This coincidence

of the resultant with the normal is the second condition, which must be satisfied, in order,

as has been stated above, to insure the equilibrium ; and it is this condition which enables

us in each particular case to determine the figure corresponding to the equihbrium of the

fluid, and if there be one only attractive force directed tov.ards a fixed point, then the surface

will be of a spherical form, the fixed point being the centre of the sphere ; if this point
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in a function ofp, we shall have p in a function of />. Therefore the

pressure is the same, for all molecules whose density is the same ; thus Jf>

must vanish with respect to those strata of the fluid, in which the density

is constant, and with regard to these surfaces, we have,

0=PJx+QJy+RJz.*

consequently, the resultant of the forces, which solicit each molecule

P

be at an infinite distance the surface will degenerate into a plane, ••• if the planets were

1

originally fluid, and if their molecules attracted each other with forces, varying as -— they

would assume a spherical form. See No. 12, Book S**.

• If P.3x-f-(J.Jy+/?.32is an exact variation, Sip, Jprr^Jip, •.•
j must be some function

of <p, otherwise it would not be an exact variation ; however, the form of this function is

undetermined, see note to page 10, consequently p will be a function of ^, and p
and { will be the same for all those molecules in which the value of (p is given, i, e. for

the molecules in the same strata of level, therefore when the density varies, an equili-

brium cannot subsist unless each stratum is homogeneous during its entire extent ; for

when this is the case, j, and consequently p is the same ; ••• ^p :x. 0, for the surfaces in

which 5 is constant, •.• for such surfaces O^P.Jj^+ Q.5y-j-i2.Jz, and the resultant coin-

cides with the normal. If we integrate the preceding equation, by putting ip equal to a

constant arbitrary quantity, we derive an equation which appertains to an indefinite num

ber of surfaces, differing from each only by the value of this constant arbitrary quantity.

If we make this quantity increase by insensible gradations, we will have an infinite series

of surfaces, distributing the entire mass into an indefinite number of strata, and constituting

between any two successive surfaces, what have been denominated strata of Level. The

law ofthe variation of the density 5, in the transit from one strata to another, is altogether ar-

bitrary, as it depends on what function of ip, 5 is, but this is undetermined. It appears from

what precedes, that there are two cases, in which Sp — 0, when it is at the free surface, in

which case p must vanish of itself, and also when p is constant, i. e. for all surfaces of the

same level, consequently when the fluid is homogeneous, the strata to which tlie resultant of

the forces is perpendicular, are then necessarily of the same density.

When the fluid is contained in a vessel, closed in on every side, it is only necessary that

all strata of the same level must have the same density ; in elastic fluids, the first condition

to wit, that p should vanish, or that P.3j;-|-Q.Sy-|-i?.Jz— 0, can never obtain, v unless

this fluid extends indefinitely into space, so that { may be altogether insensible it cannot

be in equilibrium, except in a vessel closed in on every side.
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of the fluid, is in the state of equilibrium, perpendicular to the spruces

of these strata, and on this account they have been termed strata of

level. This condition is always satisfied, if the fluid is homogeneous,

and incompressible, because then the strata, to which this resultant is

perpendicular, are all of the same density.

For the equilibrium of an homogeneous fluid mass, of which the ex-

treme surface is free, and covers a fixed solid nucleus of any figure

whatever, it is necessary and sufficient, first, that the variation P5x+
Q..Sy + R-\-Jz be exact ; secondly, that the resultant of the forces at the

exterior surface be directed perpendicularly towards this surface.*

* If two different fluids are in equilibrio, then the surface which separates them must

be horizontal ; if the denser fluid is superior, the centre of gravity of all the molecules will

be highest; if it be inferior, then the centre will be lower than in any other position, •.

that the equilibrium may be stable, the denser strata should be inferior. See Kotes to

No. 15.

When^ is constant, the equation ip^C, gives the relation which must exist for each

stratum of level between the coordinates of the different molecules of the surface which

answers to the preceding equation ; in this case S<p = 0, which shews that <p is either a

maximum or minimum, and generally when P.Jc-j-Q.Jy+if.Ji is an exact variation, 5 is

a function of $, •.• the equation of equilibrium 2yj—^.S^p^rO, shews that in the state of

equilibrium there is a function of p and of x, y, 2, which is either a maximum or a mini-

mum. Though in the state of equilibrium all the molecules in the same strata of level

have necessarily the same density, and experience the same pressure, still the converse is

not true, for in homogeneous incompressible fluids, g is constant in those sections of the

fluid in which neither 2ip, nor 5p~0.

In elastic fluids, the density g is observed to be proportional to the compressing force, •.• p
^.k.^ ; k depends on the temperature and matter of the fluid, by substituting for 5, in the

equation J/j^zgSip, weobtain ep=.^. S<p, •• by integrating we get log.p+C zz—, because

when the matter and temperature are given, k will be constant, •••by makuig C= —log. £,

<P

we obtain piz Ec k, :• since p and 5, == ^ -j- j- , are respectively functions of
<f), the

pressure and density will be constant for each stratum of level, but the law of the variation

of the density is not arbitrary, as in the case of incompressible fluids, for the, eqiiatiop

p] E ^ .'' ''""•

5 = —=:
-J-

. c k, determines the law. If the matter of the fluid remaining homo-

geneous, the temperatuie undergoes any alteration, k will be a function of the variable
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tetnperatuire, but in order that the equation —^s=— may be an exact variation, it is

necessary that k, and ••• the temperature should be functions of
<f), these functions are

altogether arbitrary ; consequently we conclude, that when the fluid is in a state of equi-

librium, the temperature of each stratum is uniform, and that the law of the variation of

temperature is arbitrary ; but this law being given, we are able to integrate the expres-

sion -y-i from which integral we can conclude the law of the densities and pressures

by means of the equations p: . - ' ; —
In incompressible fluids, if the force varies as the n"" power of the distance from the

centre, by fixing the origin of tlie coordinates at this point, we have P^ ^jr"-*. j, Q =:

^jr"-l y, R=A^r^Kz,-- P.Jx+Q.Sy-f-iJ.Sz =^g,'^l. (x.SxH-^%+J.3z)=Jjr". Jr, =
dp, •••

, ,
when » IS given, r: (p =p+C, when n =—2, —2 = n = ^

1+1 n+l r

if gravity is the sole force acting on the molecules, by making the axis of z vertical, P and

Q, will vanish, and R = g, '.• /P.Sx-j- Q.dy+ R.h is reduced to the equation g.h = 0, •.•

gz = C, consequently the surface is horizontal, since R = (A^r'^^.z) =g,/(g.dz) =p
:• the pressure varies as the height. Since when the force varies as the n"" power of the

distance from the centre dp = Ar".dr^, by substituting in the equation of elastic fluids

in ip Ar^"^^~~~T ft"" »^) and integrating, we get log. p = — >, consequently, if the
P " K.(?2-j-l '

("+ l)"" powers of the distance be taken in arithmetic progression, the pressures and the

densities proportional to them, will be in geometric progression, •• if n is negative, and if in

the radius, ordiaates be erected proportional to the pressures or densities ,the locus of their

extremities will be a curve of the hyperbolic species, and the radius produced, will be an

asymptote to the curve, if n is positive, the locus of the extremities of the coordinates,

will be a curve of the parabolic species, if n:;0, i. e. if the force is constant, the locus

will be the loganthmic curve. See Princip. Matth. Liber 2. Prop. 22, et Scholium.

p2
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CHAPTER V.

The general principles of the motions of a system of

bodies.

18. We have, in No. 7,* reduced the laws of the motion of a point,

to those of its equilibrium, by resolving the instantaneous motion into

two others, of which one remains, while the other is destroyed by the

action of the forces which solicit the point ; we have derived the diffe-

rential equations of its motion, from the equilibrium which subsists be-

tween these forces, and the motion lost by the body. We now proceed

to employ the same method, in order to determine the motion of a

system of bodies m, m', m \ &c. Thus, let mP, mQ, Em, be the forces

which solicit ?« parallel to the axes of the rectangular coordinates *,

y, z ; let m'P', m'Q', m'R', be the forces which solicit m, parallel to

the same axes, and so on of the rest ; and let us denote the time by /.

The partial forces m.—-—,m.-^,wz.—^ of the body m at any instant
at at at

whatever will become in the following :t

• The principle established in this number, has been termed <Af pmiciple of D' Alembert,

by it the laws of the motion of a system are reducible to one sole principle, in the same

manner as the laws of the equilibrium of bodies have been reduced to the equation {I) of

No. 14.

\ In consequence of the mutual connection which subsists between the different bodies

of the system, the effect, which the forces immediately applied to the respective bodies

would produce, is somewhat modified, so that their velocities, and the directions of their

motions, are different from what would take place, if the bodies composing the system

were altogether free ; consequently, if at any point of time we compute the motions which

/



PART I—BOOK I. 109

m.—r + m. d. — m. d.—--+ mP.dt
;

dt dt dt

»i.-4^+ m,d. -4-
dt dt
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and as the forces

rfj , dx dy
,

, dy dz ^ , dz
ni. 1- m. d. —— ; m. -~+ in. d. -^- ; m. —— + m. d. —— ;

dt dt dt dl dt dl

of the velocity, tliat the changes in the motions of tlie body arc made by insensible

degrees.

The inspection of the equation (/') sliews tliat it consists of two parts entirely dis-

tinct, of which one is the quantity which wc ought to put equal to nothing, when the

forces P, (I, It, J'', itc. which are applied to the diflbrent points of the system, constitute

an equilibrium, the other part arises from the motion which is produced by the forces

/', <i, II, /•', iVc. when they do not constitute an equilibrium ; therefore we may express

the equation (/') in this manner:

= 2.(«.(/^.3x+a3y-f./?.3.-)- -m.^^.ix +^. 33,+.-^'| . 3,.

J

ai\d the equation (/) of No. H', is only a particular case of the equation (F) ; thus the

principle of virtual velocities may be considered as an universal instrument which is ne-

cessary for the solution of all problems relating to Mechanics. The expression

by which the equation (P) differs from the equation (l) is entirely independant of the

positiim of the axes of the coordinates ; for by substituting the coordinates .r', t/', z, in

place of the preceding coordinates x, y, z, by the known formula: we have

X r: ax'-\-bff'+cz',

, 1/ r= ax'Jfb'y'-^-c'z,

the origin being tlie same, by differentiating the preceding expression twice, the coeffi-

cients a, b, r, a, &c. being constant, we obtain

n'»i = a.d^x'-\-b.d^iy -^-c.d^z',

d*y = a'.d'x'+b\d't/+c.d*z-,

d^z—of.d'x'+b^.d'y'+OM'x':



PART I.—BOOK I. Ill

only remain j the forces

— m. d. + P. dt -.-^m.d. —^ + Q.dt ;
—m.d. h R.dL

dt
'

dt dt

will be destroyed.

By distinguishing, in this expression, the characters wi, x, y, z.,

P, Q, R, by one, two, marks, &c. successively, we shall have an ex-

pression for the forces destroyed in the bodies rd, m'., &c. This being

premised, if \ve multiply these forces by the respective variations of

their directions ix, Sy, Sz, &c. we shall obtain, by means of the princi-

ple of virtual velocities, laid down in No. 14, the following equation,

in which dt is supposed to be constant.

I dt* S ( dt' ) ( dt'

,(P)

From this equation we may eliminate, by means of the particular

conditions of the system, as many variations as we have conditions ; and

then by making the coefficients of the remaining variations separately

and also,

3x = a.Ji'-f-A.Jy'-J-c^z',

h/^ a'.3f'-|-i'.3y+c'Ji',

3z = a' .3x'+ b^'.hj"+ c".'i:f ;

V by substituting for these expressions in the expression

rf»x . , dry
, d\z d*jf .,, dW ,,, d'^z ,,

„. _. 3^+«._^.+^.__.weget,«.^^. Jx-hm.-^. b +'»-;^- ^^-

{oT a^ -\-a'^ +a"' = 1, ab-^ac+ 6c = 0, &'C. see Notes to page?; the same fiubstitu-

tions being made in the expressions of the mutual distances between the bodies, the co-

efficients a, b, c, a', &c. will disappear for the same reasons.
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equal to nothing, we shall obtaui all the equations necessary for deter-

mining the motions of the several bodies of the system.

19. The equation (p) involves several general principles of motion,

which we shall examine in detail. The variations Sx, Sy, Sz, will be

subjected to all the conditions of the connection of the * parts of the

forces, by supposing them equal to the differentials dz, dy, dz, dx'. Sec.

* If the equation of condition involves the time explicitly, then we are not permitted to

suppose the variations Sx, hj, Sz, equal to the differentials dx, dy, dz, as for instance, if

one of the bodies composing the system, always existed on a given surface, which surface

moved according to a given law ; or if the body moved in a resisting medium, whicli

medium was in motion, then there will exist an equation between the coordinates of the

body and the time which will also be at any instant, the differential equation of the sur-

face, the most general equation expressing the preceding condition, is of the following form:

0.{x, y, z ; x, y, z, &c. t) =0,

at the following instant the coordinates will be varied by the quantities 3j, ly, Iz ; Sx', oy\

&c and the equation of condition will become

<p.{x-\rSi, y ^Sy, zlzx x'+J^, y'+Sy', s'+Sz', &c. t) =:F =r. 0,

V the difference of these two expressions, i. e.

bat the complete differential of the preceding function =

T is the differential coefficient of F, taken on the hypothesis that the time varies, conse-

quently, if F involves the time explicitly, when we subject the variations Ix, iy, &c. to

satisfy the conditions of the connection of the parts of the system, we are not permitted

to regard the expression

as equal to nothing.
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This supposition is consequently permitted, and then the integration

of the equation (P) gives

V ,„.i^il±J^±f^) =c+2.2.>.(P.di+ Q.^i/+i2.(/^) ; (Q)

c being a constant arbitrary quantity introduced by the integration.

If the forces P, Q, R, are the results of attractive forces, directed

towards fixed centres, and of a mutual attraction between the bodies ; the

function "L.fm.^P.dx+ Q.dy+Rdz)* is an exact integral. For the

Q

* In fact, the accelerating force of m, produced by the action of m in the direction of

the line_^ zsm F, (Fis always a given function ofjl) '.' the components of tliis force pa-

rallel to the axes of x,i/, z, are m'F. -—-— , m'F. , m'F.
~

,
•.' the parts of

P.dx+ Q,.dy-\-R.dz, which answers to this force alone are

ni'F.{{x'—x).dx-^{y'—y).dy-\-{z'—z).dz), and as the accelerating force of m', arising

from the action of m, resolved parallel to the coordinates x, y, z, respectively=

m.F. — 4- m.F. ^^~y + VI.F.
~~

, the corresponding part of FJx-t

Q'.dy'+R'.dz, is, F.w. |if=ii.rf/+l^^:^.%'+if=il. dz\, therefore in or-

der to have the motive force ai'ising from the mutual action of the bodies m and m'

we must multiply the first expression by m, and the second by »n', and adding them toge-

ther, they will become

mm'.F. (x'—x). dx+ (y'—y).dy+(z-zJ.dz+{x—x').dx^-\-{y—y'). dy+iz—z), d^)=

mm'.F.fd/, for asf^={x-^y+{y-yY +{z-z'y,fdf:^

{x-x').(dx-dx')+ {y-yWy-dy)+ {z-z).{dz-dz),

consequently as F is given to be a function ofy; ^f-dj. is an exact differential. If the

.centres to which the forces are directed Jiave a motion in space, then P.rfx+ Q.di/^Rdz,

is not an exact differential, though the law according to which the forces vary should be a

function of the distance, see Note to page 34.

The sum of the living forces at any instant will be given by the equation ( Q), when
we know the value of this sum at a determined instant, and the coordinates of the bodies

composing the system in the two positions of the system. And when the system returns

to the same position, the living forces will be the same as before.



114. CELESTIAL MECHANICS,

part whicli depends on the attractions directed towards fixed points, are

exact integrals by No. 8. This is equally the case, with respect to

those parts, which depend on the mutual attractions of the bodies com-

posing the system ; for if we name^ the distance of m from m', m'F,

the attraction of ot' on »z ; the part of m(P.ds+ Q.di/ + R.dz) which

arises from the attraction of m' on m, will be, by the above cited

No. equal to —mra'Fdf, the differential df being taken on the supposi-

tion, that the coordinates x, y, z, only vary. But reaction being equal

and contrary to action, the part o?m'{P'.dx'-\-Q'.dy'-]rR'dz'^ which is

due to the attraction of m on m', is equal to —mm'.Fdf, the coordi-

nates x', y\ z', being the only quantities which are supposed to vary,

consequently df being the differential ofy on the supposition that both

the coordinates x, y, z, and x', y', z', vary simultaneously, the part of

the function 1.77i(^P.dx-{-Q.dy -h Ji-dz) which depends on the reciprocal

action of m on vi' is equal to —nim'.F.d/i Therefore this quantity is

an exact differential when F is a, function of f, or when the attraction

varies as some function of the distance, which we shall always suppose ;

consequently the function 1.7n.(P.dx+Q.dy-{-R.dz} k an exact dif-

ferential, as often as the forces which act on the different bodies of the

system, are the result of their mutual attraction, or of attractive forces

directed towards fixed points. Let then d(p represent this differential,

and naming v the velocity of 7n, t/ the velocity of ni', &c. we shall have

I..mv' = c+ 2<?. (R)

This equation corresponds to the equation (g) of No. S, it is the

analytical expression of the principle of the conservation of living forces.

The product of the mass of a body by the square of its velocity, is

tenned the living force, or the vis viva of a body. The principle just

announced consists in this, that the sum of the living forces, or the

entire living force of the system is constant, if the system is not b,oIicited

by any forces ; and if the bodies are actuated by any forces whatever,

the sum of the increments of the entire living force is the same what-
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ever may be the nature of the curves described, provided that their points

of departure and arrival be the same.*

However this principle is only applicable, when the motions of the

bodies change by imperceptible gradations.! If these motions undergo

abrupt changes, the living force is diminished by a quantity which may

be thus determined. The analysis which has conducted us to the

equation (P) of the preceding number, gives us in this case, instead of

that equation, the following

:

0= S.w. ^—-.A. -— + -f-.A. 4-+ -—.A.
( dt dt dt dt dt

dz

IF

q2

* What has been demonstrated respecting the mutual attraction of the bodies of the

system, is equally true respecting repulsive forces which vary as some function ot' the

distance; it is true also when, die repulsions are produced by the action of springs in-

terposed between the bodies'; for the [force of the spring must vaiy as some function ot

the distance between the points, •.• in the impact of perfectly elastic bodies though the

quantity of motion communicated may be increased indefinitely, stUl the living force after

the impact is the same as before ; indeed during the impact, the vis viva varies as the

coordinates of the respective points vary, but after its completion, from the nature of

perfectly elastic bodies they resume their original position, and consequently the value of

the vis viva will be the same as before, but if the elasticity is not perfect, in order to have

the value of the vis yiyaat an}^ instant, we should know the law of the elasticity, or the

relation which exists between the compressive and restitutivc force.

J WTien the motions of the botlies of the system, are modified by friction, or the re-

sistance of the medium in which the motion is performed, the expression P.dx-\-Q,.dy-\-Rjdz

is not an exact differential, see note to page 34, and the living forces must be diminished.

This is indeed evident of itself, for when the bodies of the system are actuated by no

other forces but those of resistance, the sum of the living forces must be gradually dimi-

nished, in order to determine the actual loss experienced after any time, we should know

the law according to which the resistance varies, which is very difficult to be determined

;

but there is another cause of diminution of the living force, in which we are able to deter-

mine accurately the loss sustained, to wit, the case adverted to in the text, when the

bodies undergo an abrupt change in their motions.

X The characteristic A designates according to the received notation, the difference

which exists between- two consecutive states of the same quantity.
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-^x.m.{PJx-i-QJi/^RJz)
',

dx du , dz , . . ...rr, r dx dy dz r

A.— , A. -^ , A. —— , being the ditterences of —j-t —r-> —r-, trom
dt dt dz

*' dt dt dt

one instant to another ; differences which become finite, when the

motions of the bodies undergo finite alterations in an instant. In this

The equation (/-") may be made to assume the following form :

inwhich tlie changes that are produced in the motions of the bodies composing the system, are

made by insensible degrees, as is evident from the circumstance, that the differential of the

velocities is expressed by—— , see note to page 30 ; now, if instead of this gradual di-

1 • • dx dy
ininution, bodies experience abrupt changes m their motions A. -^. A.—-, &c. express-

ing those changes, the preceding expression will be changed into the following

:

-2.n;.(P.Sj+ Q.?^ -J-
jR-Jy

;

dx Sx

~di" It

dx
and as in this case wA. —^ is the variation of the force of the body, on the supposition

dt

that it is entirely free, and m.P.dt is the variation which actually takes place in conse-

quence of the action of the bodies of the system, the reasoning in No. 18 is applicable to

this case, consequently the preceding expression may be put equal to nothing ; and since the

values of dx, dy, dz, are changed in the following instant into rfx+A.tfor, dy-\-^-dy. dz+^dz,

we shall satisfy the conditions of the connection of the parts of the system, by making

tlie variations 3x, iy, h, equal to these expressions respectively ; and then the preceding

equation will assume this form

f dx _ dx t dx , ( dy dy \ dy

{

dz_ Jz_\ dz^

' dt"^ dt ] ^' dt

2.»n.(P. ( (ix+A.rfx )+ Q. ( rfy-f- A.rf^)+ i?.((/z+ A.(/£ ), =0,
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equation we may suppose

Sj:=:dx+A.dx ; $y zz dy + A..dij; Sz = r/^+A. dz;

because the values of dx, dy, dz, being changed in the following in-

stant into d.T + £^.dx, dy + £:i,dy, dz+A>..dz, these values of Sx, Sy, Sz,

satisfy the conditions the connection of the parts of the system ; there-

fore we shall have

\^ dt^ dt ^ dt^^dt^ dt ^ dt

C dz dz > dz }

i-dF^ ^•~dfy^~di\

^ X.m.(P.(.dr+A.dx) + Q.(dy+A.dy+B.(dzi- A.dz))

This equation should be integrated as an equation of finite differences

relative to the time t, of which the variations are infinitely small, as

well as the variations of ^, y, z, a/, &c. Let 2, denote the finite inte-

grals resulting from this integration, in order to distinguish them from

the preceding finite integrals, which refer to the aggregate of all the

bodies of the system. The integral of mP/dx + A.dx) is evidently equal

to JinP.dx f
therefore we shall have const.—

dx*+dy' + dz» ^^ [ ( ^ dx* ^, / dy* \ , dz\-i*
^''-

IP +^'-'"r^-5F)+^^-ir) + (--^)(

—21.fm.(P'dx + Q.dp+ R.dz)

;

dx
* In this equation, though the value of A. —— may be finite, still dx-\-i^.(Ix, and the

variation of the time may be indefinitely small, and V integrating with respect to this

C dx dx "J dx^
quantity, 2,2.»n. I ——.A.— V = 2.>n. —j-j-, or it may be otherwise expressed thus,

A.(x') :;^(see Lacroix No. 344) 2xh-{-h'^, and if /« be made equal to Ax, it becomes

2:r.Ax-|-(A.x)*, •.• 2. 2.Xj;A..r+(A.x)*) = 2,.(2a:.A.l-l-(Aj;)= )-(- 2,.(Ax)« — x^ + 2,.(Ax4),

consequently, if we multiply the preceding equation by two, and substitute dx in place of

r, and then integrate, we obtain the expression which has been given in the text.
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therefore v, v, v" denoting the velocities of m, m', in!', &c. we shall

have

s.^.'=const.-E,2.«.UA.^r+ { A.^r4- u.^xx' (^ dt f \ dt S '- dt S i

+ 2I.j:m.{P.dx+Q.dj/ +R.dz').

The quantity contained under the sign Z^, being necessarily positive,

we may perceive that tlie living force of the system is diminished by the

mutual action of the bodies, as often as during the motion, any of

the variations A.—

—

,A.—^, &c. are finite. Moreover, the preceding
Civ at

equation affords a simple means of determining the quantity of this

diminution.

At each abrupt variation of the motion of the system,* the velocity

* At every abrupt change in the motion of the system, the velocity is not always di-

minished for every body, but the expression which is here given may be considered as

general, by supposing that when the velocity is increased, a negative portion of it has beeti

destroyed, and the square of the velocity after the shock is equal to

^'"'
dt''

and as

^ 2.dxi\.dx+ '2{A.dxY + 2.dy^.dy+ 2{A.dyy +2dz:^.dz+2{ A.dz)*,

=0, by subtracting this equation from the preceding, we obtain the square of the velocity

after the shock, equal to

.„ (dx'+dy'+dz-
) ^___ (S.dx)^MM>/y-^(^-^=:)'

dt''
— "• • dt'

and as the square of the velocity before the shock is equal to l.mv'' =

2.W.—^

—

^ ^, the square of the velocity lost by the shock =2.ot. F*

_v« Jj^±y±{±_clyy+(A.dz)_' .

dt'
'

consequently the loss which the living forces experierjce, is equal to the sum of tlie living

forces, which would belong to the system, if each body was actuated by that velocity

which it loses by the shock.



PART I.—BOOK I. 119

of m, may be conceived to be resolved into two others, of which one v

subsists in the following instant, the other V being destroyed by the

action of the other bodies, but the velocity of vi before the decomposi-

. , . \/dx* + dy*-{-dz*, , , . n
tion being -^ , and changing afterwards into

dt

it is easy to perceive that

( dt S t dt S c dt S '

consequently the preceding equation may be made to assume the fol-

lowing form,

2.m'« = const.—2^.2.7??. V'—2.1.fm.{P.dx + Q.di/ + .dz),*

* The variation of the vis viva of the system, is equal to 22m,{P.dx-{-Q,.di/+ R.dz)

consequently when this expression vanishes, i. e. when f/.2.(mt'*) vanishes, the vis viva of

the system, equal to 2.()??u=), is a maximum, or a minimum; but it appears from the

principle of virtual velocities, that 2m.(P.Sx-[- Q.?!/-\-R.h) is equal to nothing, when the

forces P, Q, R, P", constitute an equilibrium ; and since the differentials dx, dy, dz, may

be substituted for the variations 'hx, tij, S^, when they are subjected to satisfy the condi-

tions of the connection of the parts of the system, l.m.[P.dx-\- Q,.dy-\-R.dz) is equal to

nothing, in the same circumstances ;
•.• when the forces P, Q, R, Pi, constitute an equi-

librium, the vis viva of the system is a maximum or a minimum.

And as it appears from note to page 96, that the positions of equiUbrium of a system

of heavj' bodies, correspond to the instants, when the centre of gravity is the highest or

lowest possible, the sum of the living forces is always a maximum or a minimum when the

centre ceases to ascend, antl commences to descend, and when it ceases to descend and

commences to ascend. The value of the vis viva is a minimum in the first case, and a

maximum in the second, for 'Zm.{P.dx-\-Q.dy-{-R.dz) corresponds to the expression S.Ji-f-

S'.Ss'-f S'''3i''''-|-&c. in page 96, and •.• by substitution we have Imv'^ = c-\-s,.S'^m. con-

sequently 5.?)!ii» is a maximum or minimum, when s, is a maximum or minimum. When
S.mii* . is a maximum, the equilibrium is stable ; when a minimum, the equilibrium is in-

stable. For from the definition of stability, (see No. 28) it appears that if the system is

only agitated Sy one sole species of simple oscillation, the bodies composing it will perpe-
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20. If in the equation (P) of No. 18, we suppose,

Sxf =z Sx-\-ix/ ; Sy' = Sy-\-Sy; ; Sz' zz Sz-\-Sz;
;

tually tend to revert to the position of equilibrium, consequently their ve'ocities will di-

minish according as their distance from the position of equilibrium is increased, and •.-

tlie sign of the second differential of ^ will be negative, consequently 2wd^. will be a

maximum in this case ; and it may be shewn by a like process of reasoning, that the vis

viva of the system is a minimum, when the equilibrium is instable.

From a comparison of this observation with the note to page 96, it appears that in a

system of heavy bodies, when the vis viva is a maximum, the centre of gravity is the

lowest possible, and highest when the vis viva is a minunum.

This may be more strictly demonstrated thus : if the system be disturbed by an indefinitely

small quantity from the position of equilibrium, by substituting for P, Q,R, P', &c. their values

in terms of the coordinates, and then expanding the resulting expressioninto a series ascend-

ing according to the variations of these coordinates, the first term of the series will be the

value of tp, when the system is in equUibrio ; and since it is given, it may be made to coalesce

with the constant quantity c, which was introduced by the integration ; the second term va-

nishes by the conditions of the problem ; and when 2.»nv" . is a maximum, the theory of max-

ima and minima shews that the third term of the expansion may be made to assume the form

ofa sum ofsquares, affected with a negative sign, see Locrobc, No.lSl; the number of terms

in this sum, being equal to the number of variations, or independant variables ; the terms

whose squares we have assumed, ai'e linear functions of the variations of the coordinates,

and vanish at the same time with them ; they are therefore greater than the sum of all

the remaining terms of the expansion. The constant quantity being equal to the sum of

c, and of the value of 'S.mv'^. when the forces P,\Q, R, P', &c. constitute an equilibrium,

it is necessarily positive, and may be rendered as small as small as we please, by dimi-

nishing the velocities ; but it is always greater than the greatest of the quantities whose

squares have been substituted in place of the variations of the coordinates ; for if it were

less, this quantity being negative, would exceed the constant quantity, and therefore render

the value of S.mi)'. negative, consequently these squares, and the variations of the coordi-

nates, ofwhich they are linear functions, must always remain very small, v the system will

always oscillate about the position of equilibrium, and this equilibrium will be stable. But in

the case of a minimum it is not requisite that the variations should be always constrained to

be very small, in order to satisfy the equation of living forces when <p is a minimum ; this,

indeed, does not prove that there is no limit then to these variations which is necessary,

in order that the equilibrium may be instable ; in order to shew this we should substitute

for these variations, their values in functions [of the time, and then shew from the form

of these functions, that they increase indefinitely with the time, however small the primi-
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ix"= Jx+ Sx',' ; Sy"=Sy+hj," j^s''^ Sz + Sz;' •*

&c. by substituting these variations, in the expressions of the variations

Sf, Sf', Sf, &c. of the mutual distances of the bodies composing the

system, the vahies of which have been given in No. 15; we shall find

that the variations Sx, Sy, Sz, will disappear from those expressions. If

the system be free, that is, if it have none of its parts connected with

foreign bodies, the conditions relative to the mutual connection of the

bodies, will only depend on their mutual distances, and therefore the

variations S^, Sy, Sz, will be independent of these conditions ; conse-

quently when we substitute in place of Sx', Sy', Sz', Sx,", &c. their pre-

ceding values in the equation (P), we should put the coefficients of the

R

live velocities may be. For a complete solution of the problem of the small oscillations of

a system, the reader is referred to the Mechanique Analytique of Lagrange, 5th and 6th

section, seconde partie, where the important problem of coexisting oscillations is discussed

in all its generality, and all difficulties are cleared up ; see also Notes to No. 23 and

SO, of this book.

* It is ahvays possible to make these substitutions, for it in fact comes to transferring

tlie origin of the coordinates to a point of which the coordinates are equal to x, y, z, res-

pectively ; as the expression for y,

_ (j;'—x).(g.r'—?x}+0/—»)(?/—?;y)+(z'—z).' iz'—2z)~
f

equal by substituting for x', y' , r', Ix' , h/, h', their values,

f ^

f
consequently as 3x, Sy, Js, disappear from the expressions of the variations

\f, If', and

as when the s3stem is at liberty, the conditions relating to the mutual connexion of its parts,

depend only on their distance from each other, the variations Jx, Sy, Sz, will be inde-

pendent of these conditions, .• substituting for Sx', 5y', ^z' in the equation (PJ, the values

which have been just given for them, the coefficients Ix, ly, ^z, must be put equal to

nothing.
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variations Sx, Sy, Sz, separately equal to nothing ; which gives the three

following equations :

Let us suppose that A', Y, Z, are the three coordinates of the centre

of gravity of the system ; by No. 15 we shall have,

y_s.nix
_ -^ _ T.V11/ s..mz

-A j X — ; ii = . ;

•s-.m s.m s.m

consequently

= ^_^f!£ . o = ^'^_^-^Q
. o = ^ s.?«-R ^

(If S.??2 ' </f S.TO ' ~ df '~'s..m
'

therefore the motion of the centre of gravity of the system is the same

• By actually substituting for Sx', Sy, "^J, Iz", &c. in the equation (P) we obtain 0=.

+•'>' {'^-^\^--'':-{'-^- p}

the terms in this expression which are multiplied by Sx, Sy, Sz, respectively, are by adding

them together

and being independent of the conditions of the connection of the system, they must be put

ieverally equal to nothing.

t SuiceX= , Y= —, &c. -r5-= 2.7W.-— = ,

2.WJ 2.m di' dt- 2.?k

2to

because

^.m.-—^—2m.P=0.



PART I.—BOOK I. 123

as if all the bodies m, m', &c. were concentrated in this point, the forces

which solicit the system being applied to it.

If the system is only subjected to the mutual action of the bodies

which compose it, and to their reciprocal attractions, we shall have

= -z.mP ; = -z.mQ ; O= -z.mR
j

for p designating the reciprocal action of m on m', whatever its nature

may be, and y'denoting the mutual distance of these two bodies ; we

shall have, in consequence of this sole action,

„ (x—x) „ (y—y') p [z—z')
mP=.p.^^—^—-; mQ=p. ^-

.

'•,mR=p. -—
,
—-

;

mF = p. ~ . ; mQ=p. '--^ •^- ; mR=p. ^

;

from which we collect

Oz=mP+m'P' ; 0=mQ + m'Q ; 0-mR + m'R'; *

and it is evident that these equations obtain, even in the case in

It 2 V

• /

—

X,y—)/, z'—z, being the coordinates of nt relative to the new origin of the forces,

and the action of p being directed along the line

the part of mP, which corresponds to the force p resolved parallel to the axis of

x=p — , the analogous parts of otQ, and mR, axep. \. >p- respectively,

in like manner the forces soliciting m' parallel to the coordinates, arising from the action of p,

-p. J ,P-
J-

'P- f >

.-. when the sole force soliciting tn and m' arises from p, which expresses the reciprocal action

•f m on m', we have mP-^-m'P',—p\JI' ' — =0.

Action being equal to reaction, and its direction being contrary thereto, when two bor
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which the bodies exercise on each other, a finite action in an instant.

Their reciprocal action disappears from the integrals ^.mP, ^.mQ, 'Z.mR,

and consequently, these expressions vanish, when the system is not so-

licited by any extraneous forces. In this case we have

and by integrating

X^a + bt: r~a'-{-b't; Z=a"+b"t;*

a, b, a', b', a", b", being constant arbitrary quantities. By eliminating

the time t, we shall have an equation of the first order, between either

X and Y, or X and Z ; consequently the motion of the centre of

gravity is rectilinear. Moreover, its velocity being equal to

v/{?F^ IfF^ {f}

or to v' b b'--^b'\ it is constant, and the motion is uniform.

It is manifest, from the preceding analysis, that this invariability of

the motion of the centre of gravity of a system of bodies, whatever their

mutual action may bc,t subsists even in the case in which any one

dies concurring, exercise on each other a finite action in au instant, their reciprocal action

will disappear in the expressions S.jwP, 5.mQ, &c. in fact, as we can always suppose the

action of the bodies to be effected by means of a spring, interposed between them, which

endtavours to restore itself after the shock, the effect of tlie shoclc will be produced by force*

of tlie same nature with ;;, which, as we have seen, disappear in the expressions 'S.mP,

S.otQ, S.mii.

By integrating once we get— = b, .: dX:z bdt, and X~ ht+a; the constant quantities
Clt

a, a', a", are equal to the coordinates of the centre of gravity when / =. 0, and b, V , b", are equal

to the velocity of the centre ofgravity resolved parallel to the coordinates. See notes to pageSl.

\ In fact, from what has been observed, in the note to page 116, it is evident that the

principle of D'Alembert is true, whether the velocities acquired by the bodies be finite,

after a given time, or indefinitely small, or whether the velocities be partly finite,

and partly infinitely small, such as arise from the action of accelerating forces, and both
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of the bodies loses in an instant, by this action, a finite quantity of

motion.*

21. If we make

Sjif-=z ^ + Sx ; Sx =^ h^< ; &c.
y y

Sy= + Sy/,Sij'= + Sy ; Sy'= + Sy;' ; &c. t

y y y
,

tiie variation J'.r will again disappear from the expressions iJ/, ^', ^f",

&c. ; therefore, by supposing the system free, the conditions relative

before and afler the impact, we have0= Trj-> 0= -rr^t *c. and also— . S.m =
(/<» ' df^ ' ' dt

dx . . .

2.m. — , &c, = the quantity of motion, and sinc^' ' by hypothesis the quantity of motion

dx
lost, equal to the difference between Sm.— before and after impact, should be = to nothing,

such as would cause an equilibrium in the system, it follows that -t^.S.jb. before and after

impact must be the same, but 2.?n being given, — equal to the velocity of tlie centre of

gravity, will be the same before and after impact.

* As the centre of gravity of a system, moves in the same manner as a body equal to the

sum of the bodies would move, if placed in the centre of gravity, provided that the same

momenta were communicated to it, which are impressed on the respective bodies of the

system, the motion and direction cf the centre of gravity, may be always determined by tlic

law of composition of forces.

If the several bodies of a system were only subjected to their mutual action, then they would

meet in the centre ofgravity, for the bodies must meet, and the centre ofgravity remains at rest.

t The fractional part of these expressions for Sy, Sx'/, Sy, ?/, Sj/'^, &c. arises from the ro-

tatory motion of the system about an axis parallel to z, for it appears from Nos. 22 and 25,

that when the direction of the impulse does not pass througli tiie centre of gravity, the

body acquires both a rotatory and rectilinear motion, now if the only motion impressed on the
'

system was that of rotation, then the element of the angle described by the body m, is equal

to the variation of the sine divided by the cosine=- — ^. Sj, the elementary angle de

scribed by
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to tlie connection of the parts of the system will only influence the va-

riations Sf, Sf" &c. ; the variation Sx is independent of them, and
entirely arbitrary ; thus by substituting in the equation (P) of No. 1 8,

in the place of Sx, $x", Sx"\ &c. Sy, Sy", Sf, &c. their preceding values.

= \/£2+^ ^'^J''+^/' . _"^^-'^"'+.y'*
. ix-

.'. the variation of j^ will be equal to

t:.^..

v^'g' ^-)-y'~ v' V ^' —
,

Sj,=- . dx the same may be proved of the other variations ix', 3x''
y ^/x'^^-y^ y ^ ^

'

^^
' +y' = the distance of m from the axis of r, .*. , ,

- is equal to the sine

of tlie angle which Vx^+i/' makes with y. If the expression —i—

—

-^ be consi-

y

a:
dered with respect to the cosine^, the variation o_y = —?x. ~ "^-^

.

y Vx^'+^:
ix.X „ , .

) tor the variation of the cosme is equal to the variation of the arc affected with

a negative sign, and divided by the sine, and as the variation of the angle described hr

, \/x--\-y"' ... . . Vx^^'+Z'^
"' -^

. ox, this expression being referred to the cosine is equal to -^—.•

. 3x.= . 3x.

If in the expression

we substitute for ^x', ^.i", Sj/, Sy', Sy , &-c. their values, it becomes

f
3(i/''ix xi/.ox , » . » , » , » ,

y'x.'.dx y.x''^x
.
y'xHx

y y y y y

~-—+yhl—y-h!~y h.^y^yrrf^ j^
therefore the variation Jx disappears from the expressions "if, "if, &'C.

Making the same substitutions in the equation (P) it becomes
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we should put the coefficient of Sx separately equal to nothing, which

gives

0='SM. ^^ ^~~ —̂^-+-z..m. {Pt/—Qx)
;

from which we deduce by integrating with respect to the time t,

c=z.m. C-^^i^—-V^-^) -|-s>?.(Py—Qx). dt;

c being a constant arbitrary quantity.

In this integral, we may change the coordinates y, i/, &c. into z, s',

provided that we substitute in place of the forces Q, Q, &c. parallel to

the axis of ^, the forces B, R', 2)arallel to the axis of z, which gives,

d = z.m.
(^dz-zclj/) ^ s/.m.(P3—i?^). di ;

<f being a new arbitrary quantity. In like manner we shall have

c"=x.m. C3/^~—3^^V)
+s,f,m.(Qz—Ry). dt;

1

c" being a third arbitrary quantity.

o-,4.,.g-P^-i.4S-«}+/..{--p.|

I

"*
I d-

— !'+'"• \ J \—mPy\-mQ,x—m'P'i/^m'Q^3/,&c.

therefore if tliis expression is extended to all the coordinates, it will become
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Let us suppose, that the bodies of the system are only subjected to

their mutual action, and to a force directed towards the origin of the

coordinates. Let ^; denote, as before, the reciprocal action of m on m',

wc shall have in consequence of this sole action,

0-m.(Pij—Qx) + 7n'.{Fy'—Qx')

;

thus the mutual action of the bodies disappears from the finite integral

^.nu(^P7/—Q.r). Let 5' be the force which solicits m towards the

origin of tlie coordinates ; in consequence of this sole force, we shall

have

P-
.

-^'^ -
: Q= -'^^^

consequently the force S disappears from the expression Pi/—Qx, thus,

in the case in which the different bodies composing the system are only

solicited by their action and mutual attraction, and by forces directed

towards the origin of the coordinates, we have

c = ^.m.——-—-—~ ; c —s.m.-^ ; -; c =l.m. -^ ^^^
dt . dt dt

If we project the body m, on the plane of :r and of 3/, the differential

—"^^ — , will represent the area which the radius vector, drawn from

the origin of the coordinates to the projection of m, describes in the time

dt ; consequently the sum of the areas, multiplied respectively by the

masses of the bodies, is proportional to the element of the time, fron.i

which it follows, that in a finite time, it is proportional to the time. I(

is this which constitutes the principle of the conservation of areas.*

When the bodies are only subjected to their reciprocal action,

2.OT.(Py—Qr)=w.(Py—Qx)+m'. (F/—QV)+ &c. —

by substituting for m P, m Q, their values, given in page 122,

^
{il/—x't/—)/l-\-xi/) 4. .ry—r;/—ya'-f-j'y) 7 _^
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The fixed plane of x and of y being arbitrary, this principle obtains

for any plane whatever, and if the force S vanishes, i. e. if the bodies

are only subjected to their reciprocal action and mutual attraction, the

origin of the coordinates is arbitrary, and may be in any point whatever.

Finally, it is evident from what precedes, that this principle subsists,

even when by the mutual action of the bodies composing the system,

they undergo sudden changes in their motions.

There exists a plane, with respect to which c and c" vanish, and

which, for this reason, it is interesting to know, for it is manifest that

see preceding number. If the bodies are solicited by forces directed towards a fixed

point, then making this point the origin of tlie coordinates,

consequently this force will also disappear from the expression Py— Qx, .•. in these two

, xdii—udx xdii—iidx , . , , . „
cases we nave c = 2 m. — , ac ; — —- iz the area wluch the projection of

the radius vector on the plane of x, y, describes in the time dt, see notes to No. 6,

page 27. Z.m.{Py—Qx) ~ 0, also when F and Q, &c. vanish, i. e. when the system

is not actuated by any accelerating force, but only moved by an initial impulse; .•. the

principle of the conservation of the areas obtains in these three cases; 1st. when the

forces are only the result of the mutual action of the bodies composing the system; 2ndly,

when the forces pass through the origin of the coordinates ; and 3dly, when the system

is moved by a primitive impulse. In the first and last case, the origin of the coordinates

may be any point whatever. If there is ajixed point in the system, the equations {Z) are

• only true when this point is made the origin of the coordinates, any other point being

made the origin, the moment Py—Qx will not disappear, see notes to No. 3, page 12 ;

if •. in these circumstances the bodies are solicited by forces directed towards a given

centre, this centre coincides with the fixed point of the system, when the equations (Z)

obtain ; if there are two fixed points in the system, only one of the equations (Z) will sub-

sist, to wit, that which contains those coordinates, the plane of which is perpendicular to

line joining the given points, the origin of the coordinates may be any point whatever in

tliis line, see notes to No. 15, page 88.

The constant quantities c, d, c", may be determined at any instant, when the velocities

and the coordinates of the bodies of the system, are given at that instant.

*
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the equality of c' and c" to nothing, ought to simpUfy considerably the

investigation of the motion of a system of bodies. In order to de-

termine this plane, we must refer the coordinates .v,?/,^, to three

other axes having the same origin as the preceding. Let there-

fore 9 represent the inclination of the required plane, formed by

two of the new axes, with the plane of a:' and oiy, and ^ the angle which

the axis of x constitutes with the intersection of these two planes,

so that S may be the inclination of the third new axis with the

plane of x and of y, and ^ may represent the angle which its

projection on the same plane, makes with the axis of x, ir being the semi

periphery.

In order to assist the imagination, let us suppose the origin of the

coordinates to be at the centre of the earth ; and that the plane of x and

of y coincides with the plane of the ecliptic, and that the axis of z is the

line drawn from the centre of the earth to the north pole of the ecliptic :

moreover, let us suppose that the required plane is that of the equator,

and that the third new axis, is the axis of rotation of the earth, directed

towards the north pole ; will represent the obliquity of the ecliptic, and

4 will be the longitude of the fixed axis of x, relative to the moveable

equinox of spring. The two first new axes will be in the plane of the

equator, and by calling (p, the angular distance of the first of those

axes from this equinox, <p will represent the rotation of the earth rec-

koned from the same equinox, and —-{-?> will be the angular distance

of the second of these axes from the same equinox. We will name

these three new axes, principal axes.

Let.r,,_y^, 2, represent the coordinates of m referred, first to the line

drawn from the origin of the coordinates, to the- equinox of spring ; x

being reckoned positive on this side of the equinox ; 2dly, to the pro-

jection of the third principal axis on the plane of x and of y ; Sdly to

the axis of z, we shall have
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xz=.xi. COS. ^-\-y,. sin. 4*

»

y=j/,. COS. v|/—T^ sin. 4/ ;•

» ^ */•

Let j,^ y,t, Zii, be the coordinates referred, 1st to the line of the equi-

nox of spring ; 2dly, to the perpendicular to this line in the plane of

the equator ; Sdly, to the third principal axis ; we shall have

^1 = x„
\

y, = y,!. cos. %-\-Z/,. sin. 6
;

z^ = Zi,. cos. 6—3/,,. sin. 6.

Finally, let x,„, y^^„ ^„,, be the cooordinates of m, referred to the first,

•
s 2

• As the axes of the coordinates .r,, y., exist in the plane of x, y, and as the angle

wliich the axis of x makes with the axis of x_, is equal to -i^, we have by the knowii formula;

for the transformation of one system of rectangular coordinates, into another system existing

in the same plane,

x=x,. cos.
\'-\-yi-

sin. •4' ;yr:_y,. cos. -i^—x. sin. ij/ ; and because the axis of2 coincides with

the axis of s , we have z=z. Comparing the coordinates, * ,^,,z,, with the coordinates x^,y^^,z^,

it appears that the axis of .Ty coincides with the axis of x^,, and consequently x,=t// ; and as

the axis of »/, is in the plane of the ecliptic, perpendicular to the line of equinox of spring, and

aa the axis of ^,, exists in the plane of the equator perpendicular to the same line, it is

manifest that the angle formed by these axes is equal to the angle i, the inclination of the

two planes, and that these two lines and the axes of z^ and z^^, which are respectively

perpendicular to those planes, exist in the same plane, consequently we have, as before,

yr^Vii' '^o*' ^-\-'^ir s'"- *> -/=-//• cos. i. —_!/„ sin. i. Lastly, it appears that the axis

of z,i coincides with the axis of s,,^, and consequently that z,,'=z,i,, ; and as the axis of

x„ and 2/,„ and of x,,^ and^„, are in the plane of equator; and as by hypothesis, ij) is equal

to the angle which the axis of*,,, makes with the line of equinox of spring, which line is

supposed to coincide with the axis of x^,, we have x^,=x^„. cos. <p—;y„^. sin.?; yi,=y,„.

COS. ip4-^,„- *'" ?• % substituting for x^ y^, x,^ y,„ their values, we obtain x=x,.

cos. >H".y/- sin- ^= (-r//- cos. ^^y,,- cos. 6. sin. ilz+z,,. sin. «. sin. 4-) = (r„,. cos. *.

COS. •vj/— ly,^^. cos. -vj/. sin. <p-\-y„,- cos. i. sin. ^. cos. (p. 4"^,„> cos, t. sin.^/. sin. (f
-[-z,,,.

sin 6. sin. 4"), •." by concinnating we obtain *=x„^(cos. t. sui. 4'. sin. ip+cos. (p. cos. ^)

-\-y„, (cos. i. sin. 4'. cos. ip.—cos. 4'- sin. ?)-J-z^,^. sin. i. sin. i^, which is the expression

given in the text ; by a similar process we could derive values for y and z.
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second, and third principal axes ; we shall have

x^ = x^^. COS. (p
—

1/

,

. sin. ip
;

From which it is easy to deduce

X = «'/^/.(cos. 9. sin. vf/. sin. ip + cos. ^. cos. (p) +

y^^,.{cos. 6. sin. ^. cos. ip—cos. vj/. sin. ip)

5;^,/. (sin. 0. sin. 4^) ;

«/ =07/^^. (cos. 6. cos. ]>. sin. (p—sin. \|/. cos. (p) +

^//^.(cos. G. cos. 4/. cos. 9 + sin. i}/. sin. (f)

+z^^^ (sin. 6. cos. ^');

z = z,^. COS. —j/j,^. sin. 6. cos. <p—o:*^^^ sin, 9. sin. (p.*

If we multiply these values o{ :r, y, z, by the respective coefficients of

If any line x is drawn from the origin of the coordinates x,,,, y^^, z,,^, and if A, B, C,

represent the cosines of the angles which a- makes with z_,,, ^/,^,, 2,,,, respectively, then

X = Axiii-\-Byiii+ C'2„^, for if a perpendicular erected from the extremity of x meets a

X
line r, whose coordinates are x,^,, y,,,, s,,,, then — is equal to the cosine of the angle

which X makes with r, and —^, ^^, ^^, are equal to the cosines of the angles which
r r r

r makes with x„,, ^,,„ z„„ •.• we have by note to page 7, — = ^. —' + B.—
r r r

z+ C.-^, :• x=zAx^i^-\-By^^^+Cz^^^. Consequently we infer that the coefficients of x^^^,

Villi ''IIP
'** ^^ expression given in the text for x, y, z, are equal to the cosines of the

angles which the axis of x, y, z, make with the principal axes respectively ; therefore sin.

t. MD. >}', is equal to the cosine of the angle which the axis of 2„,, makes with the axis of



PART L—BOOK I. 133

Xw, in the preceding expressions ; we shall have, by adding them toge-

ther,

x^^^ = a:. (COS. 9. sin. 4/. sin. p+cos. v|/. cos. <p) +

3/.(cos. 9. COS. vj/. sin. <p—sin. v}/. cos. <p)

—

z, sin. 9. sin. <p.

By multiplying in like manner the values of x, y, z, by the respec-

tive coefficients of i/,„ in the same expression, and afterwards by the co-

efficients of 5,„, we shall have

z/,,y = a;.(cos. 9. sin. v}/. cos. ^—cos. vf/. sin. ip.)4-

X, :• equal to the cosine of the angle which the plane of ?/,,,, j
^

, makes with the plane

y, z; in like manner sin. S. cos. ip, is equal to the cosine of the angle contained between

the axis of z^^^ and of^,=the cosine of the inclination of the plane a;,,^, y,^^ to the plane

s, z, also sin. i. sin. ip, sin. 6, cos. (p, cos. i. are equal to the cosines of the angles which

the axis of z makes with the axes of x,„, i/,„, and z,„, respectively, see No. 27.

We may observe that in the general expressions for the transformations of one system

to another of rectangular coordinates, which are of the following form

:

^ = ^x,„-\-Bt/,„+Cz„„

z= A„.x,i,-\-B/j.y,„-\-C„.z,,„

there are six equations of condition, i. e.

A* + A,^ + A,/,=l AB+A,B,+A,yB// =0,

B^ +B,'+ B,/, =1 A C+Af,+A,,C„ =0,

C^+ C; + C,,/,=l BC+B,C,-\-B,,C„=:0,

which are derived from the identity between the expressions a;* +y^ +z», and x,,,'' H-i/,„--|-

z,,,*, for they are respectively equal to the square of the distance of the same point, from

the common origin of the coordinates, •.• three of the nine coefficients which are intro

duced by the transformation, may be regarded as undetermined; these three undeter-

mined quantities are, in fact, the angles 6, ij/, and (p ; for, by substituting in the six preceding

equations of condition for A, B, C, A,, &c. their values in functions of the angles 6, 4^, and (p,

the resulting equations will become identical, and there arises no relation between f, 4^, and p.
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^.(cos. 0. COS.
\J/,

COS. ^+ sin. \|/. sin. (p)^z. sin. 0. cos. ^

;

s

«„, =*. sin. 0. sin. ^^+2/- sin. 0. cos. tj/. + 2. cos. 6.

These different transformations will be very useful hereafter, we will

obtain the coordinates corresponding to the bodies m, m", &c. : by

placing one, two, &c. marks above the coordinates x^, y^, z,^^, y ^^^ z,,.*

• If we actually perform this operation we shall obtain

r.(cos. «. sin. 4-. sin. (p+ cos. 4- cos. ?i)=x,^,.(cos. -6. sin. s^-. sin. 2^+cos. ^^, cos. V+
2 cos. d. sin. T^. COS. ^. sin. ip. cos. (p.)

\-t/f,f.(coa. 'e. sin. -•vj'. sin.ip.cos. ip+cos.«.sin. 4-. cos 4. cos.*^—cos. ^.sin.i^. cos. 4'. sin.V
—cos. '4- s'"^- 'P- cos. Ip.)

-f-z,,,.(siii. 6. cos. (I. sin. '-4/. sin. (p + sin. 6. sin. <}/. cos. •vj'. cos. <p) ;

^.(cos. 6. cos. 4. sin. ?—sin. if. cos. *.)

;ex^„.(cos, <. COS. '4/. sin. *<fi+sin. ^^.cos. "(p—2(cos. 6. sin. 4/. cos. 4'- sin. ?. cos. $)

+y„,.(cos. *6, cos. 'i^. sin, ^. cos. ip+cos. «. sin. -vf- cos. vj'. sin. •<?— cos. i, sin, vj/. cos, -i-.

cos. "<p—sin. ^^. sin. ^. cos. <p.)

-j-s„^.(sin. 6. cos. «. cos. 'i^- sin. $>—sin. 6. sin. i|'. cos. 4-. cos. ^)

—r. sin. I. sin. <p=—2,,^. sin, d. cos. d. sin. ip+y„,, sin. *1 sin. <p. cos. ^+x,,,. sin. s^. s;n. '^
;

adding these three equations together, and making the terms which are at the right hand

side to coalesce, we shall get the coefficients of J',,,= to cos. '<». sin. ":p+cos '?.+ sin. '*.

sin. 'ip, (=sin. ^ip—sin. ^6. sin. ^^+ cos. '(f+sin, ^6. sin. *V) =1> t'le coefficients of y^,,

will be equal to cos. ^6. sin. (p. cos. $r-sin. ip. cos. ^-j-sin. ^$. sin. ij. cos. ip:=0, in like

manner the coefficient of z^^ =sin. 6. cos. 6. sin. (p—sin. 6. cos. d. sin. tp^O ; the terms at

the other side are those which have been given in the text. In like manner to obtain the

value of
y^,i, a corresponding multiplication gives

x.(cos. (. sin. ^. cos. ^—cos. i^. sin. f) =

x^,^.(cos.*^. sin. *4/,sin. ^.cos. ?i-j-cos. *. sin. 4/. cos. 4. cos. 'f—cos. 6. sin, 4. cos. -v^. sin. *f—
cos, 'if- sin. (p. COS. (p)

•]-yf,J[cos, "e. sin. ^T^. COS. '(p-J-cos. ^•4, sin. -?i—2. cos. 6. sin. 4. cos. ^. sin. f. cos. ^\

+ z,„(sin. ). cos. e. sin. ^il'- cos. <p—sin 6. sin. 4'. cos. •4-. sin. (?)
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From what precedes, it is easy to conclude, by substituting c, C, c", in

place of

dt dt dt *

t/.(cos. e. COS. ip- COS. <p-|-sin. ^|'. sin. ip)

= :c,„(. COS. H, COS. ^^z. sin. ^. cos. <p—cos. 6. sin. v^. cos. %//. cos. ^^ -j-cos. 6, sin. 4'' cos. i^.

sin.-^—sin. ^. sin. <p. cos. <p)

+y„,(cos. ^. cos. 'if', cos. 'ip+sin. ^. sin. 'ip+ 2. cos. 9. sin. (p. cos. ^. sin. 4". cos. vf-)

-f-«,„' sin. *. cos. i. cos. -i^. cos. if+sin. 6. sin.i/^. cos. i|/. sin. f.)

—z. sin. S. cos. ip=r

—1,„. sin. i. cos. S. cos. ip+y/,/- sin. ^i. cos. "ip+x,„. sin. ^6. sin. ^. cos. ?,

-aJding those quantities together, and concinnating as before, we obtain

j.(cos. i. sin. 4'- cos. (p—cos. 4'. sin. ^)4-^-(cos. 6, cos. tp. cos. p+ sin. •\^. sin. 9)

—z. sin. ^. cos. ip—

«,„.(cos. ^t. sin. Ip. cos: ip—sin. (p. cos. <l>-{-sin. ^6. sin. (p. cos. 9)=0,

+j/„^(cos. 2^. cos. *?i+sin. ^^-f sin. ^i. cos. *(p)=r^„,,

+ r„,. (sin. 9. cos. *. cos. <p— sin. «. cos. i- cos. ip)=.0.

Fw the value of a,,^, by performing similar operations, we obtain x. sin. i. sin. 4"=

c,„.(sin. 6. COS. 4. sin. ^. sin. (p-{-gin. 0. sin. ij/. cos. 4'* cos- f

)

+y//,.(sin. t. COS. <. sin. ^^J'* cos. $—sin. e. sin. ^. cos. i^. sin. ip)

+£^„.(sin. ^*. sin. ^i/''

y. sin. #. cos. \f'=:

«„,.(sin. i. cos. *. cos. ^. sin. ip—sin. 0. sin. i^. cos. i^- cos. ip)

+^///'(sin. «. COS. (. cos, 24,. cos. 9+ 8in. «. sin. 4. cos. ij/. sin. ^)-f.a,_^(8in. '*. cos. '-vf-.)

«. cos. 6=.— X,,,. sin. e. cos. ^. sin. <p—^,,,.(sin. 6. cos. ^. cos. ?+«;,,• (cos. *»),

<,*. adding tlie corresponding quantities together, we obtain



136 CELESTIAL MECHANICS,

that zm. '" •^^"'~~^^"' •'""'

=c. cos. 6

—

c'. sin. «. cos ij^ + c". sin. t. sin 4'

;

dt

X .dz .

—

z .dx
sm. -^^^^

—

'"
,

"^—^ =c. sm. fi. COS. (?
*

dt

X. (sin. i. sin. 4')+^' sin. i. cos. 4" +-• cos. «=

*,,^.(sin. i. COS. C. sin. ?)— sin. ^. cos. i. sin.if).)=0,

H-y,„.(sin. ^. COS. i. COS. ip— sin. C. cos. i, cos. ?>)=0, +3„,.(sin. s^.+cos. -«)=3„^.

* When we substitute for the expression Xndym—yuM^u,' the respective values of jr„,,

'i^iii'y,,!' ^Viii' "^ functions of *, dx,y, dy, and of the angles 6,-^, and (p, it is not ne-

cessary to take into account any expression, in which the variable part is the product ot

a coordinate into its own differential, because this expression occurs again, affected witl%

a sign, the opposite to that, with which it was affected before. By performing the pre-

scribed multiplication of the value of a:,,, into the value of c/y,,, of y,,^ into dx„, we obtain

x„_-dyii,-=xdy.[cos. -6. sin. -ij/. cos »|/. sin. <p. cos. $-}-cos. 6. sin. "•p- sin. '<? "h cos. i.

cos.'i^. COS. ^^+sin. i|/. cos. 4'. sin. (p. cos. (f),

-J-y.(/x.(cos. "6, sin. i|^. cos. vf-. sin. ip. cos. <p—cos. 6. cos. ^-vj/. sin. '^— cos. ).

sin. ^i)/- cos. ^?i-|-sin. i|/. cos. <i^.
sin. ip. cos. ^),

—z.c?x.(sin. 6. COS. ^. sin. ij/. sin. ?>. cos. (p—sin. 6. cos. ^f/.
sin. "ip),

—3.rfy.(sin. ^. COS. 6. COS. ij'. sin. ifi. cos. ?>+ sin. «. sin. 4'. sin. '<p),

—j.t/z.(sin. 6. COS. «. sin.-|. sin.
(f>.

cos. ?)-j-sin. 6. cos.
•J', cos. -ip),

—y.dz.{siu. 6. cos. S. cos. ^. sin. ^. cos. (p— sin. 6. sin. t^. cos. "if),

y^^,.rfr,„.rr«.rf_y.(cos. 2«. sin. il/- cos. il/. sin. (p. cos. ip—cos. 6. sin. s-J.. cos. *ip—cos, t. cos. yvf^.

sin. -.p+sin. i^, cos. i^. sin. (p. cos. ip),

-}-y.rfx.(cos, 2«. sin. ij/, cos.
-J/, sin. (p. cos. <p-f-cos. 6. cos. '4- cos. -ip -J- cos. i.

sin. 24. sin. 2(p-|-sin. i^. cos. if'- sin. (p. cos. ?),

—^z.</j;.(sin. S. cos. 6. sin, if- sin.
(J. cos. (p-fsin. 6. cos. 4''C0S. ^^),

—z.dy.(sm. 6. COS. tf. cos. 4. sin. ip- cos. 9— sin. «. sin. 4. cos. ^^),

—x.rfr.(siii. 6. COS. «. sin. 1^. sin. 9. cos. <fi—sin. 6. cos. if/, sin. *ip),

—y.rf2.(sin. «. cos. e. cos. 4- sin. (p. cos. <p-f sin. 6. sin, 4-. sin.'^);
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c'. (sin. ^. sin. ^+cos. 6. cos. x)/. cos. <p)+c^''. (cos. \f/.
sin. p—cos. 8. sin. 4'.

COS. <p) J

'^^^'"'^^'"•—^"''-^!^^ = —c. sin. 9. sin. <p.

+c'.(sin. 4-. COS. (p-^cos. S. cos. i)/. sin. <?)

+c". cos. ^'^ COS. 9+ cos. 9. sin. ^. sin. (p).

If we deteiinine 4^ and 6, so that we may have sin. 9. sin. i|/

c" —c'
, .

= ,^—1=7=^ ; sin. 9. cos. J/ = ~>~; ,„
—

, which gives

c
COS. 9 = / „ ., .,, we shall have *

3c,.dii .

—

y„,'dx

,

, .

2WJ.
dt

' = \/c*^c'*-^c"* +

•/ subducting x,iidyi,, from y„,.t/x,„, and making the terms whose variable parts are the

same coalese, we obtain ^m-dyn,—.y/„.rfa;,„ = (x.rfy

—

y.dx). cos. «-{- (xdz—zdx), sin. #.

COS. i//-|-(^.t?2—^z.dly), sin. 6. sin. •vf/; and substituting for x.dy—y.dx, s.dz—z.dx, &c.

their values d,c" ,, we obtain c. cos. i d. sin. «. cos. -^/^-^fd'. sin. ^. sin. 4'; =x„,.f^y,„

—

ViiA^iiii ^y ^ similar analysis we arrive at the expressions for Xm-dz^,!—z^^-dx^^,, ym-dz^i,—
~iii-^y,i,> which are given in the text.

c"« J. c" '

* For sin.
' 6. sin.* i^ -fsin. * 6. cos. * i|/= sin. - « = vTv a j.'X'a'

**' ''°^' ' ^'~^—*'"' * *

c^+d^+d"

f For substituting in place of cos. 6^, sin. 6. cos. xj',. sin. S. sin. •vJ/„ these values, we

shall have

rf<

:= V c*4-c'--|-c'S and if we substitute for c, c', c", their values, \/c^-J-c'^-f c*",

cos. «,
— 'V^c*+c'*-j-c"*, sin. «. cos. 4". +v^c2+'c*-f-"c», sin. «. sin. !•, the expression

"•"'•
ill

~" will become v6'-\-c^-{-c', (sin. 6. cos.S. cos.i?,—sm.^.sm.if.
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^^^^
x„,dz„r-z,Ar,„ ^

;
^.ILid^H^j:^, = ;

dt dt

,'. the values of c' and c" vanish with respect to the plane of x^,, and ^„,,

determined in this manner. There exists only one plane, which pos-

sesses this property, for supposing that it is the plane of x and i/, we

shall have

Z;«.
"'-^-^--^-•^"- = c. Sin. 9. COS. , ; Im.

y'-d^''^-'-^^'" =
dt

_

dt—c. sin. 9. sin. ip ;

If these two functions are put equal to nothing, we shall have sin.

9=0, which shews that the plane of a-,,, and y,,,, then coincides with

V dii 1! • dx
the plane of x and y. Since the value of "Zm. ' '"'

" fji
"'—~

is equal to \/c*+c* + c"*, whatever may be the plane of x and y, it

follows that the quantity c* + c'*+c"« is the same, whatever this plane

may be, and that the plane of x„ and y,„, determined by the preceding

, , , p . X dy —y .dx
analysis is that, with respect to which the function s/h. '" '^"' "—-

is a maximum ; therefore, this plane * possesses these remarkable pro-

cos. \. sin.
(J)
—sin. i. cos. ^. cos. --i^. cos. <?)-l-sin. i. sin. -^ -f cos. ^. sin. (p—sin. (i. cos. C.

sin. '\f/. cos. ip) = ^c^-t-c^'-f-c"'', (sin. «. cos. d. cos. $—sin. i. cos. S. cos. if) =

the same is true respecting the expression 2.jb. -= — : .

* As the cosines of the angles which the axes of z„, maizes with the axes z, y, x, i, e.

the cosines of the angles which the plane x^„. ?/,„, makes with the planes x, y; x,z;y,z,

(see note to page 1 33, ) ai-e equal to cos. 6, sin. (t. cos. 4', sin. 6. sin. ^, it follows that when we

have the projections c, c', c", of any area on three coordinate planes, we have its pro-

jection 2M.(a:„,.(/y,„

—

y,i,-^^ii^ °n ^^^ plane a;„/y,„ whose position, with respect to the

three planes x,y ; x^ ; y,z, is given. In like manner it follows from the exression,

2.n!. -{
-J'JlJjiJ y'" ' ^" V , which has been given in the text, that for all planes equally

inclined to the plane on which the projection is the greatest, the values of the projection

of the area are equal, for supposing the plane of x, y to be the invariable plane, then

( xdu—y.dx (.,,,, ., , ( xdz—z.dx \
2.m. {—

/t~~' f
'

'"''" ^^ *"^ greatest possible, 2.m. I j-

,
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perties—first, that the sum of the areas traced by the projection of the

radii vectores of the respective bodies, and multiplied by their masses,

is the greatest possible ; secondly, that the same sum, vanishes relative

to any plane, which is perpendicular to it, because the angle ip is unde-

termined. By means of these properties, we shall be able to find this plane

at any instant, whatever variations may be induced in the respective positions

of the bodies by their mutual action ; we can, in like manner very easily

T 2

2.7n.
-J

~—

T

— \ , are respectively equal to nothing, V 2.m. < ''
' — >

--^ >. COS. 6,

dt j

Since c, c', c", are constant quantities, and proportional to the cosines of the angles which

the plane on which the projection of the area is a maximum, makes with the coordinatfe planes,

it follows, that the position of this plane is always fixed and invariahle ; and as the quantities

c, c', c", depend on the coordinates of the bodies at any instant, and on the velocities

dx
-J—, &c. parallel to the coordinates, when these quantities are given, we can determine

the position of this invariable plane ; we have termed this plane invariable, because it

depends on the quantities c, c', c'', which are constant during the motion of the system,

provided that the bodies composing it are only subjected to tliis mutual action, and to the

action of forces directed towards a fixed point. (See page, 128.)

Since the plane ^, ^ is indetermined in the text, we conclude, that the sum of the

squares of the projections of any area, existing in the invariable plane, on any three

coordinate planes passing through the same point in space is constant ; consequently,, if

we take on the axes to any coordinate planes y, z; x,z; x, y, lines proportional to

c, c', cu, then the diagonal of a parallepiped, whose sides are proportional to those lines,

will represent the quantity and direction of the greatest moment, and this direction is the

same whatever three coordinate planes be assumed, but the position in absolute space is

undetermined, for the projections on all parallel planes are evidently the same. The

conclusions to wliich we have arrived, respecting the projections of areas on coordinate

planes, are in like manner applicable to the projections of moments, since as has been

observed in Note, page 28, these moments are geometrically exhibited by triangles of which

the bases represent the projected force, the altitudes being equal to perpendiculars let fall

from the point to which the moments are referred, on the direction of the bases.

When the forces applied to the different points of the system have an unique

resultant, V; then smce the sum of the moments of any forces pr<jjected on a plane

is equal to the moment of the projection of their resultant, it follows necessarily, that
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find at all times the position of the centre of gravity of the system, and

for this reason it is as natural to refer the position of the coordinates x

and y to this plane, as to refer their origin to the centre of gravity.*

22. The principles of the preservation of living forces, and of areas,

obtain when the origin of the coordinates has a uniform rectilinear

motion in space. To demonstrate this, let X, Y, Z, represent the co-

ordinates of this origin, supposed to be in motion, with reference to a

fixed point, and let us suppose

X = X-\-x;, y = Y-\-y,\ z = Z-\-z;y

x' = X+x;;y'^ Y+y/, z = Z+z/, &c.

j\, 7/,, z^ ; x^, &c. will be the coordinates of m, ?«', &c. relative to the

the unique resultant V and the point to which the moments are referred, must

exist in the invariable plane ;
*.* the axis "of this plane must be perpendicular to

this resultant, and as —p-, -p, — , are equal to the cosines of the angles which F makes

with the coordinates, and as

c c' c"

sJc--^d^-\-c"'^' x^c-'+ c^+c"^ ' ^c^ +c'»+ c"',

are equal to the cosines of the angles which the axes to the invariable plane makes witii

the same coordinates, we have

cP+c'Q+c//R^-^^ =: 0, V cP+c'Q+c^R ~ 0. (See note to No. 1, page 7.)
\/c^-\-c'^+c'^'

* Besides the advantages adverted to in the text, it may be observed, that our inves-

tigations are considerably simplified by the circumstance of two of the constant arbitrary

quantities c, c, c', vanishing when we make the plane of projection the invariable plane.

It may also be remarked that this plane always subsists when the bodies composing the

system are not solicited by any forces beside those of mutual attraction, and of forces

directed towards fixed points ; nor is the position of this plane affected in any respect

when two or any number of bodies impinge on each other ; for as we have before ob-

served, these impacts dont cause any change in the expressions Py

—

Qx, &c.—on the

equality of which to nothing depends, the principle of the conservation of areas, and the
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moveable origin. We shall have by hypothesis,

d*X= 0; f/*F= 0; d*Z= 0;

but we have by the nature of the centre of gravity, when the system is

free

O = z»j.(c?*Z+ d*x,)—^m.P.dt* *

= zm.(rf» Y-\-d*y}~-^m.Q-dP ;

0=-s,)n.(d'-Z+d^z,)—^m.R.dt';

position of tliis invariable plane. The practical rule for the determination of this plane is

gi^'en in the exposition, Du Systeme du Monde, page 207, the investigation of this rule

will be given in No. 62, of the second book.

We shall see in No. 26, chapter 7, that the consideration of this plane is of great

service in the determinations of the motions of a body of any figure whatever.

* = 'S..m.d^x—lM.P.dt^ ; o = '2..m.d^ij—-S..m.Q_.dt- ; = ^.m.dz^—'S.m.R.dt'
;

substituting in place of d'x, d\i/, d'z, we obtain the expression in the text; and since

d^X is by hypothesis equal to 0, tlie expressioi\ i: ^.m.(d^x,+d^X—^.P.dt"^) = 2.w.

rf*i,-}-rf»X. 2.JB.

—

^.m.P.dt ^ = 'S.m.dx,^—X.m.Pdf,-, &c. ; in like manner, substituting

for ix, 3_y, &c. in the equation (PJ, we obtain

= 2.m.

I
SX+Jx, } -^ _ p.j +2.,«.(?y+ 5^,

I
g— Q.j + &c. =

but as by the nature of the centre of gravity

2. m. < -j-^
f ' ^•'"'

i "^T ^'
i ' ^^' ^^ respectively equal to noo

thing, and also d'x = rf*j, d-ij — d'-t/, &c. the preceding expression becomes

= 2...S. . {£^ _P.
] + 2.n..3,,

{ 4;f
-Q. } &c.
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and by substituting SX+Sx^, jY+S^i/,, SZ+Sz^, &c. in place of J'.r, ii/, fz,

&c. the equation (P) of No. 18, will also become

. \ t* -«. -w-\ f
+ xmJz. i—r-^— Ry-,

'
( dt* r

which is precisely of the same same form as the equation (P), if the

forces P, Q, R, P\ depend only on the coordinates ^^, 3/^, z^, x', he.

Therefore by applying to it the preceding analysis, we can obtain the

principle of the preservation of living forces and of areas, relative to

the moveable origin of the coordinates.

If the system is not acted on by any extraneous forces, its centre of

gravity will move uniformly in a rectilinear direction in space as we

have seen in No. 20 ; therefore, by fixing the origin of the coordinates

X, y and % at this centre these principles will always have place, X, F,

and Z, being in this case the coordinates of the centre of gravity, by

the nature of this point, we shall have

= 's-.mx ; O = 'S.m.y ; O = 'zm.z $

consequently we have

( di ) dt dt

* S.jn. \
dt

2.m.XJY+^mx.dY-\-'Z.m.Xd.y,~^-2.m.x^dy^

dt

l.m.Y.dX—"Z.m.yAX—Im.YJx—'S.My.dx, , ^ „ ^ j - j— ^' ^' ' , and as ^.mx,, ^.my/, ^m.dx,, ^.m.dy^

are respectively equal to nothing by the nature of the centre of gravity, the preceding
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2.WJ. ^- = 3- Z.m.
dt* df-

+2.WI.
dx;-\-dy'+(h\' 7 „

dt y

thus the quantities which result from the preceding principles are com-

expression becomes equal to

rff
^

rf«

* 2.m.dx^ =-. 2.m.rfX' + 22.n!^x,.rfX+ 2.m.dx,^, enxdas^dX. ^.m.dx, = 0, we have

2.m.rfj;' _ rfX*. Z.m+^.in.dx*, ;•

dx^+dv-'+dz^ dX'+dY^JUdZ^ ^
,

„ <&/ +rfy »+(fc/-
. „^

2.W.
f^z
—=

\nx
" — > 2.m + 2.jn.—1—i--^;~I—i_ &c=c+2?.

If all the bodies were concentrated in their common centre of gravity, X/, i/j ; dx^, dyj ; would

vanish, therefore the second part of the first members of the preceding equation would

.^ J ,,, X.dY—Y.dX dX'- + dY' +dZ^-
vanish, and we would have 2.»». = c, -j-^ '2m~c-^-2<p.

Consequently, it appears from what has been established in this number, that when the

bodies composing the system are not acted on by foreign forces, the quantities which are

concerned in the principles of living forces, and of areas are composed of quantities which

would have existed, if all the bodies of the system were concentrated in their centre of

gravity ; and 2dly, of quantities which would obtain if the centre of gravity quiesced, the

former description of quantities are represented respectively by -^ 2.w,

XdY^YdX , , , , dx,^ +di/,^- +dz,^ xdy—y,.dx,, ,2m

—

. =
, and the latter by S/n ^ T J/ t / j.„ «, y y< "-^z!. jj^g

dt
'

af"
'

dt

first indicates what obtains in consequence of the progressive motion of the system, the

second what arises fi-om a rotatory motion, about an axis passing tlirough the centre of gra-

vity. (See No. 25.)

If the origin of the coordinates x,y, z,be transferred to a point of which the coordinates

are A, B, C, the expression for the projection of area on the plane x, y, becomes

^^_
{x-A)dy^y-B).dx ^^^(^J>r:y±\ _ A.^m.dy+B.Zmdx

^^^^ ^
dt \ dt § dt

'

v J t-™ J jxr^ jxr „ AY.mdy-\-Bzm.dx , A.dY4-B.dX „2m. dy, Zm. dx=dY2m, dX. 2m ;— -^ becomes— -^ 2.)?j.
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posed, 1st of quantities which would obtain, if all the bodies of the

system were concentrated in the centre of gravity ; 2dly, of quantities

relative to the centre of gravity supposed immoveable ; and since the

first described quantities are constant, we may perceive the reason

why the principles in question have place with respect to the centre of

gravity. Therefore if we place the origin of the coordinates at this

point, the equation Z, of the preceding number will always subsist

;

I'rom which it follows that the plane which constantly passes through

x.dy— ij,dx
this centre, and with respcet to which the function S.ot. < -

dt

.'. the projection of the area on the plane x, y, with respect to the new origin becomes

,^ . B. dX—A.dY, , . .

equal to c-j . Sw;, and similar expressions may be derived for the pro-

jections on the planes x,z,y,z, From tliis it appears, that for aJl points in which

B.dX—A.dY
."Lin = the value of c will remain constantly the same, but it is evident

that this equation will be satisfied, if the locus of the origin of the coordinates be either

the right line described by the centre of gravity, or any line parallel to this line, consequently

for all such lines the position of the invariable plane will remain constantly parallel to itself;

however, though for all points of the same parallel the position of the invarialile plane is

constant, yet in the transit from one parallel toanother the direction of this plane changes.

If the forces which act on the several points of the system are reducible to an unique

resultant, by making the origin of the coordinates any point in this resultant, the quantities

c,c',c", and therefore the plane with respect to which the projection of the areas is a

maximum, will vanish, if the locus of the origin of the coordinates bo a line parallel to this

resultant, the value of the projection of the area with respect to this line on the plane ar,_y,

will be constant and equal to — '

. -^m for c in this case vanishes, if the locus of

the origin of the coordinates be a right line diverging from this resultant, the expression

BdX—AdY
-J.

• £»2 IS susceptible of perpetual increase. From these observations it appears

that when the forces admit an unique resultant, that point with respect to which the value of

x/ c* + 1' - c" - is least of all is a point so circumstanced, that the axis or perpendicular

to the plane of greatest projection passing through this point, is parallel to the direction of

the unique resultant

;
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is a maximum, remains always parallel to itself, during the motion of

the system, and that the same function relative to every other plane

which is perpendicular to it, is equal to nothing.

The principles of the conservation of areas, and of living forces,

may be reduced to certain relations between the coordinates of the

mutual distances of the bodies composing the system. In fact, the

origin of the coordinates r, j/, z, being supposed always to be at the

centre of gravity; the equations (Z) of the preceding number, may be

made to assume the following form

( (It \

C dt S'

c".^.m = ^.mm'. Ŝy-y)'d^''-dz)j^i^'-zUdy'-^dy)
}^^^

It may be remarked, that the second members of these equations

u

* This expression is proved to be true with respect to three bodies in the following man-
ner and as the same reasoning is applicable to any number of bodies whatever, it may be

considered as a general proof

^ / <s
i^—A {di/—d,'l)—{y'—n). (dx'—dx)-) ,,dy , dy' , dy

C dt ) dt dt dt

I
dy

, J dx'
, , dx\ .da/ . dx , „ „ di/'

J^ mm . X jr—mmif. y- -framV.—+ wm'.v-; mm'y.-rr -{-mm" .xf' -^^
dt dt ' ^ at ^ dt ^ di ' dt

~fnm".x.'^jf.-mm".x".^+n,m".x^-mmf'.i/'. ^+ mm".y".^ +mm".y.—

-mmf'.yJ + m".m'.x'. Jl -m".m\x' %- -m"m'x" % + m'm".x'M-
"t dt dt dt dt

«.•'„, , //
dx"

, „ , ji
dx!

, „ , . dx" , ., . dx'—w m.y .--. +m"nf.y". -T-+m"fn'y'. m'm'.y .
—

dt " dt ^ dt ^ dt
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multiplied by dt, express the sum of the projections of the elementary

areas, traced by each line which joins the two bodies of the system,

of which one is supposed to move round the other, considered as im-

moveable, each area being multiplied by the product of the two masses,

which are connected by the right line.

and by concinnating it comes out equal to

, (x'di/—i/.dx' ) , , ( xdy—y.dx~> , Cx'.dij—y'.dx'l
""• j-^V— } + "'"• {t^ 5-"""-

I d/ }

\ dt S
^

I dt 5/^ L tit i

sad as in the case of three bodies

„ ( x". dy"—i/'- da!' 1 ^ / . , . //^ ^ f =^dy—y.dx \
_|.m". J

dt \
' '^' ^"'—'' (»»+»»+>») ~"^ {

—^^
\

+ ^V ^'::f^t^}+m".^ ^^jMlr-^^J^-^ + m,n' {^^ ^

^, ix".dy"-y".dx" \^ , „ { J>'.df-f.di!' \

+ «"^' \—ht — ) + """ {

—

Jt—

r

By the nature of the centre ofgravity we have w«4- >"''»''+"'" *"=0 2nd also mdy A- m'dtf

^td'.dy" — /. their product vanishes z, e, m''x'Jy+m'^x'di/-\-m."-x".dy"-\-mm'x.dy

+mm". x". (fy-j- mm'^di/ \-m'm".a!'dy'-i-m.m",xdi/'+m"m'.x'.dy"=0 .'. we have m » x3y

+m''t^ulj/-\-m''.'-a!'.dy''s=—mm'.x'dy—mm''.x''.dy—mm'.xdy'—m'm"'.x''dy—mmf'j:dif''.

—m'.m'^di/', and by multiplying my+m'i/+m"i/', into mdx-\-m'dj/-\-ni"dx";—ot' ydx
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By applying to the preceding equations, the analysis of No. 21, it

will appear, that the plane passing constantly through any of the bo-

dies of the system, and with respect to which the function

( dt 5

is a maximum, remains always parallel to itself, during the motion of

the system, and that this plane is parallel to the plane passing through

_fn" i/.dx'—m"^7/'. dx" = + mm'.y'. dx + mm" i/'. dx + mm'y.d^ + m'm"y"dx!

+ mml'.ydx!' \-m".m'.y'Jx", .•. adding these quantities together we obtain

L dt i l dt S
'

X dt i

.-. if in the expression for c{m+m'+ m") we substitute in place of the sum of the

functions whicli are multiplied by the squares of the masses, the quantities wliich are

equivalent to theni we shall obtain c {m+ m' -f m")=

- nun' \^:i!jii±^ I _ „„„" i f:^^/:^! _ „„,, r ..^^^^ 7
(. dt } I dt y \ dt s

which is equal to to the expression which has been given above for the value of Im.rh':

i JX'—x) d,/ —d,/)—,/—y (dx'—dx \
I It )



148 CELESTIAL MECHANICS,

the centre of gravity, and relatively to which, the function

s.ffj. ^ ' —'- is a maximum. It vpill also appear that the se-

cond members of the preceding equations vanish with respect to all

planes passing through the same body, and perpendicular to the plane

in question.

t

The equation (Q) of No. 19, can be made to assume the form*

I dt

•z.fmrd. Fdf; this equation respects solely the coordinates of the mu-

* When there are but three bodies S.w.rfx ^=:»iix*+ »2'<ir'*+ »n".(fji;", * but by the

nature of the centre of gravity we have mdx-^m'dx'-\-m".dx" —0 and .•. m^dx- -\-m'.^ dx'^

+ ?n".^ rfx"' + 2m.m'. dx.dx'-\-2mm". dx.dx" + 2m'm". dx'.dx", = 0, and multiplying

l^.m.dx- by 2w. we obtain, m^ t/x^-j-m'.^ dx'^ -f m"r dx"- + mm' dx'- + m'm" . dx'^

+ m'm.dx^+m"in dx''+}nm".dx"^ +m'm".dx",' if we substract the previous equation

from this we get, mm'.dx"' +m.'m".dx^ +m'm.dx'^ -\-m".tn.dx^ +mm"Jx".- ¥m'm".dx"'

—2mm'. dx dJ—<2.mm'.dx.dx!'—%n.m''.dx'.dx«~ mm'. [dx'—dxY +tn'm" {dx"—dj/y

+ mm"{dx'/— dx)- — 2.)?2jn'. (rfx'

—

dx)' = 2.)». {2m. (dx^), and in like manner we

derive 'S.nim' [dy—dy) ' = 2)h. (2wi. (/y^), 2.»nm'. {dz—dz) ^ = 2wi. (2j?z. dz'), .-. we have

, ^ dx'—dxY +idy'—dy)^ -\-{dz'—dz'^ \ ^ ,^ ,_ ^ /. d r , ^ ,

SwiTO -} A ,
j- = c. 2m + 2.jn. (2. ^m.fm. \P.dx-\-Qdx

-j- Qfl^) = const. — 2 2m. l.fmmfdf, (substituting — 2/nw('.y(i/'in place of "S-./m

(Pdx^Q.dy-\-ndz). (See No. 19, page 113.)

f When the origin of the coordinates is in the centre of gravity of the system, the quan-

tities c c' c ', are constant and .•. the position of the plane, with respect to which the function

5)n. } —5L_jZJ— V is a maximum, remains the same during the motion of the system,

.•. as the quantity 2)«, would occur both in the numerator and denominator of the expression

for the cosines of the angles which the plane with respect to which the function S.m.in'

} J LLJl J-T^j-HSIA L > is a maximum, makes with the three coordinate

planes, it is evident that the values of the angles which the invariable plane makes with three

coordinate planes, is the same in both cases, from these considerations it appears that the

invariable plane may be determined at each instant by means of the relative velocities of the

system, without a knowledge of their fliio/if/e velocities in space. (See Notes to page 139.)
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tual distances of the bodies, in which the first member expresses tlie

sum of the squares of the relative velocities of the system about each

other, considering them two by two, and supposing at the same time

that one of them is immoveable, each square being multiplied by th<>

product of the two masses which are considered.

23. If we resume the equation {R) of No. 19, and differentiate it

with respect to the characteristic <?, we shall have

l.m V. iv=2m. (P.Sx + QJy + RSz)
;

and the equation (P) of No. 18, will then become

0='Z.m. \sx. d.-^-tSjf. d. -^ +<?^.c?. -^\~-L.m.dt.vSv.
i. dt dt dt 3

Denoting by ds^ ds' &c. the elements of the curves described by

m, m &c. ; we shall have

vdtzids; v'dt=ds';kc.

ds=^dx^ + di/* + dz'; &c.

from which we can obtain, by following the same process as in the

analysis of No. 8,

2.mJ. (_vds) = ^.m. d. (JlLt±^Ml^Ll^±JL\

.

By integrating with respect to the differential characteristic rf, and

making the integrals extend to the entire curves described by the bodies

»2/k', &c. we shall have

J..S.fmvds = const. + 2.7».
^^-S^+dy.Sy+ dz.Sz.\

in this equation the variations Sx,Sy,Sz, &c and also that part of its second

member, which is constant, refer to the extreme points of the curves

described by m,m', &c.
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From which it appears that when these points are invariablcj, we
shall have

= iJ.fmvds ;*

which indicates that the function 'L.fmvds is a minimum. It is in

this, that the principle of the least action, in the motion of a system of

bodies, consists ; a principle, which, as we have seen, is only a mathema-

tical result of the primitive laws of the equilibrium and motion of bodies.

It is also apparent, that this principle combined with the principle of living

forces, gives tlie equation (P) of No. 18, which contains all that is ne-

cessary for the the determination of the motions oi the system. Finally,

it appears from No. 22, that this principle obtains, even when the origin

of the coordinates is in motion
;
provided that the motion is uniform, its

direction rectilinear and the system entirely free.t

* By substituting for ds, ds their values v.dt^ v'dt^ the expression "S-./wds will become

2.y»!D.'«ft, and asymv-'dt is the sum of the living forces of the body m during the motion;

t.J~mv.^dt vi'ill express the sum of the living forces of all the bodies of the system during

the same time ; therefore the principle of the least action, in fact indicates, that the sum of

the living forces of the system, during its transit from one given position to another, is a

minimum, and when the bodies are not actuated by any accelerating forces, the velocities

v, v, and the sum of the living forces at each instant, are constant, (see No. 18, page 1 1^. )..

2. fmv.'^dt=z'2mv, 'J'dt, and the sum ofthe living forces for any inteiTal of time is proportional

to this time, consequently in this case the system passes from one position to another in the

shortest time. Since therefore the expression Yfv.dis is the same as I.Jmv^dt La Grange

proposed to alter the denomination of the principle of least action, and to term it the principle

of the greatest or least living force, for by contemplating in this manner, it is equally appli-

cable to th(^ states of equilibrium and motion, since it has been demonstrated in the notes

page 119, that incase of equilibrium the vis viva is either a maximum or a minimum ;

from what precedes ic appears that, as La Place observes in his Systeme du Monde, the true

economy of nature is that of tl;e living force, and it is this economy which we should always

have in view in the construction of machines, which are always more perfect according as

less living force is~c6nsumed in producing a given effect'.

\ W ith respect to the extent of the different principles which are treated of in this fifth

chapter, it is important to remark, that the principles of the conservation of the motion of

the centre of gravity, and of the constrvation of areas subsist, even when by the mutual

action of the bodies, they iindergo sudden changes in their motions, which renders these

jrii ciples extremely useful in several circumstances, but the principles of the conservation
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of the vis viva, and of the least action, require that the variations of the motion of the

system, be made by imperceptible gradations.

The principle of the least action differs from the other principles in this, that the other

principles are the real integrals of the differential equations of the motion of bodies,

whereas this of the least action is only a singular combination of these equations, in fact it

being established that 'S./mv.ds is a minimum by seeking by the known rules, the conditions

which render it such, and making use of the general equation of the conservation of living

forces, we should find all the equations which are necessary to determine the motion of each

body.

The principle established in this number was first assumed as a n>etaphysical truth, and

was applied by Maupertius to the discovery of the laws of reflection and refraction, however

it ought not to be deemed ajinal cause, for we can infer analogous results from all relations

mathematically possible between the force and the velocity, provided that we substitute in

this principle, in place of the velocity, that function of the velocity by which the force is

expressed, (see next chapter, page 154,) and so far from having been the origin of the

laws of motion, it has not even contributed to their discovery, without which we should

be still debating what was to be understood by the least action of nature.
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CHAPTER VI.

Of the laws of motion ofa system of bodies, in all the relations

mathematically possible between the force and the velocity.

24. It has been already remarked in No. 5, that there are an infinite

number of ways of expressing the relation between force and velocity,

which do not imply a contradiction. The simplest of all these relations

is that of the force proportional to the velocity, which as we have ob-

served, is the law of nature. It is from this law that we have derived,

in the preceding chapter, the differential equations of the motion of a

system of bodies ; but it is easy to apply the same analysis, to all relations

mathematically possible, which may exist, between the force and the

velocity, and thus to exhibit under a new point of view the general prin.

ciples of motion. For this purpose, let F represent the force and v the

velocity, we have F zz <!> (y^ ; (p (y) being any function whatever of v ;

let <p' (w) denote, the difference of <p(y) divided by dv. The denominations

of the preceding numbers always remaining, the body tn will be solicited

parallel to the axis of s by the force <? (vj. —- .
*

diT \ dx '}

In the following instant, this force will become (p (v). -jz"^ '^•f
f C"^)'—r r

* ds being the differential of the line described by the body, the cosine of the angle

dx
which the direction of the motion makes with the axis of x is equal to -p, .-. the force F

ds

dx
or p (v) resolved in the direction of the axis of j ss <p (f).-?- •
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^M. $ +d. C-^ . ^Y because^ = f• Moreover, P, Q, i?,^ ds \ V dt / dt

being the forces which solicit the body m parallel to the axes of the co-

ordinates ; the system will, by No. 18, be in equilibrio in consequence of

these forces, and of the differentials,

{^dx <w)? \dy <p{v)\ , $ c?s (fip)\
O. •<-;—

.

f , a. \ —;- • f , Urn < —r- • t ,

\dt f J I dt V S Xdl V S

taken with a contrary sign ; therefore in place of the equation (P) of

the same number we shall have the following :

= ^,m. \ ix. d. Y-1.M^ Pdt I + Sy. d, S^y^-:^
i (dt V i -^ Idt V

- Q.dtl + Sz. dA^.-^^Rdtl; (S)

which only differs from it in this respect,that— > — > — f are multiplied by
dt dt dt

the function A_i, which in the case of the force proportional to the

velocity, may be assumed equal to unity. However this difference renders

the solution of the problems of mechanics very difficult. Notwithstand-

ing, we can obtain from the equation (S), principles analogous to those

of the conservation of living forces, of areas, and of the centre of

gravity.

By changing Iv into dx, Sy into dy, Sz into dz, &c., we shall have

2.J«. V. dv. dt. <p' (y) ;
*

X

* Substituting ds in place of v.dt, the expression
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and consequently

X.fmv.dv.(p'[v) = const. -{-l.fm. (^P.dx+ Q.dy + R.dz),

If we suppose that I.m.(P.dx-i-Q.dt/ + R.dz) is an exact differential

equal to d\ we shall have

i..Jmv.dv.(p' (t>) = const. + x j (T)

which equation is analogous to the equation (i?) of No. 19, into which it

is changed in the case of the law of nature, or of 9' (tr)zzl . Therefore, the

principle of the conservation of living forces obtains in all laws mathe-

matically possible between force and velocity, provided that we under-

stand by the living force of a body, the product of its mass by double

the integral of its velocity, multiplied by the differential of the function

of the velocity which expresses the force.

If in the equation (5), we make Sx'—Sx-^Sxl, Sy'= Sy-\-Syl, i^=
Sz+ iz', Sx"= Sx+^x",j &c. we shall have by putting the coefficients of

Sx, iy, Sz, respectively equal to nothing

becomes

2.«. {^. rf.

{ ^. <p (V)

J
+dy. d. {|. <p (v) } + dz. d. {J . <p{v)

} }

and by taking the differential it becomes.

-•«•
\ ds

1.?(«)-2.«.| J-p: ]-d^s4{v)+

Z.m. J ^ -^ ^
\ . d. (p (v)~ 2.m. d» s. f(«) —2. m. d^s. ^ (v) ^"Z.m.ds. d, (p (v)

and this last quantity is equal by substitution to 2,m, v>dtdv. f' (v).
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These three equations are analogous to those of No. SO, from which

we have inferred, the conservation of the motion of the centre of

gravity, in the case of nature, when the system is not subjected to any

forces but those of the mutual action and attraction of the bodies of the

system. In this case l.m. P, ^.m. Q, "Z.m. R, vanish, and we have

dx a(v)
. „ dy a(v)

const. = l.m. -—. -^-i
; const. = 2w«. -^. ^-^^-^

;

dt V dt V

_ dz <p(v) dx ((i(v) . / \ da:
const. z= 2w . I^^jjw.—-. ^^^-^ IS =:ot. fflfiy). -^'

dt V dt V ^^ '' ds

and this last quantity is the finite force of the body, resolved parallel to

to the axis of x ; the force of a body being the product of its mass by

the function of the velocity which expresses the force. Therefore in

this case the sum of the finite forces of the system, resolved parallel to

any axis, is constant whatever may be the relation between the force and

the velocity, and what distinguishes the state of motion from that of

repose, is, that in this last state, the same sum vanishes. These results are

common to all laws mathematically possible between the force and the

velocity ; but it is only in the law of nature, that the centre of gravity

moves with an uniform motion in a rectilinear direction. *

Again let us make in the equation (iS)

Sx'=^— + 9x:iix"='^— + Sx" &c.
y V

. xdx , . . ,
x'.Sx » / a

" if

the variation Sx will disappear from the variations of the mutual distances

X 2

• It is evident that the centre of gravity does not move uniformly in a right line when

P, Q, R, vanish, except when -^ is equal to unity, for it is only in this case that we could

prove from the expression, const. —2.W.
-J-.
-^ , that dX the differential of the co-

ordinate of the centre of gravity is constant.
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f,f, &c. of the bodies composing the system, and of the forces which

depend on these quantities. If the system is not affected by extraneous

obstacles, we shall have, by putting the coefficient of ix equal to

nothing

o=..„,.|..,(^.^)_,...(^.Ka)| +

"s-m.^Py—Q.x)dt, from which we deduce by integrating,

we shall have in like manner i

\ at / v

d' = z.^. {^^^=^y ?^+ z> {Qz^Ry).dti

c, c', c", being constant arbitrary quantities.

If the system is only subjected to the mutual action of its component

parts, we have, by No. 21, Im. [Py—Qx) = ; s»z. [Pz^-Rx) = O

sw. CQz—Ry)=0; also m] x -^— y. —i.'^^ is the moment of
C dt dti V

the finite force by which the body is actuated, resolved parallel to the

plane of x and y^ which tends to make the system turn about the axis of

z
J
therefore the finite integral s.w.J-^fc^^ LfM is equal to the

sum of the moments of all the finite forces of the bodies of the system

* Tlie integral of this expression is equal to 2.ot i x. -j- .^^ —/dx. (-^. --^^' \

dx <p{v) ( dy.dx (p(u) -v 1 _ _ xdy—ydx ip(«)

'"^*
dt- V +-^{,~dt—7yj

~^-'"-

—

It
—•~'
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to make it revolve round the same axis ; consequently this sum is con-

stant. It vanishes in the case of equilibrium ; therefore, there is the

same difference between these two states as there is relatively to the sum

of the forces parallel to any axis. In the law of nature, this property

indicates that the sum of the areas described about a fixed point, by the

projections of the radii vectorcs of the bodies is constant in a given time,

but this constancy of the areas described does not obtain in any other

law.*

By differentiating with respect to the characteristic S, the function

^.Jhi. (p {v). ds ;

we shall obtain

S.'z.fm.(p(y')ds =. 'z.fm.(p(y').S.ds-{-t.fm.Sv.(pXv).dS'y

but we have

sa,^d.Jd.+dvMy+dzMz l_ W_r^ cl^ dz
^^

i

ds V idt dt -^ dt S

therefore by partial integration we shall obtain

*^ r f \ r T.
fnqiQv) ^dx . . dy . , dz , 1

V idt dt dt 3

c ^dt V ' ^ ^dt V ' ^dt V ' S

\-^.JmJv.<p'{v).ds.

The extreme points of the curves described by the bodies of the system

* As the factor is variable in every other case beside that of nature, it follows that

though the quantity 2.m. -I '-^^^— \ -—^ is constant and equal to c, still that part of it

cxdy—y.dx 7 .

2.W. i ~j^f— f >s not constant.
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being supposed fixed, the term which is not affected by the sign/ must

disappear in this equation; therefore we shall have in consequence of the

equation (S),

i. z.fm.(f{v).ds= x.fm.Sv.(p'{v).ds—^.fmdt{FSx + Q.Sy + R.iz)

but the equation (T) differentiated with respect to S gives

^.Jm.Sv.<f'(v).ds=^.fmdt{PSx-\-Q.Sy-i-R.Sz) ;

therefore we have

OzzS.'Z.fm.<p(y).ds.

This equation corresponds to the principle of the least action in the

law of nature. vi.(p(v) is the entire force of the body m, thus the prin-

ciple comes to this, that the sum of the integrals of the finite forces of

the bodies of the system, respectively multipHed by the elements of their

directions, is a minimum, presented in this manner, it answers to all

laws mathematically possible between the force and velocity. In the

state of equilibrium the sum of the forces multiplied by the elements of

their directions vanishes, in consequence of the principle of virtual

velocities, what therefore in this respect distinguishes the state of

equilibrium, from that of motion is that the same differential function,

which in the state of equilibrium vanishes, gives in a state of motion by

its integration a minimum.
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CHAPTER VII.

Of the motions of a solid body of any figure whatever.

25. The differential equations of the motions of translation and

rotation of a solid body, may be easily deduced from those which have

been given in the fifth chapter; but from their importance in the

theory of the system of the world we are induced to develope them in

detail.

Let us suppose a solid body of which all the parts are solicited by any

forces whatever. Let x, y, z, represent the orthogonal coordinates of its

centre of gravity, and let x-\- x',y-\-y\ s+;s', be the coordinates of any

molecule dm of the body, then *',y, s', will be the coordinates of this

molecule with respect to the centre of gravity of the body. Moreover,

let P, Q, i2, be the forces which solicit the molecule parallel to the axes

of X, of y, and of ^,. The forces destroyed at each instant in the

molecule, parallel to these axes, will be by No. 1 8,

-S^^pLl^dmArF.dUdm',

^Y^y^^^\dm\Ci,dUdm',

— \ — ^.dm-\-R.dt.dm ;

(the element dt of the time being considered as coustant.)
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Therefore it follows that all the molecules actuated by similar forces

should mutually constitute an equilibrium. We have seen in No. 15,

that for this purpose, it is necessary that the sura of the forces parallel to

the same axes, should vanish which gives the three following equations

C dt» i
'

sY'y+f^' \.dm=S.Qdm;

S.l±5pl£j^.dm^S.Rdm,

the letter S being here a sign of integration relative to the moelcule dm,

which we should extend to the entire mass of the body. The variables'

x,i/, z, are the same for all the molecules, therefore we can bring them

from under the sign S ; thus, denoting the mass of the body by m, we

shall have

o d^x J d'^x c- d^if , c?*w „ d*z , d*z
S. . dm=7n. __; S. —d, dm—m. -JLi S. — . dm-=.m -'

dt^ dt' dt* dt^' dt* dt^

Moreover by the nature of the centre of gravity, we have,

S.x'.dm = ; S.j/.dm — ; S^.dm = o *

therefore

S, ~.dm-0 ; S. ^.dm=0 ; S.^.dm=0
;

di^ dt» dt*

^ „ d'^x , d^x „ , d'x .

dt* dt^ di'-

S«r'.rfm— S.j/*.dm ^ because x', j/, &c. are the coordinates of the body referred to

the centre of gravity, see No. 15, page 91.
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1

consequently we shall have

m.-—=S.Pdm :

dt*

m..^=S.Qdm; V,.
^j)

m -=S.Rdm :

dt*

these three equations determine the motion of the centre of gravity of

the body ; they correspond to the equations of No. 20, which relate to

the motion of the centre of gravity of a system of bodies.

We have seen in No. 15, that for the equilibrium of a solid body the

sum of the forces parallel to the axis of x, multiplied by their distances

from the axis of s, minus the sum of the forces parallel to the axis oiy,

multiplied by their distances from the axis of z, should be equal to

nothing ; thus we shall have

=5. [ (0?+/) Q~(j/+y')- P-l 'dm ; (!•)

but we have

S. (x.d^i/—i/.d^x).dm= m.(x.d''y—y.d*x);

in like manner we have

S. (Qx—Py). dm=x.JQdm—yJPdm

finally we have

S. {x'.d'-y-i^xd^y'—y.d''x—yd''x'\ dm—d*y. S.x'dm—d^x. Sy'dm

Y
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by the nature of the centre of gravity, each of the terms of the second

member of this equation vanishes ; therefore the equation (1) will

become in consequence of the equations A,

C dt^ J

* By performing the multiplication,

. (Qj>—P3»).cfm+S.(Q.«'—P/).cf»", .-. by substituting for

the expressions S. P. «?»», S. Q.rfw, to which they are respectively eqtjal ds appears from

the equations {A), and freeing the quantities d »«/, «?^«, «, y, from the sign S, the preceding

equation will be changed into the following

». &.QL. dm—y. SP. dm + ^^. Sx'Jm + «. S-^-<^'«—^- -V-'^"'

-y.S.^.dm +S i^L^l-fj^X . rfm:^. S. Q.d*-3^. S.P.rf»«+

S {Q.x*—Py*). dm, and omitting quantities which destroy each other, and also those

which by the nature of the centre of gravity, vanish, we will obtain the equation

this equation involves the principle of the conservation of areas, for if the forces which

s<*cit the Tndlecuks arise from their mutual action, and from the action of forces directed

towards fixed points, S[Qx'—Py.) dm=0.
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this equation integrated with respect to the time, gives

S. S ""'^y'—if-^^' \.dm= S.fiQx'—Py'). dt. dm ;

the sign of integration /being relative to the time t.

From what precedes it is easy to infer that if we make

SJ{Q.x'—Pij'). dt. dm=N-y

S.J\R!^—Pz'). ^t. dm= N'i

S.f{R^—Q.z'). dt. am=N"i

we shall obtain the three following equations

I dt S

S.l ^.dm=N;y. ^s)

these three equations contain the principle of the conservation of areas j

they are sufficient to determine * the motion of rotation of a body about

its centre of gravity ; combined with the equations (A), they completely

determine the motions of translation and rotation of a body.

Y 2

* In our investigations relative to the invariable plane in the 5th chapter, we have seen

that when a body or system of bodies are not solicited by any extraneous forces, the motion

may be distinguished into two others, of which one is progressive and the same for all points,

the other is rotatory about a point in the body or system, the first determined by the equation

{A), and the second by the equation(£) ; by thus distinguisliing the motion into two others,

we can represent with more clearness the motion of a solid body in space,for these two motions

are entirely independent ofeach other, as is evident from the inspection of the equations which

indicate them, so that the equations (A) may vanish, while the equations (B) have a finite
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If the body Is constrained to turn about a fixed point ; it follows from

No. 15, that the equations {B) are sufficient for this purpose ; but then

it is necessary to fix the origin of the coordinates x', tf, z', at this point.*

value or vice versa. The centre of the rotatory motion may be any point whatever, how-

ever when we would wish to determine these two kind of motions it is advantageous to

assume for this point, the centre of gravity of the body, because in most cases its motion

may be determined directly, and independently of that of the other points of the body.

Dividing the equations (^) by m, we may perceive by a comparison of the resulting

expressions, with the equations of the motion of a material point, which have been given in

No. 7, page 31, that the motion of the centre of gravity is the same, as if the entire mass

of the body was concentrated in it, and the forces of all the points and in their respective

directions were applied to it ; this rectilineal motion is common to all the points of the body,

and the same as the motion of translation.

* If a solid body is acted on by forces which act instantaneously, in general it

acquires the two kinds of motions, of translation and of rotation ; which are re-

spectively determined by the equations (^A) and {B) ; when the equations (/^ ) vanish,

the forces are reducible to two parallel forces, equal, and acting in opposite directions,

when the rotatory motion vanishes the instantaneous forces have an unique resultant passing

through the centre of gravity, see notes to page 143, when the molecules of the body are

solicited by accelerating forces, their action in general will alter the two motions which have

been produced by initial impulse, however if the resultant of the accelerating forces passes

through the centre of gravity of the body, the rotatory motion will not be affected by the action

of these forces, this is the case of a sphere acted on by forces which vary as the distance, or

in the inverse square of the distance from the molecules, see Ne^vtou prin.Vol. 1 . Section 1 2, or

Book 2, No. 12, of this work, consequently if the planets were spherical bodies, the motive

force arising from the mutual action of the sun and planets would pass through the centre

of gravity, and the rotatory motion would not be affected, but the direction of this force does

not always pass accurately through this centre, in consequence ofthe oblateness of theplanets,

therefore the axis of rotation does not remain accurately parallel to itself, however the

velocity of rotation is not sensibly affected, see Systeme du Monde, Chapter 14, Book 4,

and Books, No. 7 and 8. It is in this slight oscillation of the axis of the earth arising prin-

cipally from the attractions of the sun and moon, that the phenomena of the precession

of the equinoxes and of the nutation of the earths axis consist. (See Nos. 28, 29.

If the body be moved in consequence of initial impulses, the directions of the forces, their

intensities and points of application been given, we might by the formula of No. 21, de-

termine the principal moment of the forces with respect to the centre of gravity, and the

direction of the plane to whicli this moment is referred, which would completely determine

the moment ofrotation obout the centre of gi'avity, and it is evident that the same data would

be sufficient to determine the rectilinear motion of the centre of gravity, and consequently

the motion of translation of the system, see No. 29.
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26, Let us attentively consider these equations, the origin of the

coordinates being supposed fixed at any point, the same or different from

the centre of gravity. Let us refer the position of each molecule to

three axes perpendicular to each other, fixed in the body, but moveable in

space. Let fl be the inclination of the plane formed by the two first axes

to the plane of x, y, ; let (p be the angle formed by the line of inter-

section of these two planes and by the first axis ; finally, let \|/ be the

complement of the angle which the projection of the third axis on the

plane of x, y, makes with the axis of x. We will term these three axes

principal axes, and we will denote the three coordinates of the molecule

dm, referred to those axes by x', y", z", ; then by No. 21, the following

equations will obtain

x'=x". (cos. S. sin. ^. sin. ip+cos. ^. cos. 9)4-

y". (cos. 6. sin. vj/. cos. q>—cos. ^. sin. (p) + z". sin. 6. sin.
;J/

;

y = x". (cos. 9. cos. »}/. sin. (p—sin. vj/. cos. f) +

y". (cos. 6. cos. 4'- cos. ?> + sin. \J/.
sin. (p)-\-z". sin. 6. cos. ^ ;

a'= 2". cos. fi

—

y". sin. 9. cos. (p—x". sin. 0. sin. (p.

By means of these equations, we are enabled to develop the the first

members of the equations {B) in functions of 9, 4-, <P
and their differentials.

But this investigation will be considerably simplified, by observing that

the position of the three principal axes depends on three arbitrary

quantities, which we can always determine so as to satisfy these three

equations.

Say. dm= ; S.x"z".dm=^0 ; S.y"z".dm=^ 0,
*

* In deducing the values of — N, — N', in functions of 6, t^, ip, and the coordinates

x",2/", z", it is assumed that there are three axes possessing this property of having

Sy'/z//.dm, Sx"y". dm=0, Sx"z"'. dm:=0. However it is afterwards demonstrated that

there exists three such axes in every body.

Since by hypothesis the principal axes preserve their initial positions, being moveable in

space though fixed in the body, while the axes of x',y , and z', are fixed in spuce, it follows
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thai let us make

S. (/ --+3"*). dm= A ; S. (/'» + z"'). dm=Bi S. (^"*+y'*) dm Cj

and in order to abiidge let us make

tf(p—cfij/. COS. 6= p.dt

;

d^, sin. 6. sin. ^—d9. cos. ip =q.dt
;

d^, sin. 6. COS. (p+d^. sin. (p= r.dt.

The equations {J5) will, after all reductions, be changed into the three

following

;

A.q. sin. 0. sin. q> + Br. sin. 6. cos. (p'—Cp. cos. fl =—N ;

Cos. i)/. [Aq. cos. 0. sin. <p-\-Br. cos. 0. cos. (p + Cp, sin. 0]

+ sin. 4^. [ Br. sin. ?>

—

Aq. cos. <p] =— N'

;

^i (Q

Cos. ij/. [£r. sin. (p--Aq. cos. ?>}

—sin. ^.{Aq. COS. fi. sin.ip+jBr. cos.6. cos. (p+Cp. sin.S]=—iV^"
,

that the coordinates «",y , z", are constantly the same for the same molecule, and vary only

in passing from one molecule ^o another, but the coordinates s! i/ ^ vary witli the time .•. they

are fiinctions of the time, as are also the angles 6, ]/, <p, since they depend on the position of

the principal axes with respect to the fixed axes .-. when we take the differentia! of

jt', t/', and j/, with respect to the time in terms of x" y" z" and the angles d, ifj 'Pi we should

not take the differentials of x",y' , s", it may likewise be observed that we can omit

the consideration of those quantities of which one of the factors is the product of tvvo

different coordinates, for such quantities disappear from the expression s/dy—y'dx', as

they occur in the two parts of it affected with contrary signs, these considerations enable us

x'dj/ i/dif
to abridge considerably the investigation of the value of — , intermsof«"y'2"

and fiinctions of the angles 6, 4", ^, for we shall not take into account, those terms which

would eventually disappear in tfae expression
x'dy'—y'.daf

7t

• dt!= — x".[—d). sin. i.sm. i^sin. ?-f<f4- cos. 4» cos. i. sin. ^

-f (/<?. cos. (p. sin. 4- cos. (—cfi^.sin. ^. cos. ?

—

d(p. sin. ^. cos. i^)
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tltese three equatdons give by differentiating them and then 'supposing

4/= 0, after the differentiations, which is equivalent to assuming the

j^y" (—rfj. sin. i. sin. tJ/. cos. ?+ d-<|'> cos. 4'. cos. ip. cos.

«

—rf<p, sin. ?. sin. 4'. cos. H"<^'4' sin. v}'. sin. <p—rfip. cos. ip. cos. ij^)

+2". (c?«. cos. «. sin. 4 + rfj/. cos. -i^ sin. «);

dj/zzx''.{—dK sin. tf. cos. ^. sin. ip—rfil/. sin. 4'. sin. <p. cos. i

•{dip. cos. ^.cos. 4. COS. 6— di}/. cos. 4- cos. <p-f-c/ip. sin. <p. sin. 4)

+ y (

—

dS. sin. *. cos. 4. cos. (p—c?^- sin. 4'' cos. ?>. cos. S

—d^. sin. (p. cos. •4'. cos. 6-{-d-^. cos. 4'- sin. tp 4- rf(p. cos. 9. sin. 4)

-^'.{dt.cos. 6. COS. 4'—d-^' sin. 4- sin.«)

«?/=: —!i'.dl.6\n.6—fy". di. COS. 6.jeos. :q>+y". dif>. sin. p. sin. 4

—y. cf«, cos. 6. sin. ip

—

a". dip..cas.Jl>. sin. «

/. ^4/=
(of', cos. S, sin. 4'. sin. ^ 4" ^^ oos..4'- cos. 9+;y '• cos, *. sin. 4'. cos. ip

—.y. cos. 4*. sin. ip+z". sin. 6. sin. 4) X

<—*"'rf<. sin. e, COS.4. sin, ^—«". rfif" s™- 'J'-
sin. <p. cos. 6+ af' d<p. cos.^. cos. 4- cos. 6

—or" ^4- cos. 4- COS. ip+x" rfip. sin. (p. sin. 4

—-y . d6. sin. S. COS. 4- cos. (p—^". d4. sin. 4- cos. 9. cos. i

—;y". «f^. sin. Ip. cos. 4- COS. ^+y. ^4- cos. 4. sin. <p-{-y". d(p. cos. (p, sin. 4

-f-z", cf^. COS. «. cos. 4—«"• ^4- sin. 4- sin. 6) :r:

—/'.* 6?^. sin. tf. COS. 6. sin, 4. cos. 4. sin.* (p—jf'.'^di. sin. }. cos. ^ 4- sin. ^. cos.(p

—«".*rf4' sin. '4' sin. *<p. cos. ^6.—x".* d4. sin. 4 cos. 4- sin. (p. cos, 9, cos. «

-}-x".' d(p. sin. ^. cos. <p. sin, 4. cos. 4- cos. 'S-\-x".^dip. cos. ^(p. cos. *4' cos. 6

-^x".^ rf4. sin.4'. cos, f^.isin. 9. cos. ^. cos.-<

—

x''.^d4'. cos. *4'' cos. ^<p

+x",^df.sm.^ (p.sin. '^. cos. «+x".'rf^. sin. jp. cos. (p. an. 4* cos. 4.

—n/'^.dt. sin. i. cos. «. sin, 4- cos, 4'- cos. *?i+y.* rfs. sin. «. cos. *4' sin. ^.cos. ^

—y".^d-^. sin, *4'« cos. '^ cos. ^t.+i/'.^d-^. sin, 4. cos, 4- sin. <p, cos. ^. cos. t
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axis of x' indefinitely near the line of intersection of the plane of x'andt/',

with that (£x' andy,

—y'.* d^. sin. (p. COS. ^. sin. -i^. cos. -i/. cos. *^. +i/".^d<p. sin. ^(p cos. *\{'. cos. *

+y.*rf4'.sin. 4'- cos.'vl'. sin. (p. cos. f. cos. *

—

y". ^d-^. cos. *'4'. sin. '^

+ y.* dp. cos. ''^i. sin. ^^. cos. «

—

y" .' d(p. sin. (p. cos. ip. sin. -^t. cos. ij/

'

-f'5'"'*.'^^' sin. *. cos. ^. sin. \'. cos.
\J/
—z".^c?4/. sin.'^vj/. sin.*fl

y.cfr'.=
(i". cos. <. cos. J-, sin. ^—x" sin. y'. 90s. <p-f-y . cos. *. cos. ^. cos. <p

-f-y". sin. -vj/. sin. (p-f-z'. sin. 0. cos. v|^) x

(—s". rf<. sin. J. sin. -i^. sin. <p + x". rfv}'' cos. i|'. sin. (p. cos. «-)-«". c?ip. cos. ^. sin. -i^. cos. «

—b". cf4'. sin.'v^. cos. <p

—

al' .d<p. sin. <p. cos. -i^

—y", di. sin. tf. sin. ij/. cos. <p+y. d-i^- cos. -v^. cos. <p. cos. «—;y", rfip. sin. <p. sin. -J" cos.

«

y". cfij/. sin. i^. sin. ip—y . ^ip. cos. <p. cos. v{/.

+ 2^'. di. cos. <. sin. i|/.-f-.~" d-i^. cos. 4'. sin. (1)=:

—i".*rf(i. sin. ^. cos. i. sin.il^.cos. vj^. sin. -(p—s".^d6. sin. «. sin. ^4^. sin. ip. cos. <p

+«".» rfij'. cos. ^^^^ sin. 'Ip. cos. *«— «". V^-. sin. 4'. cos. 4'- sin. ?. cos. tf>. cos. *

"j-jt". *d^. sin, (p. cos. Ip. sin.
\J/. COS. 4'. COS. '6,—«".-rf<p. cos, '<p. sin. '\J/. cos. <

'<f4'' sin. tJ'. COS. i^. sin. ^. cos. ip. cos. « (-x".'c?4'. sin. '^. cos. "^

'rf^. sin. »<p. COS. ^•v}'. cos. ^-f-x". rfip. sin. (p. cos. ip. sin. \}/. cos. i^.

—y''.'-d6. sin. ^ cos. «. sin. •vJ/. cos, 4'. cos. -<p

—

j/'.^di, sin. «. sin. 'tI/. sin. <p. cos, p

+y,* d^f. cos, '4'' cos. =^. cos. *?i.4-!/''.'e^T^. sin 4'- cos. i^. sin. (p. cos. $. cos. i.

—^y".*c(<p.sin. ip. cos. ?>. sin, ij/, cos. 4-. cos. '(.—y'.'^d'p. sin. -0 sin. 'tl'-cos. «

4-y .*rf<|'. sin. if" cos. 4'' sin. <p. cos. ip. cos. i-\-y" .' d-^i • sin, *4/. sin. ^ip

—^".*rfip. cos. *ip.cos. *4/. cos. ^— y.'rfip. sin. ?. cos ip. sin. •\'- cos. if)

4-i".^<f«. sin. 1 COS. «, sin. if/, cos. \'- +^"^(^^|'. cos. '4^. sin. *«.
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di. COS. 6. {Br, cos. 9 + Aq. sin. 9) +sm. 6. d. {Br. cos. (i>+Aq, sin. ip)

—d. {Cp. cos. fi) =—cfiV^

;

<?>)/. (£r. sin. 9

—

Aq. cos. ?>)—(fO. sin. 6. {Br. cos. ip H- ^y. sin. (p)+cos 9.

d. (Br cos. <p + Aq. sin. ip) + cf. (Cp. sin. 6) = — (fA'''

;

d. (Br sin. ip

—

Aq. cos. ?>)

—

d^. cos. 9. (£r cos. (p+ Aq. sin. 9)

—Qj.rf" 4/. sin. = -- dN"

making

Cp=p'', Aq= j'j 5r=/;
z

.". observing the terms which coalesce and those whicli destroy each other in the expression

for y^iy—y^*') tWs function_becomes equal to

—x".* dS. sin. I. sin. 9. cos.^—«".'rf4'' *'""• '?• cos. ^i—x''.^d<J/. cos. '^

+(«".» rf^. cos. ^ip. COS. 6 + a/'.* rf<fi. sin. '(p. cos. «) = {xf'.*d(p. cos. ».)

+y.'t/J.sin. tf. sin. <p. cos. (f

—

y".*d-^. cos. '<?. cos. '<

—

if' .'^d'^. sin. *9

+(^".*c^ip. sin. ^(p. cos e-\-y".'d<p. cos. ^<p. cos. «) z: {i/'.*d<p. cos. «).

—3".V-v^. sin. ''«.

This equation when extended to all the molecules of the body is identical with the

equation,

A.q. sin. $. sin. (p-\-Br. sm. 6, cos. 9

—

C.p. cos. *. :£— iV;

taken with a contrary sign, for substituting in place of A, B, C, p, r, q, their values, in

this equation, it becomes for one molecule

, „ ,,, ( d-l>. sin. 't. sin. ^(p)—di. sin. i. sin. (p. cos. (p ")
,

(y + ^'Y
I -^r— —5 + {x"^ + s"^).

(d^f'. sin. »S. cos. "ip + tfO. sin, <. sin. ?>.cos. ^)—(^"* +«/''*) (<^ip. cos. 5—dif'. cos. *«),_

equal by making all the quantities by which y,*z",' i",* are respectively multiplied

coalesce so that they may be respectively factors of these coordinates
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these three diflPerential equations give the following ones *

dp'+ \—-j—\q'r'.df=dN, COS. ^-—dN'.&m. 0;

dr

C—B
CB

A—C7 „, ,

dq'+ S i .r'p'.dtzz—(dN. sin. 9 + dN'. cos. 0). sin. ^

-\-dN". COS. (p ; h(i>)

'+ ^

—

j-rii 'P'q'-dt=—(dN. sin. 6 + dN'.cosJ). cos.^.

—rfiV^". sin. (p.

y.*rf^ (sin. ^«. sin. «(fi-|-tos. *^)—.y. -dd. sin. «. sin. ?. cos. (p
— 7/". 'dip. cos.

= i/''^.d4'. cos. '<f>. COS. -«-}-^",»c?t|'. sin.'ip—^"*. rf«. sin. *. sin. (p. cos. (p~-i/'*.dp. cos, #

r''^.^^". sin.*^. sin.*(p—3"*.c?«. sin. «. sin. ip. cos. <p+3"*.c?4'. sin.»5. cos.*?

-\-^'.'di. sin. 5. sin. <p. cos. (p = s*'. ^d^p. sin. 'S

+«"* . d4'' sin.^^. cos. '^-{•x"^.d6. sin, «. sin. ip. cos. *

—

3/'^.dp. cos. «-j-x'".(i'-i|'. cos.'S

= a"'.rfT}/. (sin. ^ip. COS. *«)4-y ^(/•4/. cos. «ifi

—

x"\d/p. cos. e+x"'.d6.sm. «. sin. ip. cos. $,

Since the angle -^ vanishes after the differentiations, wherever sin. v^ occcurs as a factor

tliis quantity must be rejected, and wherever cos. ^^ occurs it becomes equal to unity, keeping

these circumstances in view it will immediately appear that the expressions for

—

dN—dN"
—dN" should be such as are given in the text.

* The first differential equation being multiplied by—cos. 6 becomes equal to

—dS. cos. '6 {Br. cos. P+ Aq. sin. ^)—sin. 6. cos. 0. d. (fir. cos. <P-\-Aq. sin. ip)

+ COS. (. d. {Cp. cos. e) = dN- cos. t

and multiplying the second equation by sin. $, we have

d^l/. sin. e.{Br. sin. (p—Aq. cos. (p)—d(, sin. '«. (Br, cos. p-j-Aq. sin. 9)+sin. t. cos. i.

d.{Br. cos. ip+Aq. sin. ifi)+sin. S d.{Cp. sin. ()——dN'. sin. d

.•. dN. cos.«

—

d.N'. sin.«=

—

d6.{Br. cos.?i+ Aq. sin. (p)-\-d->p. sin. 6, (Br. sin. (p—^y.cos.^)

+ cos.»«. d.
( Cp)—d6. sin. 6. cos. 6. {Cp)+sin. *6. d(Cp)+d6 sin. 6. cos. (.(Cp); =
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these three equations are very convenient for determining the motion of

rotation of a body, when it turns very nearly about one of the principal

axes, which is the case of the celestial bodies.

27. The three principal axes to which we have referred the angles

z 2
by substituting for r and q their values

——B.{di.d-i^.'im.^. cosJ (p+clS.* sin. <p. cos. <p)

—

A-{de.d-^.sm. ^.sin. '<p

—

dS.'' sin. (p. cos, ip)
. ___

+ B.(rf'|'.* sin. ^6. sin. ip. cos. (p-j-di^.d). sin. 6. sin. -<?)— /4.(cAJ/.* sin. *(i. sin. <p. cos. (p_

—d4^. dS. sin. 6, cos. *0) , , _ .+ d.(C.p.)=

{B— /}.l(r/ij/.»sin. = ^. sin. <p. cos. <p)—dS. ' sin.tp. cos.(p+d4'.d6.(sin. ^.sin. "tp—sin. 6. cos. '^)

)

_

+ d.(C.p.)={B—A). q.r.dt+dp' = -^ . q'.r'.dt+dp'

in like manner, multipl3'ing the first of the differential equations by sin. 0. sin. (p, the second

COS. 6, sin. (p. and the third by— cos. <p, and then adding them together we obtain

—dN. sin. 6. sin. (p—dN'. cos. 6. sin. <p—dN". cos. (p= to

6?«. sin. ^. cos. 6. sin. ip. (Br. cos. (p+ Aq, sin. (p)+ sin. *«. sin. <p. ^. (£r. cos. (p+Aq. sin. ?)

—sin. 6. sin. (p. (/. (C^. cos. $)

-\-d4'- COS. tf. sin. (p[Br. sin. ip

—

Ag. cos. ip)—cf^, sin. 6, cos. «. sin. (p(Br. cos. ip + /f y. sin. !p)

+COS. =«. sin. (p. d. [Br. cos. (p+.^J'. sin. ip)+cos. 6. sin. (p. d. {Cp. sin. «)

—COB. <p. d. (Br. sin. ^—/4y. cos. ?i) + d^. cos. «. cos. <p. (Br. cos.(p+ /4y. sin. <p)

+ C^p. (f'<|'. sin. 6. cos. (p = by concinnating

sin. Ip. rf. (Z?r. cos. <p-\-Aq. sin, (pj^-c^-vj/. cos. «.5r—cos. (p. d. (Br. sin. (p— y^y. cos. (p)

—sin. «. COS. J. sin. <p. d.(^Cp) + £?*. sin.'S. sin. $. (C/))-|- sin. fl. cos. S. sin, <p. t/. (Cp)

+ de. cos. ^ ». sin. (p. ( Qj.)+ f Cp.) d^^. sin. tf. cos. ip

;

= sin. ip. cos. <p. c?. (/?r)+ sin. *^. d. (Aq)—Br. d<p. sin. '<p. + Aq. dip. sin. ip. cos. ip.

+ rf^}'.cos.«. J5r—sin.ip.cos.ip. d.(Br)+cos.'(p.d.(Jq)—Br.rf^i.cos.* ip

—

Aq.d(p. sin.(p.cos.f.

4- rf^.sin. ip.(C.p.)+(C/;). rfvf-. sin. «. cos. ?i=rf.(^9)—B;.rflp4-rf•^;'.cos.«.JBr

-l-d^.sin.lp.((^),+<ZvJ/. Cp.sin. ^.cos.ip)
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S, p, 4'> deserve particular consideration ; we now proceed to determine

their position in any solid whatever. From the values oi of 1/ z', which

have been given in the preceding number we may obtain the following

expressions by No. 21.

x"-:z.af (cos. 6, sin.
»J/.

sin. <p + cos. ^. cos. <p) +3/'. (cos. 6. cos. »J/.
sin. p

—sin. ^. cos. 9)

—

z'. sin. 6. sin. cp
;

y"= x' (cos. 6. sin. if/, cos. (p—cos. ^. sin, 9) + ?/'. (cos. 0. cos. <|/. cos. <?

+ sin. i)/. sin. (f)
—~'. sin. 9. cos. (p ;

^"=j'. sin. 0. sin. ^\-y'. sin. 6. cos. ^^-z'. cos. 6

;

From which may be obtained,

x". cos. (p
—y". sin. (p-=x'. cos. <|/

—

y' sin. v)/

;

x". sin. (p+y. cos. (? = y. cos. 6. sin. 4'+j/'- cos. 0. cos. 4-—^'- sin* S

;

and making

S.x'Mm=ia-; S.y'J" dm=b-; S.z'.^dm=c-;

S, x'y.'dm—J'; S. x'z', dm—g ; S. y'z. dm —h ;

we shall have

COS. (p. S. x"z". dm—sin. (p. S.y"z''. dm= (a^'—b^) sin. 6. sin. vf/. cos. ^

but by substitution d.{Ag)+ Br.{—d<p-\- d-^. cos.e)+c?«. sin.ip. Cp.-\-d^{Cf.)sm.i. cos. <p.z=

, . . —Bd-^. dip. sin. 6.cos.ip—dip. dS.sin.(p-{-d^.~sm.6. cos. 6. cos.p+d4:di.cos,6.sin.<p.
d.(Sq)

-\-C.(d6. dp. sin. ip— df. d4^. cos. 6. sin.(p)4- C. d-^. dp. sin. 6.'cos, p—C.d^.- sin. S.cos.C.cos.^._

~{C—B).d<p.d4'. {sin. 6.

C

OS. p.)-i- {dp. dS.sin. p)— rf-vj/. ^ sin. «. cos. 6. cos. 9

—

d6. rfi|/. cos.Ssin. <p)

dt

+d[Aq.) ~ (C-B). p. r.dt+ d.{Aq.) - ^^^^p'.r'dt+ dg'
CB

by a similar process we might deduce the value of the last difiFerential equation.
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-^f. sin. e. (cos.2 v}/—sin.^v|/)

-|-cos. 9. {g. 008.4-

—

h. sin. ^) ;

sin. <p. S. x'^z"dm+ COS. (p. S. 7/"z".dm=

sin. 6. COS. 9. (a.^ sm.^+b.^cos.'^—(r+ 2f. sin. >}/. cos. ^)*

+ (cos.^9—sin.'9;. (g. sin. ;}/+/«. cos. \j/).

* r''. COS. $i=x'. (cos. *. sin. il'- sin. <p. cos. <p-}-cos. vj/. cos. *ip)

+y . (cos. *. COS. 1^. sin. (p. COS. <p—sin. 4- cos. ^<p)

—

z'. sin. ^. sin. <p. cos. (p.

y. sin. (pzzx'.lcos. 6. sin. •v}'- sin. (p. cos. ip—cos. 4'- sin. 'ip)

+,y'. (COS. 6.cos.-<p. sin. *. cos. ip+sin.4'. sin. ^(p)—s'. sin. 0. sin. ip.cos. ip,

.*. x". COS. <p

—

y". sin. <?=.!/. cos. ^}'—•?/. sin. 4'

x". sin. <p=x'.{cos. 6. sin. vj/. sin. 'iji-j-cos. •v}/. sin. (p. cos. $)

+y (cos. ^. cos. 4*. sin. ^ip—sin. ^. sin. ip. cos. ?i)

—

~ . sin. ^. sin. -ip.

y. cos, <p=x' (cos. 6. sin. 4'. cos. *ip—cos. i^- sin. ip. cos. ip)

-j-y. (cos. (. cos.-il'. cos. *(p + sin. ^. sin. (p. cos. <p)—z'. sin. «. cos. 'ip

.*. .t". sin. (P-)-^". cos. (p=x'. COS. ^. sin. ^-{-y'. cos. «. cos. 4—/. sin. tf ;

multiplying the first member of the equation x". cos. (p

—

y" . sin. ip=x'. cos. 4—y* sin- '4"

by z" and the second member by the value of z" we obtain

cos. (p. x"z"—sin, ip.y .z"=: a'.^ sin. i. sin. •4- cos. -^—afj/. sin. «. sin. '4'

-f-a^y. sin, C. COS. ^4—y-* sin. ^. sin. 4- cos. 4'-

+2;'. i'. COS. 6. COS. 4^—s/^'- COS, 6. sin. 4'j

substituting for «',* y',* j;'y, z'y, 2'x', their values and concinnating we obtain

COS. ^.a:"!"—sin. ip.t/' z!'z={.x'-—^"). sin. S. sin.4'- cos.4' + ^y- sin. 6. (cos. ^4^—sin.'4'')

+ 2'j'. COS, 6. COS. 4—^y- cos. 6. sin. 4>

this expression being extended to all the molecules of the body, will give by substituting

for S-r/^dm Sj/.^dm,&c. their respective values a-,b^,/,g,h, &c,the expressionm the text,

in like manner sin. (p. x" z"
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by equalling the second members of these two equations to nothing,

we shall obtain

. /?. sin. x|/

—

";. COS. J/

(a^

—

b'^y sin. \j/. cos. ^\-J. (cos.'^ij/—sin."* i/)

J ^. sin. il/+/;. COS. »|/

2" tan. 2? „ ., • o , , o u , ,^ ,.
:—i

x~ '"^ r

—

a-. Sin. "4/—6 . cos.-.\}/

—

'ilj. sm. »J/. cos. 4'

but we have always

tan. 6
i tan. 26=

1—tan.-°fl '

by equalling these two values of tan. 29, and substituting in the last ex-

pression, in place of tan. S. its value, which has been given in a function

of <j/
J
and then in order to abridge, making tan. i}/= z< ; we sliall obtain

after all reductions, the following equation of the third order.*

0=(gu+h). (Jm—gy

+ [ {a-—h^). u-vf. (1—zr) ]. {h(^—Jia'+fg). u+gb'—gc'-hj]

.

4-C0B.?i.y.z".=:a;'' sin. 6. cos. 6. sin.*Aj/+,fy. sin. «. cos. «. sin.'>}'.cos.4'—s'«'-sm. = «. sm.>J'

-f-a't/'. sin. 6. cos. 6. sin. 4'- cos. ^+1/'." sin. 6. cos. 6. cos. '4'~^!/ *'" "*• cos. i^

+ ;V. cos. ^6. sin. -^-^z'y'. cos. *«. cos. ij/—z'.' sin. «. cos. 6 ziz

sin. «. cos. 6. (a'.'* sin. °^+y.» cos. '-^—z'^)+'2x'y'. sin. 6. cos. «. sin. 4'. cos. 4')

+ (cos. ««—sin. ««.) («'*'. sin. T^.-f^Y- cos.^}..)

by extending this expression to all the molecules and substituting a^,i*, c', /',y5, &cact.

tor Sx'V»K and S/ ^ f/w &c. we shall obtain the expression which has been given in the text.

* The second members are put equal to nothing because by the conditions ofthe problem,

the first members respectively vanish, consequently we have =

(
(flS—6*). sin. 4. cos. 4+/. (cos^^—sin. ^4)). sin. 6-\-(g. cos. 4—/(. sin. 4). cos. <

;

0*- sin. 6. cos. i. (a- sin. ^-\-b? cos. ^—c2+2/ sin, ^, cos. 4)

+ (cos. !'«— sin. H). (g. sin. 4+/'- cos. -f) ;
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As this equation has at least one real root we may perceive that it is

always possible to make these two subsequent expressions, and con-

sequently the sum of their squares, to vanish at the same time

sin. 6 h sin. 4'—g- cos. ^
•• ^^e" *^"" * ~ (««—6-). sin. 4..cos.4'+/(cos.2^^—sin.«^J.)'

sin. e

sin. < cos. 9 _ COS.0 ^!^=: i tan. 2(» =
COS. *(»—sin. «*

—
sin. ^6 l—UmM

COS. -i

g. sin. ^.-\-h. COS. -^

(?—a.-sin.24/—6.2cos.-^J'—2/ sin. ^. cos. i^

lhe«e fractions being divided cos. ij', become by substituting u in place of

sin. •vj/ hu—g gu-{-h

COS. 4'' ((a2_6»). u-{-f. (1—u-)). cos. 4-
'

(
(c- (l+;r)—«- tfi—t^—'lfu).cos.-^

if we call the factors of cos.ij/ in the denominators of these respective fractions m and n

we shall have

tan. «.= "~^
.
.-. i. tan. 2« =

?w. cos. y

1 C ^"-g
1 ' = m. cos.>V -hu-y ~ «• c°«- ^

••
C_hu-g_l
(_m. cos.^^J

by reducing we obtain

{hu—g). »m. cos. 'i^ = (gtt+h).
(
.(m cos\|'f—(Au—f)')

and consequently =

cos. ^. (m. (hu—g). n—(gM+A).>»)+(A«—^).* (^«+^,) now {hu—g)n.=>.

by substituting for n, {c?Q.-\-u^)—a^u^—h^—2fu) and then multiplying

h(~ u+h(? 1^—ha^ uS—hH u—2fhi^—g(?—gc' ui+gahi^+glr'+^/gu,

in like manner
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COS. (p. S. x"^'.dm—sin. ^. S. ^'.z".dm
;

sin. f. (S.yy.fi^wj + cos. (p. S.y"z'.dm'^

and this requires that we should have S, x"z».d'm ; Sy"z".dm separately

equal to nothing.

The value of u gives that of the angle 4'j and consequently the value

of tang. 6, and of the angle 6. It is only now required to determine

the angle <p and this will be effected by means of the condition

S. x''y".dm =0, which we have yet to satisfy. For this purpose it may

be observed, that if we substitute in S.af'x/'.dm * in place of x", y",

_(g«+A). w. = {-(gu+ h).{ai-b^). «-f-/(l-M=)=

—a-gu^+gb^u^—gfu+gfus—ha^u+h b^u—hf-^hfu^ .-.

the preceding equation becomes, to by making the similar factors of ic and its powers to

coalesce, equal to,
^_

'

{h<? u. (1 W)-1'ai u. (1 + ui)-fk. ( 1 +2i.')-gc? (l+M2)+/g«, (!+«')

iorcos.H.m.ihu-g) j£^£2:lWlll)

+ (hu—g)2. igU+ h) =

(
(a'-b.f M+/(l-«=)). {(hc^-ha''+fg).u-/h-gc^+gb'') )+(hu-g).^{gu+h)^ 0,

which is the expression given in the text.

* x". COS. (p—y". sin. ip=x'. cos. <J'—y. sin.'xj'. = P

i". sin. ^-j-y. cos. (p=x'. cos. i. sin. ^-\-y'- cos. 6. cos. -^^—z. sin. 6 =Q

.'. «". cos. *?—y. sin. <p. cos. <p=s'. cos. 4'. cos. (p—y. sin. i^. cos. (p=P. cos. (p

x". sin. ^if>+i/'. sin. ?>. cos. ip = x'. cos. J. sin. ^. sin. ?-j-y. cos. «. cos. ^. sin. f

—z' sin. «. sin. ^ = Q. sin. ^

.-, jr". = x'.(cos. t. sin. \J'. sin. <p+ cos. if., cos. ip)+y (cos. «. cos. i|.. sin. (p—sin. ^|', coe. p)

—J. Bin. *. sin. ^= P. cos. ^+ Q. sin. ^



PARTI.^BOOKI. 177

their preceding values, this function will assume this form, H.sin 2(p+L.

COS. 2(p ; H and L being functions of the angles 9 and ^, and of the

constant quantities a^ b^, (?,f, §•, A, by putting this expression equal to

nothing, we shall obtain tan. 2ip =—— .

The three axes determined by means of the preceding values of 9, 4^ j

and <p, satisfy the three equations,

A A

xM. sin.ip. cos.$

—

y". sin. *(p=x'. cos. 4'. sin. ip—;y'. sin. 4'sin. <p=zP. sin.(p

x". sin. <p. COS. <P-\-^' COS. ^(p=x'. cos. 6. sin. •J^. cos. ^-{•y'- cos. tf. cos. ^^ cos. ^-:-

:' sin. 0. cos. 9= Q. cos, 9

.'.y=s'.(cos. «. sin. ^. COS. $—cos. 4^. sin. (p)-fy(cos. «. cos. if'- cos. (f+sin.rj'. sin. <p)

+^' sin. «. cos. (p=Q. COS. ^—P. sin. <p ,.

x"y = PQ. COS. *$—PQ. sin. '<p + Q.- sin. <p. cos. ip—P.* sin. <p. cos. <p .'. if

Sx/'i/'. dm = 0, we shall have

SPQ. dm (cos. «.p—sm. -?)) + S(Q'—P»).rfm sin. <p, cos. <p = 0. and -^l^-H^

sin. (p. cos. (f

cos. *(?—sin. 2^,
'

making H = S(Q'—P«)«?m and 21,=S.PQ rfw we shall have— ^-^^

sin. 2^. --//

J5 -77; •'.

—

zf~ tan.2ipj
2. cos. 2^ H

this equation determines a real value for, tan. 2ip and .•• for (p, and as the equation which de-

termines the value of u has at least one real root, tan. 4' and .•. tan. 6, are real, consequently

we are justified in assuming as we have done

S,x//y'fdm, Sfil'dm, Ssf'ti'jdm,

respectively equal to nothing, and therefore we shall have at least one systenj of principal

axes existing in every body.
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S.x'y.dm—0'y syz".dm=iO'y &yV.</m=0.*

The equation of the third order in it, seems to indicate three systems

of principal axes, similar to the preceding ; but it ought to be observed

* All the roots in the equation which determines the value of u are real, and this equation

must be of the third dimension, for in the investigation of the angles (, il', <p, there is no

difference between tlie principal axes, nor is there any condition to determine which of the

three principal planes we assume, ••. the solution must be applicable equally to the angle

contained between the axes of a/, and either of the three intersections formed by the plane

of jr',y , with the three principal planes of the body respectively, consequently the roots of

the equation must be all real, it also follows that there is only one system of principal axes in

every body, for as each system would give three values of u, the dimension of the resulting

equation which determines the value of u, should be equal to three multiplied into the number

of systems, but the equation does not transcend the third order, .•.the number of systems is

only one, indeed if the equations which give the values oi i -^ and ^ are identical, tlie number

of principal axes is infinite, tliis will evidently be the case where the tierms which compose

the equation in u vanish without supposing any relations existing between the terms i, e, when

a *— i ^=c * , andyj g, h, respectively vanish we shallhave for the coordinates a/,T/,ii, S.x'i/. dm

=;0, S./cVf/m— 0, S.y ^ .dm=.0 .'. they are principal axes, and as in this case tan. (zz — ,the

position of these axes is entirely undetermined .-. all systems of rectangular axes are prin-

cipal axes and their number is infinite ; from the expression for tan. 6 it appears in like man-

ner, that this angle is 100°, when a^z^b* and_/— 0, and consequently that the plane of

the axes of ;/' and x' must pass through the axis of z".

For all bodies symmetrically constituted, one of the principal axes, is the axis of the figure

i, e, a line perpendicular to the plane dividing the bodies into two parts perfectly equal and

similar, for supposing this plane to be that ofx, y, then ifwe take two equal molecules, similarly

situated ^vith respect to tliis plane, it is evident that if the coordinates of one molecule be

X, y, z, the coordinates of the other will be jr, y,—z, and the indefinitely small elements of the

integrals S,xz.dm, S._y2.f/n!, which correspond to these molecules will be a;z.rf»?,

—

xz dm,yz.dm

—yzAm, .•. the sum of all the indefinitely small quantities xz.dm,—xz.dm, yzJbn—-yzydm,

at one side of the plane will be equal to the sum of the indefinitely small quantities at the

other side affected with a contrary sign, . . their resjiective aggregates S.xzdm, S.yz.dm are

equal to nothing, .'. the axis of z is a principal axis, and if the molecules of the body be

sjTnmetricaUy arranged with respect to a plane passing through the axis of z' perpendicular

to the first mentioned plane, we shall have S.xy.dm =:0 .-. the axes of x,y, z, will be prin-

cipal axes.

What has been established in the preceding note is of great importance, as the investi-
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that u is the tangent of the angle formed by the axis of .r', and by the

intersection of the plane of :v' and 3/' with the plane of x''' and y", and it

is evident that one of the three axes of of', of y", and of z" may be

changed in another, since the three preceding equations will be always

satisfied j therefore the equation in u ought to determine indifferently,

the tangent of the angle formed by the axis of of, with the inter-

section of the plane ^', 3/', either with the plane x" y \ or the plane ocf\ z'\

or finally with the plane y", z",. Thus the three roots of the equatiffii

in ic are real, and they belong to the same system of axes.

It follows from what precedes, that generally a solid has only one

system of axes, which possess the property in question. These axes

AA 2

gation of tlie position of the principal axes is considerably facilitated by making one of them

to coincide with one of three coordinates x' t/ z', whose position is entirely arbitrary, for sup-

posing the axis of x" to coincide with the axis of xf, then since (p:=the angle which the

intersection of the plane of x" and y", with the plane 3^,1/, makes wiih the axis of «',

and since -^= tlie complement of the angle, wliich the projection of the third axis on the

plane of x' and y' makes with the axes of *', these angles are severally equal to notliing

tan. i

^. sin. -J/

—

g. cos. 1^

(a'—6 ») sin. ^. cos.'vj/-j-y;(cos. ^-^—sin.'^)

becomes equal to

_llandi tan 2«-—S:iiili±i:i^!^:i - _^lj_
/' J-

• — c»_a2. cos.^4—6^sin.'i^—g/sin. 1^. cos. i^ ~ c'*—i'« '

n which (/, 6',/', g', A' indicate what c, i,7>^j Aj become when a;' coincides with x", and

as tan. 2[S + 100)— tan. (2(1+200) = tan. 2«, it follows that the other two axes must be

taken in the plane y, 2', one making the angle i and the other the angle fl -f 100 with the

axis of y, now if we made the axes of y", and s", to coincide with the axes of y and z'

respectively, 6, and .•. /;' would vanish, and consequently S{y'z'.)dm would be equal to

nothing. But if h' remaining equal to nothing, b' and c' would be equal to each other then

//
tan.2« = ——p-j would be equal to — .•. « would be indeterminate and every line in the

plane y' z', and passing through the origin of the coordinates would be a principal axis, see

notes to page 184.
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have been named principal axes of rotation, on account of a property

which is peculiar to them and which will be noticed in the sequel.

The sum of the products of each molecule of the body, into the

square of its distance, from an axis, is called the momeiit of inertia of a

body with respect to this axis. Thus the quantities A, B, C, are the

moments of inertia of the solid, which we have considered, with respect

to axis of -f", of 1/", and of ^'. Naming C the moment of inertia of

the same solid with respect to the axis of z', by means of the values of

y, y, and z*, which are given in the preceding number, we shall find

C = A. sin.* 9. sin.« (p+B. sin.* 9. cos.* ip+C. cos.* 6.
*

The quantities sin.* 0. sin.* <p, sin,* 9, cos.* <p, cos.* 9, are the squares

of the cosines of the angles, which the axes of x^^, of y, and of z'',

make with the axis of z' ; hence it follows in general that, if we mul-

tiply the moment of inertia relative to each principal axis of rotation,

* Since &(j/'^+y24-j5"2).(^m=:S.(x'^+y^+2'^). dm by substituting the value of ^'r in

terms of a.-",2y,2~".- and observing that S^'y"Jm, Sx"z".dm, Sj/'z".din, are equal to

nothing, we have

Si!'.''dm^S^'.'dm-!(.Sz".-dm=S^'?dm-\-S.y'.^dmJ{.S.x!'.^ sin.^^.sin. ^(p dm

-\-S.y" .- s.m.-6.co%.-^.dm+Sz!'? coih.dyn .: Sx"%l—sin.-6. sm.'<p)dm

+Sy". (l_sin.2«. cos.-p).dm+

S.:^'.^(l—cos.^e).dm= S{t/^-\-t/^).dm .-. = S.a/' .^ (cos.^d+sm.\ cos.^<p).dvi

+Sy.\cos.^6+sm.^6. sm.^(f>)dm

+S.Z//.* sin.*tf. sin.2<p dm + S.«".*sin.2«. cos.-Um

and making the like factors coalesce we obtain C

S.{y".^+^y sm\sm.^<p.dm+S.{3/'^+z"^).sm.^6. cos.'<p.dvi+S (x"^+f^).cos.H. dm i, e,

C= A. sm.^6. sin.^i^+£. sin.^«. cos.*<p+C. cos.''«.;

sin, 6. sin, tp, sin. 6, cos. (p, cos. 6, are equal to the cosines of the angles which the axes of

x", ofy and of z" make with the axes of z', see Note, page 132.
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by the square of the cosine of the angle which it makes with any axis,

the sum of the three products, will be the moment of inertia of the

solid, relative to this last axis.

The quantity C" is less than the greatest, and greater than the least of

the three quantities * A, B, C, ; therefore the greatest and least moments

of inertia appertain to the principal axes, t

* Let A be the greatest and C the least moment of inertia, the value of C ' may be made

to assume the following form

C'= A + {B—A). sm.'^d.cos.^(p-\-{C—A).cos.%

. . since the moments of inertia are always affirmative, the two last terms of the second

member of this equation will be negative, consequently C is less than A, let C be the

greatest moment of inertia and the expression for C will become

C+ (A—C). s.ia.-6. sin. ^(f>+(B—C). sin.^«. cos.2(p,

in this case also the two last terms of the second member are negative, .
•

. C is less than C ;

the moment of inertia C is greater than the least of the three principal moments, for if A
be the least of the three moments which refer to the principal axes, we have as before

C'—A + {B—A). sin.s«. cos ><!>+ (€—A). cos.2«,

and as the differences are on the present hypothesis affirmative, C is greater than A, let C
be the least of the three moments, and we have

C'=C+(/l-^C). sin.^O.sin.'?! + (B—A).sin.\ cos.V,

the terms which compose the second members are always affirmative, . . we conclude that

C is greater than the least of the three moments, A, B, C,

From what has been established in the preceding note, it appears that when the three

principal moments of inertia are unequal there is only one system of principal axes, for let

there be another system and make A', D', C, the moments of inertia relative to these

axes, then we shall have at the same time A "^ A' and A' "^ A which is impossible, see

note to page 178.

t For S{J—XY.dm^Sx'.^dm—2X.Sx'.dm-\.X^m—S3;.^dm—21!^-\-X^mM Sx'.dm =
X.m. and as the quantity—w. (X^+ Y^) is essentially negative, the moment of inertia witli

respect to the centre of gravity must be less than the corresponding moment for any axis not

passing through the centre of gravity. If the moments are referred to an axis passing

through a point different from the centre of gravity and of which the coordinates are a, b, c.
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Let X, Y, Z, be the coordinates of the centre of gravity of the solid,

relatively to the origin of the coordinates which we fix at the point about

which the body is subjected to revolve, if it is not free ; x'-^X, y'— Y,

z'—'Z, will be coordinates of the molecule of the body, with respect to

the centre of gravity ; therefore the moment of inertia, relative to an

axis passing through the centre of gravity, and parallel to the axis of zf

will be

s.^(x'-x)*+0'—Yy
}

dm:

but from the nature of the centre of gravity, we have S. x'.dm=mX,

S.y'.dm=mYi .'. the preceding expression will be reduced to

Consequently we shall have the moments of inertia of the solid, with

respect to an axis passing through any point whatever ; when these

moments are known for axes passing through the centre of gravity.

At the same time it appears that the minimum minimorum of the

moments of inertia appertains to one of the three principal axes, passing

through this centre.

Let us suppose the nature of the body to be such, that the two moments

of inertia A and B are equal, then we shall have

C'=^. sin. *e+C.cos.'6: *

the value of the moment of inertia with respect to this point is equal to

It is evident from an inspection of their values, that the greatest moment of inertia with

respect to any point, is less than the sum of the other two moments.

* When A=B the moment of inertia with respect to any other axis= A . sin.^f+ C. cos.^l,

and as neither 4- or (p occur in this ejcpression, the moment of inertia for all axes making

the same angle, with the axis of z are equal, and if « be a right angle C-:z.A, therefore in

this case there is an indefinite number of principal axes, but they have all a common axis z\

when «=100* we have a^=-h^ and/= i, e, Sx'MmzzSi/.-dm and Sxy.dm=0 this also
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and by making S equal to a right angle, wluch will render the axis of ^ per-

pendicular to the axis of z", we shall haveC=A ; therefore the moments

of inertia relative to all axes situated in the plane perpendicular to the

axis of z'' are then equal to each other. But it is easy to be assured that

we have in this case for the system of the axis of z^', and of any two

axes perpendicular to each other, and to this axis,

S. afy'.dm= ; S. afz«,dm= ; S.i/'2^'.dm= ;

for if we denote by x" andy the coordinates of a molecule </m referred

to the principal axes, taken in the plane perpendicular to the axis of 2",

and with respect to which the moments of inertia are supposed equal, we

shall have

or simply S,x'.*dmz=.S. y"*.dm; but by naming i the angle which the axis

of z makes with the axis of af', we have

x'=^ x'l. cos. £+y. sin. i ;

y = yi'. cos. e

—

:>/'. sin. t. ;

consequently we have

S. x'y'.dm= S. x"y".dm (cos.»£—sin.' i)

4. S. (j/"«—.or"^). dm. sin. i. cos. 1 =0

we shall find in like manner .S". .rV.rf?w= 0; S.T/sf.dm-^O'f therefore

all axes perpendicular to the axis of z", are in this case principal axes ; and

in this case the solid has an infinite number of similar axes.

follows from the equations x':=x". cos. e+ ^° sin. e, y =r y". cos. i—x ' sin. s for S. x'Mm =.

S.{x"? cosS-\- Sy".- sm..^i). =S.x"?dwz:Sy'.-dm, since Sx"y".dm-=zO, in. the case of an

^ipsoid generated by the revolution of an ellipse above its minor axis, we have always

two of the principal moments of inertia equal, the moment which is the greatest is referred

to the minor axis.
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If we have at the same time A =B=C; we shall have generally

Cz=.A ;
* that is to say, all the moments of inertia of the solid are

equal, but then we have generally,

S.x'y'. dm=0; S.x^.dm=0 ; S.i/'z.dni= ;

whatever may be the position of the plane of x' and of i/' ; so that all

the axes are principal axes. This is the case of the sphere, and we shall

see in the sequel that this property belongs to an infinite number of

other solids of which the equation will be given.

t

* Since by hypothesis ^=i?=C, Sxff.-din=Sy"Mm=SzV.2dm, .-. if in the expression

for 2'2 in terms of :r//,°y',- zV and of the angle 6,4'><P, we take this into account and

also observe that S.x'y".dm, Sx"z".dtn. S.if"z".dm, are equal to nothing, we shall find

S.z^ dm= Sz'.'dm for z'=z". cos. 6—y". sm. ^. cos. <p—x". sin. 6. sin. :p .-. z'^ = z".-

cos.^«+y'."sin.^«. cos.^(p-{-x'.- sin.^^. sin."(p=(when x"' =y'- =2"^) z'? the same is true re-

$pecting y'^ and x^ on the other hand if we equate z"^ and its value in a function of x y, z

and the angles ^, ^, ^, and also satisfy the equations Sx'.^ dm=Sy'.~ dm^Sz'dm, we

must equate Sx'y'.dm, Sx'z'dm, Sy'z'dm to notliing. (See Book V. Chap. I. No. 2.)

t x'' y" z" being the coordinates with respect to the principal axes of any point of the

solid, if we transfer the origin to a point of which the coordinates are a, b, c, then the

coordinates relative to the new origin will be «"

—

a,y"— b, z"— c, now if we suppose that

the three principal moments of inertia with respect to this new origin are equal, then all

rectangular axes, and .•. the axes of ««'

—

a,y"—b, z —c, will be principal axes, consequently

we shall have

2.(a/'— a) (y"—b).dm - l..x"y".dm—a 2.y".d7n—b ^.x"dm+ a b 2(/»! =

2.(x"—a).{J'—c).dm = ^x"z".din—a 2.z".f/»i—c ^x".dm 4- a c. 2c?jh =0

, 2.(y'—6).(2"—c).rfTO = 2.y".z".dm—b 2.z".d»i—c 2.y".dm+bc 2dm—

now if we suppose the origin of the coordinates x",y", z", to be at the centre of gravity

the preceding equations will be reduced toab. 2dm=0, a c.Zdm=0, be. l,dm=0 . •. two of

the preceding quantities must vanish, let b, c, be equal to notliing and a will be unde-

termined, .•. the point required wll be at a distance equal to a from the origin by a fore-

going note the moments of inertia with respect to this point will be A,B-\-ma-, C'-j-?Ha'and

by the conditions of the problem they are supposed to be equal .•. we have a= +
\I'A—--(I

I 1 •• -.^ being greater than C we have two values of a equally distant on



PART I.—BOOK I. 185

28. The quantities p, q, r, which we have introduced in the equations

(C) of No. 26. ha e this remarkable property, that they determine the

position of the real and instantaneous axis of rotation with respect to

the principal axes. In fact, we have relatively to all points situated in

the axis of rotation, ^/a.' = ; c?y=:0 ; dz'= 0; if we difference the

values of x', y', z', of No. 26, and then make sin. 4' = after the dif-

B B

opposite sides from the centre of gravity, but a is also equal toV .•. in order that these

two values of a should be possible, it is requisite that B should be equal to C, .', when

A B C axe unequal there is no point vi^hich satisfies the required conditions and when two

of the moments are equal, the tliird must be greater than either of them, and in this case

the point required is situated on the axis relative to which the principal moment of inertia is

the greatest, when the tliree moments of inertia are equal the two points are concentrated

in the common centre of gravity. Wlien BzzC we have S.y".''dmzzS^'*dm.

In an ellipsoid generated by the revolution of an ellipse of an ellipse round its minor axis

two of the three principal moments relative to the principal diameters are equal,

and the greatest moment is relative to the minor axis, see note page 181, .-. we shall have

two points existing on this axis relatively to which all the moments of inertia are equal, it

is easy to shew that the distance of those points from the centre of the ellipsoid is = to the

square root of the fifth part of the difference between the squares of the semi-axes, and .-.

they may be within the ellipsoid, at its surface, or finally without tliis surface.

We might have inferred a priori that there is an axis with respect to which the moment of

inertia is a maximum and a minimum, for from their nature all moments of inertia are

positive and have a finite magnitude, and most authors deduce the properties of principal

axes from the moments of inertia which are the greatest and least, the general expression

for S.[i"^ -\-y"').dm in terms of x' i/ and z! is equal to

SJ^. dm. COS. 'i sin. ^-\-S.x'^dm. cos. '^-{S.i/^dm cos. ^L cos. •^i-Su\^dm sin. '^

+ S.z'^.dm sin. 'rf -(-2 Sx'i/dm. cos. ^6. sin. i^. cos. i^

—2S.x'i/'.dm. sin. i^- cos.-4/

—

^S.z'x'.dm sin.6. cos,6, sin.\f/—

2

S-z'^/dm. sin. i. cos. i. cos. if.

When the law of the variation of the density and the equation of the generatino- curve

of a solid of revolution are given, the value of S.(x' *+?/''). dm may be computed by a

method similar to that by which the centre of gravity of a body is determined ; the value

of S(x'-j-y*).rfm is computed for the earth in Book V. Chapter 1. No. 2.
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ferentiations which we are permitted to do, since the position of the

axis of x' on the plane of x, y', is indeterminate, we shall have

dx'=x",\d^. COS. 6. sin.
<f
—

d(f. sin. (f)+y". {d^. cos. 6. cos, 9

•^d(p. COS. (p\ -\-z". d-^. sin. 6=0
;

di/'^x". \d(p. COS. 8. COS. 9

—

d^. sin. 6. sin. (p
—d^. cos. ^]

+ y. \d^. sin. <p
—d(!). cos. G. sin. <p—rf9. sin. 0. cos. (p\

+ z". </fl. cos. 6 = ;

d^=—x".(^dL COS. 9. sin. (p + d<p. sin. 6. cos. ip)

—y*
C*^^'

cos. 9. COS. (p—d(p. sin. 6. sin. (p)—3".r/9. sin. 6=0.

If we multiply the first of these equations by—sin. 9 ; the second by

COS. 9. cos. p, and the third by— sin. 6. cos. <p ; we shall have by adding

them together,

Multiplying the first of the same equations by cos. p ; the second by

cos. 6. sin. (p, and the third by—sin. 6. sin. <p, and then adding them

together we shall obtain

0=pf—rz".

Finally, if we multiply the second of those equations by sin. 6, and the

third by cos. 6, and then add them together, their addition will

give *
.

0=qj/'—rx."

* In taking the differentials of dxf, dt/, d^, we may omit those quantities in which sin. 4-

occurs after the differentiations, and where cos. ^ occurs, we may substitute unity ; multi-

plying the value of dx' which results by—sin. <p, it becomes

—ttc'. sin. 9 = —x".(rf4'- COS. 0. sin. ^<p—d<(i. sin. *(p)

—

y" .{(l-^.co&, t, sin. ^ cos.f

—d<p. sin. 9. COB. 9}—z". d-^. sin. k sin. <;

;
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This last equation evidently results from the two preceding ; thus the

three equations dx'=0, dy'^=0, dz'= reduce themselves to these two

equations which belong to a right line, forming with the axes of x^\

B b2

and in like manner multiplying dt/ and its value by cos. 6. cos f, we liave

di/. COS. ). COS. i?3:a"(rfip. cos. "6. cos, *^

—

dS. sin. 4. cos. isaa. f. cos. (p—d^'. cos. *.cos. *?)

-\-i/'.(d-^. sin. (p COS. ^. cos. i—d<p. cos. "-(. sin. ?. cos. (p—d6. sin. L cos. 6, cos. *f

)

+2;".rf«. cos. '«. COS. ^

and the multiplication of dz!, and its value by—sin. 6. cos. (f, gives

—«?z'. sin. 6, COS. ip = x"{dS, sin. ^. cos. ^. sin. ^. cos. (p+t^^'Sin. 'tf. cos. 'ip)

+ y (rffl. sin. i. cos. fl. cos. ^(p—dip. sin. *^. sin. (p. cos. ^) + a". rf«. sin. *e. cos. ip

adding these quantities together and making the factors of the differentials of C, ^'i 9) which

belong to the same coordinates coalesce we obtain

—x".(dyp. COS. e-[-d<p)-\-2f'.(de. cos. ^—rf'4'«sin. «. sin. <fi)s: =

(by substituting p and q instead of their values) x''. p—z''.
y ; multiplying the first equation by

COS. <5. the second by cos. 6. sin. ^, and the third by—sin. 6. sin. (p, we obtain

dx'. COS. (p=jt".(rf\J/. cos. 6. sin. 9. cos. ^

—

d(p. sin. (p. cos. ip)

4-y'((fiJ/. cos. «. cos. '^—tfip. cos. ''ip)+z".rf4/. sin. 6. cos. <p

oiy. cos. i- sin. ?i, = jc" (rf(p. cos. ^«. sin. (p. cos. ^—rfl sin. t. cos, «. sin. ^<p

—dy^. sin. 9. cos. <p. cos. ^)

•\-tf'{d-^. sin. *<p. COS. ^

—

d<p. cos. -d. sin. '<p

—

d6. sin. (). cos. 6, sin. ip. cos. ^)

-j-s". rf«. COS. *«. sin. <p

—dz!. sin. «.sin. tp=x".(d(. sin. d. cos. tf. sin. *^-\-d(p. sui. -tf. sin. (p. cos, ip)

•\-y".(d6. sin. d. cos. 6. sin. <p. cos. (p—d(p. sin. '^ sin. 'ip)+a". rfd. sin. *d. sin. ^

adding and concinnating as before we obtain

i/'.(d4'. cos. 6,—t/ip)4-«".(rf4'« sin. 6. cos. <p -{-</«. sin. ip)=0=: —j/'p +«".r
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of y" and of £', angles of which the cosines are

q r p

's/p' + q' + r* s/p^ + q^+r^ ' s/p'+g^+r'

multiplying the second equation by sin. 6, and the third by cos. 6, we obtain

dy. sin. (:=3/'.{d<p, cos. (p. sin. (i. cos. S—dl. sin. ^6. sin. (p—di^. sin. 6. cos. ^)

•j-y.^d-^. sin. «. sin. (p—d<p. sin. 6. cos. 0. sin. i?>~rf«. sin. ^$. cos. ip)+^". £/«. sin. l. cos. I.

rfi:'. cos. 6=— x".(d6. cos. ^6. sin. ?> -(- rfip. sin. $. cos. «. cos. ip)

— i/'.{di. COS. ^^. cos. ip— rfip. sin. 6. cos. «. sin. ip)—i". c?«. sin. «. cos. 9

/. adding and concinnating we have

—x".{d6. sin. (p+ d^: sin. 1 cos. (p)—y".{dL cos. <>— ff-v}/. sin. «. sin. ?)= —x'V-f-y'. y.

* The equations p/'—y2"—0—&c. are the equations of the projections of the line,

relatively to which dx' dy' are equal to nothing at any instant, on the planes x" z"
,
y" je",

&c. .*. the cosines of the angles which this line makes with the axes areVespectively

For these cosines are equal to

9^'

P

I 1 I T ~

P P'

and the same is true of the other cosines.

From the preceding analysis it follows, that the locus of all the points whose velocity is

nothing at any given moment is a right line, whose position with respect to the principal

axes is determined by p, q, r, :. the preceding equations both evince the existence of such

a line and indicate its position, and a body revolving about a fixed point may be considered

as revolving about an axis determined in this manner, but as in general;;, q, r, vary from one

instant to another, being functions of the time, the position of this axis will also vary, and

hence it is that this axis has been termed by some authors the axis of instantaneous

rotation ; whenp, q, r, are constant, the axis of rotation will remain immoveable during the

motion of the system.
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Therefore this right line quiesces, and constitutes the real axis of

rotation of the body. *

* The values which have been given for px"—jz", pi/"—rz", qy"—rj", enables us to

determine the linear velocity of each point resolved parallel to the axes of x' y and d for

if we multiply the first of the preceding equations by cos. i. cos. (f. the second by cos. i.

sin. f. and the third by sm. i. we shall obtain by adding them together

—dJ . cos. i. sin, ip. cos. ip \-dy'. cos. '^i. cos. '<f
—dz. sin. i. cos. 1 cos. '^^

^dx'. cos. «. sin. ip. cos. ip+ f/y'. cos. ^^. sin. 2|>—rfz'. sin. i. cos. ^. sin. 2(p+ ay. sin. **

4-rfi'. sin. i. cos. «=:(//— (px"—^z'). cos. «. cos. <P + {py"—rz"). cos. «. sin. ip

-]-(qii/"—rx"), sin. « ; if we multiply px"—g^' by—sin. <p and ;;_/'—ra"

by cos. ? we shall obtain

(/c'. sin. -?—rfy. cos. e. sin. if>. cos. ip+ rfs'. sin. 6. sin.(p. cos.ip..^«'' cos. *^

+ rfy. cos. «. sin. (Ji. COS. (p-—dz. sin. d. sin. ip. cos. ip = dx'

=—{px"— gz"). sin. ip+( pi/'—rz" ) . cos. ? ; multiplyingpx"—jaf' by—sin. «. cos. 9,

pi/'—rz" by—sin.fl.sin.ip. and qy"—rx" by cos.^,

we shall obtain

dx'. sin. 6. sin. <p. cos.^—ay sin. 6. cos. S. cos. ^ ip -{-rfz'. sin. -*. cos. ^<p

—cfx'. sin. j.sin. (p.cos. ^

—

dt/.sin. t.cos.^.sin. ^<p+ d^.sin. 'e.sin.*f-\-dy'.sin.e.cos.6.

+rfa'.cos.

"

)=d!/——(px"—jz".)sin. 6. cos.*

—

{py"—rzf'). sin. 6. sia.f+ {qy"—rx").cos.«
;

we might in like manner obtain the value of the accelerating forces resolved parallel to the

axes of x' y' and z', by taking the differentials of dz', dy', dz', and of their respective values.

Since as has been observed, in note, page 166, the coordinates of x'', y", z', do

not vary with the time, and as the angles 6, -i^, ?, are functions of the time, it follows that when we

take the differential of x"y'and z" respectively in terms of the coordinates i! ,i/, z', and of

the angles 6, ^, <p, the sines and cosines of these angles must be considered as constant, ,*.

keeping this in view and also that sin. 4'=^0 after the differentiations we shall obtain

dJ'z=.d3l. COB. <f-\-dy. cos. «. sin. <p

—

dyl. sin. «. sin. if ; d)f'-=i —dx' • sin. <f-\-dy, cos. i. cos. f

—dz' , sin. «. cos. P; rfa"— d-tf . sin. «+rf/. cos. i ;
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In order to determine the velocity of rotation of the body, let us

consider that point of the axis of z''y of which the distance from the

origin of the coordinates is represented by a quantity equal to unity.

We shall have the velocities parallel to the axes of x of y' and of z', by

making x"= 0, y"= 0, ;:"z= 1, in the preceding expressions of da^, dy\ dz',

and then dividing them by dt, which gives for these partial velocities

-r-, sm. 6 ; — . cos. 6 : , . sin. 6

;

dt ' dt dt

therefore the entire velocity of the point in question, is y/d^* + cfvj/^.sin. *S

di

or \/^*+?'*, and dividing this expression by the distance of the point

from the instantaneous axis of rotation, we shall have the angular

velocity of rotation of the body ; but this distance is evidently equal to

the sine of the angle, which the real axis of rotation makes with the

P
axis of z", and the cosine of this angle is equal to — —

;

/

but it is evident from what precedes that the second members of these equations are equal

respectively to

we have

dx" ill/' rfz"

consequently the quantities p, q, r, which determine the position of the axes of rotation,

give also for any other point the linear and angular velocities of the different points of the

body resolved parallel to the coordinates x", y", and z".
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therefore s/p*-{-q*-\-r* will be equal to the angular velocity of

rotation. *

It appears from what precedes that whatever may be the rotatory

motion of a body, about a fixed point, or a point considered as fixed
;

this motion must be considered as a motion of rotation about a fixed axis

during an instant, but which may vary from one moment to another.

The position of this axis with respect to the principal axes, and the

angular velocity of rotation depend on the variables p, q, r, the de-

termination of which is most important in these investigations, and as

they express quantities independent of the situation of the plane of x'

and y, are themselves independent of this situation.

29. Let us proceed to determine these variables in functions of the

time, in that case in which the body is not solicited by any accelerating

forces. For this purpose, let us resume the equations (Z)) of No. 26,

existing between the variables p', q, r, which are in a given ratio to

= the cosine of the angle which the axis of a" makes with the instantaneous axis of

rotation .*.

p« yz+r-

is equal to the square of the sine of the same angle, and since i" is by hypothesis equal to

unity we have the perpendicular distance of the-point in question from the axis of rotation

equal to this sine, .-. dividing \/ (f+r^ by this distance the quote will be equal to

's/ j^-\-q^^r^, and as the axisduiing an instant may be considered as fixed the angular

velocity of all points during this instant will be the same, the selection of the point so

circumstanced that x"=iO,^'=0, 2"=il is made in order to simplify the calculus, .-.

it appears from an inspection of the value of the angular velocity, that it is constant when

p q and r are constant, i, e, when the axis of rotation is immoveable, but the converse of

this proposition is not true for it is possible that the function ^ pii^q^i^s si,ould be con-

stant, while at the same time its component parts may vary, see page 197.
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the variables p, q, r,.* In this case, the differentials dN, dN', dN" waxiish,

and tliese equations being multiplied by ;/, </', and r' respectively and

then added together give

0=p'.dp' + q'.dq' + r'.dr'
j

and integrating them we shall obtain

k being a constant arbitrary quantity.

If we multiply the equations (Z)) by A B.p, BC.q, and AC.r', and

then add them together, we shall obtain by integrating their sum,

AB.f-^ BC.q'"' + AC.r'- =. H"- ;

/Z being a constant arbitrary quantity ; this equation involves the prin-

ciple of the conservation of living forces, t By means of the two pre-

* p: p' :: 1 : C :: 1: S{s"^+i/"%dm, but this is a constant ratio, because the position

of the principal axes being given, the quantity S{x"^-\-y"^). dm is constant, and when no

exterior forces act on the body, the quantities N, N', N", are constant and /. dN dN' dN"

vanish.

-]- For substituting for p', /, /, their values, we obtain

A.B.C(Cp^+Aqi+ Br')-m,.:S{x"^+y"-)dm.p'-+S(y"'-i-z"')dm".q^

+ S(x" + s"M(/m. r'=

a constant quantity, now we have seen in a preceding note, that the velocity of any point

resolved parallel to the axes of Jt" of ^'' and of sf' is equal tof«"—js", pf—r~J', qy"—rJ'

and the sum of the squares of these quantities

the square of the velocity of the point whose coordinates are x", tj' , z", .: this expression

multiplied by dm equals the living force of this molecule, now as the quantities p, q, r, are

the same for all molecules at the same instant, the sum of the Uving forces of all the
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ceding integrals we shall obtain

.^_ AC.k"—H'+A.(B—C). p' ^

^ - C. {A—B)

'2_ i/ — BC.Ir-B.(A—C).p"
^ ~

C(A—B)

thus, we shall have q' and r in functions of the time, when p' will be

determined, but from the first of the equations (D) we have

^^ {A—B).q'r.
'

consequently

c c

molecules will be equal to

P' •.A" ' +y" ' )-'^»«+ 9Y(y" * +z"f.dm-{-r.lfx"^+z''s)^m

—2pg/x"z".dm—2prfi/'s^'.dm—2qrfi/':^'.dm,

but these latter quantities vanish, x",t/", z", belonging to the principal axes consequently

j^f{x"^+y"%dm +q-/ij"^4-z9^)dm+t^f{x''^+z"^).dnt

is equal to the sum of the living forces, and being constant as has been just shewn, it fol-

lows that the expression

AB.p'^+BC. q'^+AC. /'~H%

involves the principal of the conservation of living forces.

^ 'o ,« « ,
m—AB.j/^—BC.g'^

* r^=:P—j/'—g'i= — i—

.-. AC£—ACf-—AC.c/^ = H^—AB.p'-—BC. /^ therefore g'' =

AC.k-—H^+ A.{B—C)p ^

C.(A—B)

the value of /^ is derived in a similar manner.
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ABC.dp'
dt=

s/ \AC.Ic^H? 4- ^.(ii—C').y'i . {H'—BC./c'—B.(A—C).p"] *

* When A-B, dt= ,
^^^"'PJ

,y{AC.Jr—H-+ A\A—C)p''). (H-—AC/c'—A(A—C}.j/*)

ABC.dp' ^

ABC. dp'

A Ck''—tr^+A{ A—V).p'^

and it may be made to assume the form

a-- dp' , ^ ,_.^^ , ^
ABC

ACh^—H-"

A.{A—C)
and a' being equal to -

and the integral of this expression = t=C^. (arc tangent=y to radius= a,

the constant quantity is equal to nothing because t=0 at the same time with/>'.

When A=.C the expression for dt becomes

AB.Cdp'

^{A- k-—H- +A.{B—A)iP). {H''—BAIr)

this expression may be reduced to the form

C,-—

1

—^^

( in which C, is equal to - \
' ^1F+^^ '

^ A^B-A).{m-BA.k )

Ak^—H2
and a-=-

A.{B—A)

the integi-al = C,. log (/+ ^/ a2+;.«

If2?=Cthenc/^.
^̂'^P' _c.—±^PL

'/(ACJ.^—H'^j(W—B-k'—Bi(A—B)).p^ '
s^ a^—p'*

and the integral will be arc sine =p' rad = a

^, ^ .
,

AB'
C, Dem£; equal to " / •

' ^ ^ <^AC/c^—hK(H^—B''k^)

and a^ = iJCIf-H% jlP-m^
—B.(A—B)

if /lC.4* = fl2theo
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this equation is only integrable in one of the three following cases,

B=A, B=C, A=C.
The determination of the three quantities p', q, r', involves three

arbitraiy quantities, H.\ Ji^ and that which the integration of the pre-

ceding differential equation introduces. But these quantities only give

the position of the instantaneous axis of rotation of the body, on the

surface, /", e, with respect to the three principal axes, and its angular

velocity of rotation. In order to have the i-eal motion of the body,

about the fixed point, we must also know the position of the principal

axes in space ;
* this should introduce three new arbitrary quantities

c c 2

,o A.{B—C).p'2 ,^ ABC dp'

^ t{A—B) ^ A(,B—C)if\H'i—BClr—B.[A-C)iy-

^adv
= c,:t

-—
in which 2C

-

AEC
V (/i{B—C) H'— BC. /c^^

~ —B,(A—C)

its integral will be equal to C,, log. ^ v " —p

a+ sja^—
i)"

See Lacroix, page 256, No. 174.. and if m=BC.lc^ then

dt^ -'^^•^/''

\/ACIfi—H^+A{B~C)pfi)[—B{A—C)p'^)

^^ and t= C. W. '^'^W^a=C,. and t~ C,. log.

the constant quantities vanish for these integrals, because as has been already mentioned

p'=0 when t vanishes. The value of dt cannot be exhibited in a finite foim except in the

cases already specified, and when all the moments of inertia are equal, in every other case,

the value of the integral of dt must be obtained by the method of quadratunes.

* From the quantities/, g', r', we can collect the values of p, q, r, which are in a given

ratio to them, and from these last quantities we obtain the cosines of the angles whicli the

axis of instantaneous rotation makes with the principal axes, but as these axes though fixed

in the body are moveable in space, we must know the position of these axes at the com-
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which depend on the initial position of these axes, and which i-eqviire

three new integrals, which being joined to the preceding quantities will

niencement of the motion, in order to have the real motion of the body, which gives three

constant quantities.

Substituting in the values o{—N^—N',—N", p' for Cp, q for Aq, r' for Br we shall have

q', sin. 6. sin, (p+ r. sin. «. cos. <p

—

p. cos. 6, ~ —A'^

q'. COS. $. sin. cp. cos. ^\-r'. cos. 6. cos. (p. cos. -^ '\"p' • sin- ^- cos. -i^

•\-r'. sin p. sin. 4^

—

q. cos.ip. sin. 4^ —iV'

—9'. cos. £. sin. If. sin.i|/—?'. cosJ. sin. 4". cos.
<f>—^'. sin. ^. sin. 4-

-}-r . sin. (p. cos. v}'^?'- cos. <p. cos.-v^ :;:—W
squaiing these quantities we obtain

9'. Vsin. ^«. sin. ^<p^r'? sin. *«. cos.'ip + p'.^cos. 'e-\-2q'r'. sin. '«, sin. 1?. cos. ?

—Sp'y'. sin. ^. cos. S. sin. (f

—

2p'r'. sin. 6. cos, ^. cos. <p=N^

q'.'cos. *^.sin. »(p cos. ^-^-^r'.^ cos.'<. cos. 'ip.cos. ^4'-\-p'' ^ sin. '^.cos. ^t^

+ 2//. cos. -J. sin. (p. cos. ?>. cos. '4/+2/>V'. sin. S. cos. ^. cos. <fi. cos. ~--^

+ 2;/^'. sin. <. cos. 6- sin. (p. cos. *4)

-}-r'.- sin. -?i.sin. 'ij'-l-/-' cos. ^ip.sin. ^^—2/,/, sin. <p. cos. ip. sin, ^=N'^

j'.* cos. '6. sin. *{?. sin. 'tJ/^/.s cos. '^. sin, 'J'- cos, '0-j"P'-' ^'f- '^- ®'"- '^

-j-Sg'/. COS. --«. sin. ' 4^. sin. (f.
cos. <t>-^-2p'r' sin. S. cos. «. sin. 'if'' cos. (p

-^2p'q' sin. <. COS. S. sin. ^^. sin. if)

•j-/.* sin. "ip. COS. '4'+o'. ' COS. ^$. cos. '4'—2yV. sin. (p. cos. ip cos. *4=-^""

/. adding the first members of these equations together we obtain

q'.- sin.'*, sin. •tp-^-q','^ cos. ^6. sin. ^ip+y'.^ cos. '?>=(y'^ )-{-/.» sin, '^. cos. *?

4- r'.^ COS. '^. cos. 2(p+ /,» sin. '(?= (}•'*) +j3'.' cos. '6-\-p'.^ sin. *«. cos. '4^

-{p'.' sin. «^, sin, ^4'=/'';*

the parts of these squares which are the products of two different quantities vanish when

added together and in the expressions for A^',* A'*",* we omit the product {q'. cos. 0. sin. p cos.4'

+ »•' COS. (. cos, ip, cos. 4' •{•p'- sin. i. cos. 4')'('''' sin. (p. sin. 4'—?• cos, ^. sin. 4^) for this pro,

d,uct occurs in A^" and Nff* affected with contrary signs, .•, it must vanish from A^'2+ A"'* .*.

we shall have

p'*+q'*+r'^ Zi+ N'+N'^+N"^.
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completely solve the problem. The equations ( C) of No. 26, involve three

arbitrary quantities N, N', N", ; but they are not entirely distinct from the

arbitrary quantities H and k. In fact, if we add together Ihe squares of

the first members of the equations (C), we shall have

;/' +f 4- r'"-=N"-+N" + N" '

;

and consequently

The constant quantities N, N', N", correspond to the constant quan-

tities c, c, c", of No. 21, and the function t. t. \/p'^+q'~-\-r- expresses

the sum of the areas described in the time t, by the projection of each

molecule of the body on the plane relatively to which this sum is a

maximum. iV', N", vanish with respect to this plane, .•. if we put their

values, which have been found in No. 26, equal to nothing we shall have

= Br. sin. (p

—

Aq. cos. f ;

0—Aq. cos. 9. sin. (p + Br. cos, 9, cos. (p+Cp. sin. 9 ;*

From the equation Bi: sin. ip—Aq. cos. ^ rr we obtain by substitution

tan. (p = ~ .-. COS. <p.
=—::iz^:iir ^n" sin. <p= ::::£^:^r

«
consequently we have

'

— . cos. (,

"^•v^ ill'^+r'^)- COS. l=p'. sin. e..: {q'^ +r'^). cos. '^6=p'^—p.- cos. 't .:

P
COS. i =

•v/
?"+?'*+»'

if we multiply the first of the preceding equations by cos. 6. sin. (p. and the second by cos. <p.

we shall obtain by adding them together /. cos. O+p'. sin. 6, cos. ^s=0 .'. substituting for cos. 6

its value we obtain
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from which we deduce

COS. B =-
>//H!7'^+r'

sin, 6. sin. 9= .-„^ . •:= >

Vp'+^'+r"''

sin. V. COS. =

By means of these equations, we can determine the values of S and <p

in functions of the time with respect to the fixed plane which we have

considered. We have only now to determine the angle 4', which the in-

tersection of this plane, and that of the two first principal axes, con-

stitutes with the axis of a:'; but this requires a new integration.

From the values of q and of r which have been given in No. 26

we derive

e?i)/. sin. '6==q.dt. sin. 9. sin. (p + r.dt. sin, 6. cos. p ;

from which we deduce

—

/

sin. ^. COS. ®=

and if we multiply the first of the preceding equations by cos. 6. cos. (p, and the second by

sin. 1^ and then substract the first fi-om the second we shall obtain

q'. cos. 6+p'. sin. 6. sin. <p =

.'. substituting for cos. I its value, we obtain

sin. 6. sm. 9=
\/p"-+'f+ r"^



PART I.—BOOK I. 199

_ —k.dt.(Bq' '-\-Ar'^) ^
^~

AB.iq^+ r"')

but from what precedes, we have

H'—AB.p''-
q'-+r'i=k^—p"', Bq"-^Ar'^= ^ i-

j

therefore we shall have

_ —k.dt(H'—AB.p'-)
^'^- ABC [k^—p')

By substituting in place of dt, its value which has been given above
;

we shall have the value of
»J>

in a function of p' ; thus the three angles

e, ip, and ip will be determined in functions of the variables^', q', r', which

will be themselves determined in functions of the time ^.t

Consequently we can have at any instant the values of these angles

with respect to the plane of x', and y, which we have considered, and

it will be easy by means of the formulae of spherical trigonometry, to

» If we multiply the values of qdt, rdt, given in page 166, respectively by sin. (. sin. f,

sin. i. COS. <p, and then add them together we shall have

d-^. sin. 2^ = q.dt.sm. (. sin. <p-\-rdt. sin. 6, cos. if =

\ A,k B.k AB,k k^

the value of d^' will be

f Cos. «— sin. e. sin. <;>,—sin. 6. cos. p, are the cosines of the angles which a perpendi-

cular to the fixed plane or the axis of z' makes the principal axes, see page 180, and

P' 9' -^

are the cosines of the angles which the principal axes, a''-', i/", x", make with the axis of the

plane, on v/hich the projection of the area is a maximum, consequently the cosine of the

angle wliicli the axis of the plane on which the projection of the area is a maximum makes
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. *determine the values of the same angles with respect to any other plane

this will introduce two new arbitrary quantities, which combined with

the four preceding quantities will constitute the six arbitrary quantities,

which ought to give the complete solution of the problem which we have

discussed. But it is evident that the consideration of the above men-

tioned plane simplifies considerably this problem.

The position of the three principal axes on the surface, being supposed

to be known ; if at any instant, the position of the real axis of rotation

on this surface, is given and also the angular velocity of rotation, we

with the axis of the fixed plane, (see note to page 7).

p' . cos, 6—/. sin. 6. sin. —?'. sin. 6. cos.ip N,

we might by a similar process shew that the cosine of the angle which the axis of the plane

of greatest projection makes with i/', and x', are respectively proportional to N' and A'''',

consequently the position of this plane with respect to the fixed axes oi x' y', and z is given,

therefore this plane remains fixed during the motion, and the values of N, N', N'', are the

three quantities which determine the position of the fixed axes, with respect to the plane of

greatest projection. ,

* The determination of f^,q'y, which give the position of the instantaneous axis of rotation

requires three arbitrary quantities and (he determination of 6, ^, (p, which give the position

of the principal axes with respect to the fixed axes requires three more arbitrary quantities,

these are, H, k, and the constant quantities which are introduced by the integration of dt

and d-^, the two remaining quantities are determined by the values of cos, 6, sin S. sin. <p,

sin. 6. cos. (p, for any other fixed plane beside the invariable plane, .'.by making the plane

of greatest projection, to coincide with the fixed plane ; these new arbitrary quantities

vanish, and the number of constant arbitrary quantities will be reduced to four.

The values of 6, (f, ^, with respect to the plane on which the projection of the area is a

maximum being given, and also the value of the angle which this plane makes with any

other plane, it will be easy to deduce the cosine of the angle which each of the principal axes

makes with the assumed plane, in fact by means of the values ofN N' N" we can de-

termine the angles (, ^, (p, where we have the values of the same angles for the plane on

which the projection of the area is a maximum, i, e, where we have^, q', r', and substituting

p, q, r, in place of p', if, /, in these expressions we obtain the cosine of the angle which

the axis of instantaneous rotation makes with the axis of the fixed plane, the three quan-

tities A', N', N", are not undetermined, for if N' and A'* have definite values the value

of A^ is determined by means of the equation A'-(- A^'-f- A**=^.
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shall have the values of p, q, r, at this instant because these values di-

vided by the angular velocity of rotation express the cosines of the

angles, which the real axis of rotation constitutes with the three prin-

cipal axes ; .*. we shall have the values of p, q, r', but these last values

are proportional to the sines of the angles which the three principal

axes constitute with the plane a/ and y', relatively to which the sum of

the areas of the projections of the molecules of the body, multiplied

respectively by these molecules, is a maximum ; therefore we can determine

at all instants, the intersection of the surface of the body with the

invariable plane ; and consequently find the position of this plane, by the

actual conditions of the motion of the body.

Let us suppose, that the motion of rotation of the body arises from

a primitive impulse, of which the direction does not pass through its centre

of gravity. It follows from what has been demonstrated in Nos. 20 and

22, that the centre of gravity will acquire the same motion, as if this

impulse was immediately applied to it, and that the body will move

round this centre with the same rotatory motion as if this centre

quiesced. The sum of the areas described about this point, by the

radius vector of each molecule projected on a fixed plane, and multiplied

respectively by these molecules will be proportional to the moment of the

principal force projected on the same plane j but this moment is evidently

the greatest possible for the plane which passes through its direction and

through the centre of gravity ; consequently this plane is the invariable

plane. If the distance of the primitive impulse from the centre of

gravity be^and if w be the velocity which is impressed on this point, m re-

presenting the mass of the body, mfv * will be the moment of this im-

D D

• V being the velocity of the centse of gravity, and m being the mass of the body, the

measure of the force will be equal to mv, and its moment with respect to the centre of

gravity will be equal to inf.v, see No. 3, and the motion of all the molecules of the body

arising solely from this impulse it is evident from the principle of D'Alembert, which has

been established in No. 18, that the quantities of motion which these molecules have at the

commencement of the motion, estimated in a direction contrary to their true direction must
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pulse and being multiplied by iJ, the product will be equal to the

sum of the areas described in the time /, but by what precedes this sum

is equal to — . ^j>^-\-f^r'" ; consequently we have

If at the commencement of the motion we know the position of the

principal axes with respect to the invariable plane, i, e, * the angles 6

and (p ; we shall have at this commencement the values of p' q and r

and consequently those of /?, q, r, therefore at ani/ instant we shall have

the values of the same quantities, t

CQUStitvite an equilibrium with the force mv consequently the principal plane i, e, the plane

with respect to which the moment is a maximum is the plane passing through tlie centre of

gravity, and the direction of the primitive impulsion .•. the sum of the areas described in the

timef =\.t.mfv.

* The constant quantity k ^ m.fv ; in order to determine H, it may be remarked that the

position of the principal axes at the commencement of the motion, with respect to the pkme

passing through the fixed point and the direction of the impulse being given, we have the

the values of f q, r, being proportional to the cosines of the angles which the principal axes

make with the axis to the invariable plane. Consequently we have the constant quantity

the third constant quantity will be determined by integrating the value of dt, which will be

equal to a function of p'-\- a constant arbitrary quantity ; // which is proportional to the

cosine of the angle which the axis of 3" makes with the axis to the plane of greatest moment

lias a detemiined value when <=;0 . • . by means of this value we are enabled to find the value

of the third constant quantity ; with respect to the fourth constant quantity which arises

from the integration of the value of d-^, this gives il'= to a function of p plus a constant

quantity, p' being proportional to cos. (, we shall obtain the fonrth constant quantity which

is necessary to complete the solution of the problem, if we know what value of 4' cor-

responds to a given value of i.

f \Mien a solid"body is not eolicited by any accelerating forces and can revolve freely

about a point we shall have

dx.zs.yi'S'^^i^ydyzi.id-^—Kdin, dxp=,sd!pr-yd^, &c.
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By means of ttis theory, we are enabled to explain the double motion

of rotation and of revolution, of the planets, by one initial impulse. In

fact, let us suppose that a planet is an homogenous sphere whose radius is

D D 2

See page 89, if we multiply the equations (^Z) of No. 21, by

rfw d^ d-^

^' df'W
respectively we shall obtain

d-a , d<p ,, dyl' C xdT^.diz—y.d'^a.dx ? , „ C zdip.dx—xd(p.dz 1

'dr+'-^+''^^^"'-i
—-w 5

+'•
i
—

df' 5

^^^^

^

y.d4^.d.-..dMy
,-^ ^,„,,{^-^— }-d^ + ^^» {'-^^^}.d.

'

(y.d-^—xdtp) , ^ {d3^-{-dyi+dz'i)

const, (see No. 19) now if we substitute fof c, d, c",

^cS+c/^+c".^ COS. 6, ,yc^+d^ + c".« sin. «. sin. f, —^/^+c'!'+ c".!' sin. ». cos. i^,

to which they are respectively equal, and also for

dvr, dip, d-<p, ds. COS. I, de. cos. n, ds. cos. m, see page 90, we shaU obtain

(cos. i. COS. ^-(-sin. ^. sin, i^. cos. n—sin. i. cOS. ^. coS; m)

:Z const, as cos. 6, sin. 9. sin. 4', sin. 6. cos. t^i

are equal to the cosines of the angles which the axis of the plane of greatest projection,

makes with three fixed axes, and as cos. I, cos. n, cos. m, are the cosines of the angles which

the axis of instantaneous rotation makes with the same axes, the last factor of the second

member of the equation is equal to the cosine of the angle, which the axis of rotation makes

with the axis of the plane on which projection of the areas is the greatest possible, . . as

di . . -— is the exponent of the velocity of rotation for any instant, this expression multiplied
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equal to i2, and that it revolves about the sun with an angular velocity

equal to Z7; r being supposed to express its distance from the sun, we
shall have t;=r U; moreover if we conceive that the planet is put in

motion by a primitive impulse, of which the direction is distant from its

centre by a quantity equal to j^ it is evident that it will revolve about an

axis pei-pendicular to the invariable plane ; therefore if we suppose that

this axis coincides with the third principal axis * we shall have 6=0j

and consequently (/'=0, r' = 0; therefore /?'= ««^ ?, e, CjizzmfrU,

But in the sphere, we have C =: — mR* ; consequently,
o

f- ^E p.

which gives the distance of the direction of the primitive impulsion from

the centre of the planet, and satisfies the ratio which is observed to

obtain between p the angular velocity of rotation, and U the angular

velocity of the revolution of the planet round the sun. With respect to

the earth, we have ^= 366,25638 ; the parallax of the sun gives — ::;:

0.000042665, and consequentlyy= — . R very nearly.

into the cosine of the angle, which the axis ofinstantaneous rotation makes with the axis of the

plane, on which the projection is a maximum, is a constant quantity. When the plane oi x ij

coincides with the plane passing through the direction of the impulse, and the point about

dp d^'
which the rotation is performed cos.«=l and sin. e = Q .: we shall have c' -j-, c"— — ;

di
constant quantity=c. — . cos. I consequently the velocity of rotation, i. e, parallel to the

axis of 2,= -r-. COS. f IS constant.
at

* All the diameters of a sphere being principal axes, if we suppose that the axis of revolu-

tion wliich is evidently the axis of the invariable plane coincides with the axis of y", * =
.-. cos. fl=l .-. q' and /= respectively to sin. i. sin. ip, sin. 6. cos. <p vanish and this con-

siderably simplifies the calculus.
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The planets are not homogenous ; but we may suppose them to be com-

posed of concentrical spherical strata of unequal density. Let /> denote

the density of one of those stratas of which the radius is equal to R, we

shall have

^_ 2ot fp.RMR ,

3 Jp.R.-dR
'

* The moment of inertia for a sphere is calculated in Book V. No. II. in a general

manner, but as it involves some steps which are demonstrated in the second and third books,

it will be necessary to give here a special demonstration, let there be two concentrical

circles, whose radii are q, q-\-dq, the circumference of the interior is equal to '2-jr.q, and

the area of the annulus contained between the peripheries of those circles is equal

2v,q.dq .'. 2%.q?dq is equal to the moment of inertia of this annulus and l^.q,* is the

moment of inertia of a concentrical annulus of a finite breadth, .*. when the preceding

integral is taken between the limits y=0, q = R the expression becomes ^ttR*, which is the

moment of inertia for the entire circle, now in order to obtain the moment of inertia for the

entire sphere, let us conceive a plane parallel to the axis of rotation cutting the sphere at a

distance from the axis equal to x, its intersection with the surface of the sphere will a lesser

circle of the sphere, let ^=: the radius of this circle, the moment of inertia of this circle

with respect to its centre is equal by what precedes to ^ vy* ,•. the moment of inertia of an

indefinitely small slice is equal to ^!r.y*.dxz:i Itt (2Rx-~x*)- .dx, for i/^zz2Rx—a:^ R being

the radius of the sphere, .•. btegrating we have

-^^>-Wro}
— the moment of inertia of a spherical segment and this integral being taken between

the limits_a;=0, and x=R gives

— the moment of inertia of the entire sphere with respect to a diameter, and it is very

easy by means of the expression which has been given in page 180, to obtain the moment

of inertia for any axis parallel to the diameter, if R is supposed to be variable in the last

expression, and if § the density varies from the centre to the circumference, the moment
of inertia of any spherical stratum whose radius== R is

^.t^RUR
10
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(p being a function of R).

If, as is very probable, the denser strata are nearer to the centre j the

function /' p'g ,„ will be less than , consequently the value off
jf' Jx, uK 5

will be less than in the case of homogeneity.

30. Let us now determine the oscillations of a body when it turns

very nearly, about the third principal axis. We might deduce them

from the integrals which we obtained in the preceding number ; but it is

.-. the moment of inertia of a sphwe composed of concentrical strata is equal to

g- Ty g./Z* dR, m like mannerm=the mass of the sphere =i4tir./^R*dh

m
amd f~ ^'P 8w pf^R*dR _ Jp.f^.R*.dR_

Vs-R*'^^"" 7n.TU ^3Atn.Tlir^.E'dR'-' 3rUfi,R^.dR

we obtain the ratio of U to p from knowing the period of the earth and the time of its

rotation, for the angular velocities are mversely as the angles described in the same time,

5 being by hypothesis a function of R where the density increases towards the centre

e^

—

=- .•. the fraction in the text becomes

R\dR
<P.(R)

^ ^
R^dR

i^R)

by parUal integration

_Rfi_ R5A.q>[R) Rs R3.d<p{R)

5.<pR ^ 5WR) f
"^

3(p{R) •' S.{(pRr

and as the numerator is more diminished than the denominator the value of the fraction

5

SR*
which in the case of homogeneity was -3— will be diminished when the density mcreases

towards the centre.
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simpler to deduce them directly from the di£FerentiaI equations (D) of

No. 26. The body not being actuated by any forces ; these equations

will become by substituting Cp, Ag, and Br, in place of their respective

values p', q', r.

dq + ^^^.rp.dt^Oi

rfr+ ^—Sl.pq.dtzzO,

The solid being supposed to revolve very nearly about the third prin-

cipal axis, q and r * are very small quantities, therefore we may reject

their squares and products ; consequently we shall have dp^^o and

p will be constant. If in the other two equations we suppose

q^M. sin. (w?+v) } r=3=M'. cos.(n?+y)

;

we shall have

* The solid being supposed to revolve very nearly about the principal axis,

the cosine of the angle which the instantaneous axis of rotation, make with the principal

will be q.p, equal to unity consequently, j and r will be very small because the sine of the

above mentioned angle which is equal to

\/£+r

very nearly vanishes.
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„=,. / CC-..).(C-.)
., ^._ _mVggM ana ,•

being two constant quantities, the velocity of rotation will be y/'f-^q^-Yr'

or simply p, the squares of q and r being neglected j therefore this

velocity will be very nearly constant, finally the sine of the angle

formed by the real axis of rotation, and the third principal axis will be

y/g' + r
V

If at the commencement of the motion we have ^=0 and r'=0, i, e,

if at this instant the real axis of rotation coincides with the third prin-

cipal axis ; we shall have M=0 M'= ; consequently q and r will be

always equal to nothing, and the axis of rotation will always coincide

with the third principal axis ; from which it follows that if the body

commences to revolve round one of its principal axes, it will continue to

revolve uniformly about the same axis. It is from this remarkable pro-

* q=.M. sin. (ni+y) r = M' . cos. (nt+y) satisfy the preceding differential equations, for

by substituting these values we obtain

MmAI. (cos. (n<+y)+ —r-^-V M'-^^- COS- (nt+ y) ZZ

^ (J—M'.n.dt. sin. (nt+y)-\—^—.pM.dt. sin. (wf+y)=0

.-. Mn+ ^^~^^ .pM'=0—M'.n+^t^.pM=0 .'. M'=:

Mn.A _ (A—C).p.M ,_
'~'p.{C—B)~ Bn •'•" —

(C-^)(C-i^).
3,,^ _^. .1 A. jC-A ) .^ AB V B.{C—B)

the quantities M and y are arbitrary consequently these values are perfect integrals of the

two preceding differential equations which they satisfy. (See Lacroix traite elementaire de

Calcul integral, No. 297).
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perty, that these axes have been termed principal axes of rotation, it ap-

pertains to them exchisively ; for if the real axis of rotation is in-

variable on the surface of the body, we have c?p= 0, dq=^ O, dr=- 0, there-

fore from the preceding values of those quantities we obtain

(5—^) ^ {C—B) ^ (A—C)
^^—^—^-rq =0 ;

^_—_.r/J=0 ; )^—L.pq= 0.

In the general case where A, B, C, are unequal, two of the three

quantities j3, q, r, vanish in consequence of these equations, which implies

that the real axis of rotation coincides with one of the principal axes.*

If two of the three quantities A, B, C, are equal, for example, if we

have A=B ; the three preceding equations will be reduced to the follow-

ing, r/j=0, pq=0 ; and they may be satisfied by supposing^? =0. The

axis of rotation in this case exists in a plane perpendicular to the third

principal axis ; but we have seen in No. 27, that all axes existing in this

plane, are in this case principal axes.

£ E

* The value of the quantities M, M', may be determined by knowing the position of the

instantaneous axis of rotation at the commencement of the motion, whatever be their

values at that instant they remain unaltered during the motion of the body .'. if at the

commencement of the motion, the real axis of rotation coincided with the principal axis

.-. 5 and rare respectively equal to nothing, and therefore M and M! will vanish, conse-

quently the values of q and r will always be equal to nothing, and as p is constant and equal

to the angular velocity, the body will revolve uniformly about the principal axis. If the

position of the real axis of rotation is invariable on the surface of the body, p, q, r,

must be constant, see No. 29, page 201, .•. rf/j, dq, dr, are respectively equal to nothing

.-. their values

B—A C—B A—C

respectively vanish, .•. in order to satisfy these equations two of the three variable quantities

p, q, r, must vanish.
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Finally, if the three quantities j4, B, C, are equal, the preceding

equations will be satisfied, whatever may be the values of p, q, r
^

but in this case, all the axes of the body are principal axes.i*

It follows from what precedes, that to the principal axes only belongs

the property of being permanent axes of rotation ; t but they do not

*Wlien ^=5, the first of these three equations vanishes of itself, whatever maybe the

values of r and q, and we shall satisfy tlie two last equations by supposing p^O, .: the real

axis of rotation is perpendicular to the third principal axis, see No, 29, notes, but as in this

case all lines drawn in a plane perpendicular to the third principal axis, are principal axes,

it follows that the axis of rotation is in this case a principal axis ; if A:=.B~ C the three pre-

ceding equations will be identical, and the values of p, q, and r, may be assumed at pleasure,

hut in this case all axes are principal axes, .*. it follows universally, that if the axis of rota-

tion remain permanently the same, it must be a principal axis.

In the general case when A B and C, are unequal, we shall be always certain that p, q,

and r, and M, M', vanish at the commencement of the motion, when the impulse is made in

a plane which coincides with the plane of two of the principal axes, for in this case the

invariable plane to which we adverted in Note to page 184, coincides with the plane passing

through two of the principal axes, and the axis of rotation or of this invariable plane will

necessarily coincide with the third principal axis. See Notes, to page 188.

f It might be proved directly from the property of principal axes scilicet S^z.dm = 0,

Syz.drtf^ 0, that the pressure on the axis of rotation wliich is produced by the centrifugal

force must vanish, when this axis is a principal axis, and that consequently, when there is a

fixed point given in a body, there exists always three axes passing through this point, about

which the body may revolve uniformly without a displacement of the axis, and as if these

lines were entirely free ; for if the body is acted upon by an initial impulse, •n- denoting

the angular velocity and r the distance of a molecule dm fi-om the axis of rotation wliich we

suppose to coincide with the axis ;;:, x and y being the coorilinates with respect to the axes

of X and y, we liave the centrifugal force^w'r.rfm, this force resolved parallel to x and y:z.

'—.dm,—^, because —,—are equal to the cosines of the angles which the axes of x
r r r r

and^ make'with r, ••• the sum of the forces for all the molecules of the body = •a-^Sx.dm,

a^.Sydm, and the respective sums of their moments for the axes of y and of x are

•sr* Sx.z. dm, v?. S.yz.dm. and m being the mass of the body and x^, y,, being the coordinates

of the centre of gravity, wehave •a'^ .mx^^-a^SJcdm, c:;- .niyj='S!^S.y.dm, and if z^z^, repre-

sent the distances of the resultants w^-mx, ar*wzy,, from the plane of the axis ofx^ we have by

note to No. 3, B^inx^,^'a^SxyJm,TT '^ .myz^z=-a'^ .Syz.dm,vfheB z,z,i are equal, the resultants
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possess this property in the same manner. The motion of rotation

aboirt the axis, of which the moment of inertia is intermediate between

the moments of inertia of the two other axes, may be disturbed in a

sensible degree by the slightest cause ; so that in this motion, there is

no stability.

The state of a system of bodies is termed stable, when the system

being very slightly deranged, it deviates from the state by an indefi-

nitely small degree, by making continual oscillations about this state.

This being understood, let us suppose that the real axis of rotation

deviates from the third principal axis by an indefinitely small quantity

;

in this case, the quantities M and M' Si\e. indefinitely small ; and if n

is a real quantity, the values of q and r will always remain indefinitely

small, and the real axis of rotation will only make excursions of the

E E 2

m^.mxp-a^.myi, are applied to the same point, .'.these two forces will compose one sole

force =^z!r«. m \/.r/-|-?//, now if the fixed axes pass through the centre ofgravity we have

x==Oy,=zO .: 2=-^ Sjcdyn, ct ^.Sydm respectively vanish, and if the axis of rotation is a principal

axes we havear2S.xz.rfm=0, ^'^ S.yzdm=iO, from the first equation it follows that the axes

does not experience any tendency to a progressive motion, and the second equations indicate

that the sum a "
. Sxzdm of the moments of the forces vanish, from these two conditions it

follows that the forces constitute an equilibrium independently of the axis. If the fixed axis

of rotation and origin of the coordinates was transferred to a different point of the body, being

still a principal axis, we should have as before S.xs.dm = Syz.dm =0 ••. the sum of the

moments of the forces with respect to the axes of y and of x vanish as before .*. as Xj and y^

have in this case a finite value z, and z^, must vanish, for id ^ .mj,, z,, na^.my^ z^^, vanish being

equal to ot'. S.xzdm, m^-Syzdm, ,; the pressure = w*.m v V*+^'*., which as z, z„

vanish, must exist in the plane of x, y, and must pass through the origin of the coordinates,

.
•

. if this point is fixed the pressure will be destroyed, and the motion will be performed

about the axis as if it was fixed, for the only pressure which could displace it is destroyed,

by the resistance of the fixed point.

From what precedes it appears, that when the principal axis passes through the centre of

gravity, it is not necessary that any point should be fixed, in order that the motion may be

perpetuated uniformly about the fixed axes, in any other case it is necessary that the origin of

the coordinates be fixed.
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same order * about the third principal axis. But if n was imaginary,

sin. (wf+y), cos. (nt+y) will become exponential, and the expressions

for q and r might then increase indefinitely, and at length cease

to be very small ; consequently there would be no stability in the

motion of rotation of the body about the third principal axis. The

value of n is real, if C is the greatest or the least of the three quantities

A, B, €; for the product (C

—

A). (C—B) is positive ; but this product

is negative if C is intermediate between A and J5, and in this case n is

imaginary ; thus, the motion of rotation is stable about the two principal

* When n is a real quantity, p and q can be expressed by sines and cosines of nt, but

these values are not susceptible of indefinite increase with the time, for they are periodic

functions of t, and the limit of the values of sin. {nt-\-y), cos. {nt-\-y) is unity, if they are

very small at the commencement of the motion, M and M' must be very small, and as

these quantities are invariable, the expressions for q and r will always remain indefinitely

small.^ If n is imaginary, sin. («i+y), cos. {nt-{-y) are imaginarjs and as

cos. (w«+y)+«/:iir sln.{K«+y)=C +(«^+v)-'^—

1

and

cos. (n«+y)-sln. (nf+y)=c~("^+ '>')• "^—^ —
we obtain by adding and subtracting

I,, \ .("*+y)V^ —(«<4-y).\/Zr
cos. {ni-\-y) = c 4- c ^ '^ '

i

sin. {nt -1-y) = c

2

(«<+y). v/ZIl —(«<+7)V3r

if n is imaginary the preceding exponential expressions will become

—nl^y s/ 1 «*—yVIZx —"'-fy\/ZI7 nt—yV~\
c Arc c _c

'2 2v'zr

in these exponential expressions, the part which is not affected with the radical sign, is
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axes of which the moments of inertia are the greatest, and the least j

but not so about the other principal axis.*

proportional to the time, and therefore the values of q and r, will increase indefinitely

vvitli the lime, .•. though they may have been indefinitely small at the commencement of the

motion, still as there is no limit to the increase of the exponential expressions, they will at

length exceed any assigned magnitude.

* It might be shewn di;-ectly by means of the equations Crp^+A^'-^-B-r-^k";

/iBC-.p^-\-A^BCq^'\-AB^Cr-=fP, that there is a limit to the increase of q and r when C

is the greatest or least of the three quantities A,B,C, for if we multiply the first equation

by AB, and then subduct it from the second we obtain A-.B(C—A)q'-i-AB~.{C—B).r^=

Hi—AB.k^, if at any instant the quantities q, r, are very small If^— A/fi which is constant

will be very small, consequently in all the changes wliich r and q undergo they are sub-

jected to the same condition, and this condition requires that r and q siiould be always very

small when C—A and C—B are of the same sign, because then both the terms of the

first member of the preceding differential equation will be either positive or negative, and

the expressions

m—AB.k^ m—ABlfi
A-.B.(C—A) ' AB\C—B) '

are the limits to which the respective values of q and r can never attain. If C—B and.

C—A are of different signs, then the terms of the first member of the equation will be

of different signs, audit is only the difference of the quantities AiB(^C— A).q^-\-ABi,

(C—By^, that is indefinitely small /. since tliis difference depends on the relative values of

these quantities, q and r may be very great, though the preceding residual is' a quantity

indefinitely small.

Pliilosophers have distinguished the equilibrium of stability into two species absolute and

relative, in the first case the stability obtains whatever may be the oscillations of the system,

;n the second case it is necessary that the oscillations should be of a certain description, in

order to insure the stability of the equilibrium. If a body revolving about afixed axis passes

through several positions of equihbrium, these will be alternately stable and instable. For

if a system deviates from a position of stable equilibrium, from the nature of this equUibriura

it tends to revert, but according as the system deviates more and more from its first position,

this tendency will diminish, and at length it will tend to deviate from the original position,

but previous to tliis change of tendency there must have been a position in which the systenc

neither tended to revert, or to deviate from its original position, consequently this is a position

of equilibrium, but this equilibrium is evidently one of instability, for previous to the arrival

of the system at this position it tended to revert to its primary position, and when it passed this

position, it tends to deviate from the primary and consequently from this second position of
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Now, in order to determine the position of the principal axes in space,

we shall suppose the third principal axis to coincide very nearly with the

plane of x' and of y', so that 9 will be a very small quantity of which we

may neglect the square.

By No. 26, we shall have

d(p—'d^ =pdt *

and by integrating we obtain

^= (p
—-pt—i

E being a constant arbitrary quantity. If we afterwards make

sin. 0. sin. ?'= s j sin. 6. cos. <p = u ;

from the values of q and of r which have been given in No. 26, we shall

obtain, by the elemination of d-^

ds du
,

,

equilibrium, this tendency of the body to deviate from'the second position ofequilibrium gra-

dually diminishes, and at length vanishes, afterward the system tends to revert to the second

position of equilibrium, and where the tendency to deviate from the second position of equi-

brium vanishes, is also a position of equilibrium, which is evidently an equilibrium of stability,

for previous to the arrival of the system at this position it tends towards it, inasmuch as it

tends to deviate from the second position, and after passing this third position of equilibrium

it tends to revert to the second, and consequently to the third position of equilibrium,

thus it appears that when a system has returned to its primary position, it has passed

through an even number of positions of equihbrium, alternately stable and instable.

6* 6*

* dji—d^'- cos. e=:p.dt, but cos. 6^1 — + _-&c^when 6 is veiy small,

unity .•. d(p—d-^^jidt.

f d4" sin. e. sin. i?

—

d6. cos. ^=.q.dt ; d-^. sin. i. cos. (p-^-di. sin. ^. = r.dt,

substituting in place of d'^ its value dip—pdt, we shall have
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and by integrating

,$= e. sm.(p?

+

a) ^-=;— .(sin. nt-r y) ;

tt=e.cos.(;)^+A) —^s;— . COS. (nf+y) i*

dip. sin. «sin. ip—p. sin. «. sin. ip. dt—d6. cos. <f>-:r.q.dt ; t?!?. sin. «. cos. ip—p. sin. fl cos.ip. dt

\-d6. sin. ip = r.rff,

;

substituting 6 in place of sin. 6, to which it is very nearly equal since the higher powers of *

may be neglected, we obtain

—d<p. 6. sin. (p-i-d6, cos. ip-\-p. sin, 6. sin. <p. rfi=—^.t/i, i, e,

d. (cos. <p. sin. () -^-p. sin. «. sin. <p. rffis—jrf^,

and by substituting for sin. 6. sin. <p. sin. 5. cos. <p, their values which have been given in the

text, we obtain

du
,

in like manner the second diiferential equation becomes,

d(p. 6. cos. (p+d6. sin. (p—p,dt sin. i. cos. (pzzr.dt, i, e, d. (sin, i, sin, ?i)

—p.dtsin.e. COS. 9=:r.dt,

and by substitution, — -^u = r.

* The integrals assigned in the text are the complete values of i and a for

^= Z.p. cos. {pt4.^)-^-^A.. {C-A). {C-B). cos.(nf+v),:

this expression is equal topu-\-r, for substituting in place of u and r, we shall have

^.p. cos.(pt + A) ' P
cos. (n<+y)+M'. cos. (n<+y)=

(bj^ substituting for M' iteTalue,) G.p. cos. (p(+A)

M /'a~
C"

•'^ 5" •
( C-^)(C—B). cos.{«<+v),
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S and X being two new arbitrai-y quantities : therefore the problem is

completely resolved, since the values of s and of u give the angles © and <p

in functions of the time, and i)/ is determined in a function of (? and /.

If e vanishes, the plane of x' and of ?/' becomes the invariable plane, to

which we have referred in the preceding number, the angles 6, (?

and ^.
*

.•• since the integrals given in the text satisfy the differential equations

ds (hi

and since there are two constant quantities introduced, these values of ti and s are their

complete integrals.

A.q . B.r
* \\ hen € vanishes i = sm. i. sm. <p = — tt ~

> ii=sm. 6. cos. ip = j^
—

, i, e,
Cp C.p

q . r'

Sin. 6. sin. ® = r, sm. 6. cos. ?> = j,

V P

and those are values of the cosines of the angles which the principal axes of id' and if"

make \vith the axis of the invariable plane, see notes to page 198. In this case

s -^M
, ,

. AM
, ^ , ,—=tan. <p = -g^,. tan. {nt+y) .-. <p=

-^Jj'
-O't+ v)'

as f is equal to the angle formed by the intersection of the invariable plane, and of the plane

of x", y", with the axis of x", if we know this angle at the commencement of the motion,

or at any given epoch, we shall have the value of y ; we might in like manner find M, for

, 2 •'>,/• 2 L . ^ ^-^J"
,

-O-M* / A.(C—A) \ . ,^
„«+s^-s.n. -«. (sm. ^?+cos. ^):^~^^+ -^j- {'b:^c-B) ) = ''"• ''

by substituting for (sin. -?-|-cos. -<f) unity, and for M'^ its value.

AM
4- = -^j^r [ntJfy)—pt —

e

. •. as we have already determined the values of M, M', and y, we can determine the value of

t, when the value of -^ is given at the commencement of the motion ; from the preceding

value of •4' 't appears that tliis angle increases proportionably to the time, .•. the intersection

of the mvariable plane and the plane of x" y" revolves about the axis of the invariable

plane with an uniform angular velocity.
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31. If the solid is free ; the analysis of the preceding numbers will

determine its motion about its centre of gravity ; if the solid is con-

strained to move about a fixed point, it will make known the motion of

rotation about this point. It now remains for us to consider the motion

of a solid constrained to revolve about a fixed axis.

Let us suppose this axis to be that of x, which we will make

horizontal : in this case, the last of the equations ( B) of No. 25, will be

sufficient to determine the motion. Moreover let us conceive that the

axis of y is horizontal, and thus that the axis of £ is vertical, and di-

rected towards the centre of the earth, lastly let the plane which

passes through the axis of y and of z,* pass through the centre

of gravity of the body, and let us conceive an axis always passing

through this centre and through the origin of the coordinates. If 6 re-

presents the angle which this new axis constitutes with the axis of

s ; and y^ and 2;", the coordinates referred to this new axis, we

shall have

y'=y". COS. e-j-s'/. sin. 9 ; s'=s". cos. 6—3/". sin. G
;

from which we may obtain

S. i1^1^ l.drn = -^l. SJm.{y'- + .-). t
{. at y at

FF

* Since the plane passing through the axis of 2', and of y', of which the former is ver-

tical, and the latter horizontal, passes constantly through the centre of gravity, this centre

must move in a vertical plane.

t As the coordinates x", ?/' , z", do not varj- with the time, beipg always the same for the

same molecule, in taking the differentials of y, s*, and their respective values, with respect

to the time they become

dy=di,{:i'. cos. «—y. sin.«) ; M=—dk (/'. sin. 6-\-y''. cos. i)

.-. yrf*'—s'<iy =(y'. cos.«4-2". sin. 6)1—d«. (a".sin, i-\-y",cos. i) )—(*". cos. i—y'.sin. i).

(di.{z!'. cos- «—y. sin. l) )
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S.dni.(i/'^-\-s{'^) is the moment of inertia of the body with respect to

the axis of / : * Let this moment be equal to C. The last of the

equations {B) of No. 25, will give

'
dt* ~ dt

Let us suppose that the body is only solicited by the force of gravity
%

the values of P and of Q of No. 25, will vanish, and R will be constant,

which gives

dW = S.Ry'.dmzzR. cos. ^.S.y". dm + R. sin.fi. S.z".dm.
uc

The axis of z" passing through the centre of gravity of the body, we

have S.i/'.dmziO ; moreover, if we name /« the distance of the centre of

gravity of the body, from the axis of x', we shall have S.z".dm = mh,

m being the entire mass of the body ; therefore we shall have

= —d6. {y". COS. «-fz", sin. (i)«

—rf^(3". COS. «—y". sin. «)' = —rf«.(y'-+z"=)

.•. multiplying by dm, and extending the expression to all the molecules we obtain,

dt at

and since C is constant, we shall have

d^S dN"
—C.

dt

*y*^-2" =y'-* cos.*«4-z".* sin.«+2y'z".sin. 0. cos. «+y'.* sin. M+s".' cos. '«

—ZyV. sin. e. COS. « =y'^+s"« .-, S(y ?+/').(/»»,

the moment of inertia of the body relative to the axis of

3f=S{z!'^+j/'^).dm=C.
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dN" = mh. R. sin. 6
*

dt

dH__— m.h.R. sin. 9

dF~ C

Let us now consider a second body, all whose parts are concentrated in

one point, of which the distance from the axis of a/, is equal to / j we

shall have for this body, C^ ??«'/*,»i' expressing its mass; moreover h

will be equal to / ; and therefore

rfa9 —R . , .=—— . sm. t

ff2

•A?" is always equal to S.J[R7/'—Q:/). dt.dm .'. Qvankhing we shall have

dN"

dt
"^

and by substituting for y' we obtain the expression given in the text. In fact, since the axis of

s" passes through the centre of gravity, we have sy.rfw=0, and S.^'.dm=mh. See No. 15,

page 91, it also appears from note to same number, page 88, that when a body is constrained

to move about an axis, one of the equations (B) of No. 25, is sufficient to determine the

motion of the body ; .•. by substituting mh. sin. L for sin. 6. S^^'.dm we shall have

-—= mh R. sin. 6,

dt

f For any body m' of which all the molecules are concentrated into a point at the distanco

equal to I from the axb of sf we have

dH ml R . R . .

for in this case the centre of gravity, is in this point, and the moment of its inertia, is equal

to m'JF;

if this body has the same motionof oscillation with the body we have first considered, the

d^6
values of -p must be the same, i, e,

mh.R. sin. 6. R . , , C
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Consequently these two bodies will have the same motion of oscillationj

if their initial angular velocities, when their centres of gravity, exist in

C
the vertical, are the same, and if we have also I=— -— * The second

mh
body which we have considered is the simple pendulum, the oscillations

of which are determined in No. 1 1, and by means of this formula we

are always enabled to assign the length / of the simple pendulum of

which the oscillations are isochronous, with those of the solid which we

have considered in this number, and which constitutes the compound

pendulum. It is thus, that the length of the simple pendulum, which

vibrates in a second, is determined by observations made on compound

pendulums.t

, ., „ , . d'^e R. sin. « , ^ , , .

Multiplying both sides of the equation y-^=
j

by 2dS, and integrating we

obtain

dd^ 2R— = J-.COS.I+C,

the constant quantity C, depends on the angular velocity, and on the value of 6, at the

commencement of the motion.

C
From the expression 1=—r-, it appears that when the axis of rotation passes through

the centre of gravity, I is infinite, and consequently the time of oscillation is infinite in this

case, in fact the action of gravity being destroyed, the primitive impulse will communicate a

rotatory motion which will be perpetuated for ever, if the resistance of the air be removed.

-)- The point which is distant from the axis of rotation by a quantity equal to I is termed

the centre of oscillation of the body, and if the axis of rotation passed through this point,

the centre of oscillation with respect to this new axis, will be in the former axis of rotation,

for the moment of inertia with respect to the centre of gravity being equal to C

—

mh% the

mement with respect to the new axis will be C-^-m P—2mlh. See note, page 182, ••. the

value of I for the new axis =—— "! ,"'— but C= mlk .: the value of I for the new
ml—mn

inp—mlh
,

axis = —5 ;- = I.

ml—mn

C'ss A sin. *i. sin. »(p+B. sin. ««. cos. *ip+ C. cos.*tf+«^^ see page 180, where J,B,C,
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are the moments of inertia, relative to the principal axis, passing through the centre of

gravity, we shall have

, nik^.{.A.sm.sS. sin. ^/p-^-B. sin, sj. cos. -<P-{- C. cos. 25

mh

.'. I will be a minimum when the quantity represented by Cin the text is the least of the three

principal moments of inertia, for in that case the other two moments vanish, let A be the

least of the three moments then we shall have

, mh'-i-A . . „ . „ , , . . .

l^ / , lor sm. 6, cos. ip=0, cos. 6—0, .'. when / is a nummum
tnh

2mVfi—7nVi^—mA „ „ , a /^=0 .•./«= A/ —dl— „,„ .dh

.-. I and consequently the time of oscillation wiU be a minimum when the axis of rotation is

that principal axis, relatively to which, the moment of inertia is a minimum, and at a distance

from the centre of gravity by a quantity equal to 'w — . The product of Ik. is constant

C
and= to— , this fraction is equal to the square of the distance of the centre of gyration

m
from the axis of rotation, therefore this distance is a mean proportional, between the

distances of the centres, of gravity and oscillation, from the axis of rotation, and it readily

appears from what precedes, that when the time of vibration is a minimum, the distance of

the centre of gyration from the axis of rotation is equal to the distance of the centre of

gravity from this axis, and the distance of the centre of oscillation from the same

axis =.2*/— • ^ this case, the centre of gyration, is termed the principal centre of

gyration.
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CHAPTER VIII.

Of the motion of fluids.

32. We may make the laws of the motion of fluids, depend on those

of their equilibrium ; in the same manner, as in the fifth chapter we have

deduced the laws of the motion of a system of bodies, from those of the

equilibrium of the system. For this purpose, let us resume the general

equation of the equilibrium of fluids, which has been given in No. 17»

$p=f[P.Sa: -t QJ7/+RJz] j

in which, the characteristic $ refers only to the coordinates «f the mole-

cule X, 7/, z, being independent of the time. When the fluid is in

motion, the forces which would retain the molecules in equilibrio

are by No. 18,

(^dt being supposed constant) ; therefore it is necessary to substitute in the

preceding equation of equilibrium, these forces in place of P, Q, B. If

we snipi^ose that PSx-\-Q.Sr/ + Biz is an exact variation, represented by

iV, we shall have
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'^-^-(^)^'KS^)+-c^)^•^^^

this equation is equivalent to three distinct equations ; because the

variations Ss, Sy, Sz, being independent, we are permitted to make their

coefficients, separately equal to nothing.

The coordinates x, y, z, are functions of the primitive coordinates,

and of the time ? j t let « ^ c be the primitive coordinates, we shall have

we are permitted to consider PS^r-j-QSy+ii?*, an exact variation where the forces which

solicit the molecules, aie those of attraction directed towards fixed or moveable points,

or such as arise from the mutual attraction of the fluid molecules. We have seen in No_

17, that this is the condition which must be satisfied, when the molecules of the fluid, are in

equilibrio by the action of the same forces.

f The position of a molecule at any instant, is known when we know the coordinates

a, b, c, which determine its position at the commencement of the motion, or at any de-

termined epoch, .-. X, y, z, are respectively functions of a, b, c, and t, consequently «e have

x-=zf{fi, b, c, t),t/=:F.{a, b, c, t,) ; zzi<p.(,a, b, e, t). and as the differences indicated by the

characteristic S refer solely to the variations of the coordinates n,b,c, being independent of the

time, the expressions for dx, lij, ^z, should be such as are given in the text, .'. if it was pro-

posed to compare the respective positions of two molecules at any given moment, the tiane

should be considered as constant, and the expressions for ^x di/ iz should be those which are

given in page 22i, on the other hand, if we consider the motion of the same molecule for the

time di, the values of dx, dy, dz, deduced from the preceding expressions for x, y, z, must be

taken on the hypothesis that t only varies and . •. when t=0, x=.a, ij=b, z-=c. Ifthe form ofthe

preceding functions was given, by eliminating the time from the equations which determine

values of X, y, z, the two equations which result will be the equations ofthe curve described

by the molecule, however as a i c are different for each molecule, the nature of this curve and

its position will be different for each molecule, see Note page 31.



Q24 CELESTIAL MECHANICS,

Lda ) cao) (ac >

By substituting these values in the equation (2^), we may put the coeffi-

cients of Sa, Sb, Sc, separately equal to nothing ; which will give three

equations of partial differences between the three coordinates of the

molecule x,y, z, its primitive coordinates a,b,c, and the time t.

It remains to satisfy the condition of the continuity of the fluid.* For

this purpose, let us consider at the commencement of the motion, a rectan-

gular fluid parallelepiped, of which the three dimensions are da,db,dc. If

we denote its primitive density by (p), its mass will be equal to {p).da.db.dc.

Let this parallelepiped be represented by {A), it is easy to see, that after

the time t,i it will be changed into an oblique angled parallelepiped ; for all

the molecules which in the primitive situation existed on any face of the

* In order to determine the condition of a fluid mass at each instant, we must know the

direction of the motion of a molecule, its velocity, the pressure p, and the density g, but if

we know the three partial velocities parallel to the coordinates, we shall have the entire ve-

locity, and also the direction, for the partial velocities divided by the entire velocity, are pro-

portional to the cosines of the angles which the coordinates make with the direction, see

Note page 26, and page 227.

Three of the equations which are required for the determination of those sought quan-

tities, are furnished by the equation (F) ; another equation from the continuity of the fluid,

for though each indefinitely small portion of the fluid changes its form, and if it is com-

pressible, its volume during the motion, still the mass must be constant, consequently the pro-

duct of the volume into the density must be the same as at the commencement,. •
. by equating

those two values of the mass, we obtain the equation relative to the continuity of the fluid.

f After the time t, the coordinates of the summit of the parallelogram, whicji were a, b, c,

at the commencement of the motion, will be j:, y, z, ory(a 6c<), ^{a i c <), ip (a 6c/),

the coordinates of that point of which the initial coordinates were a, b, c-^-dc, will be
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parallelepiped {A) will still be in the same plane, at least if we neglect

quantities indefinitely small of the second order ; all the molecules si-

tuated on the parallel edges of (A) will be found on small right lines,

equal and parallel to each other. Denoting this new parallelepiped

by (B), and conceiving that through the extremities of the slice

constituted, of those molecules which in the parallelepiped (A) compose

the side dc, we draw two planes parallel to the plane of x and i/.

Then producing the edges of the second parallelepiped to meet these

two planes, we shall have a new parallelepiped (C) contained between

G G

f(a, b, c+dc, t), F(a, b, c+dc, t), (p (a,b, c-(-dc, t)z=

respectively to .

the difference between these coordinates and x, y, s, are

and the square root of the sum of the squares of these three quantitities, is the value of the

side ofthe parallelepiped which answers to the side dc ofthe primitive parallelepiped; extracting

the square root, and neglecting the third, and higher powers of dc, this side becomes equal to

dz drz ,

Jc-'^^+a—
•^'^'

in like manner it may be shewn that the quantities which in the original parallelepiped are

equal to da, di, become

the opposite sides of the figure are equal to these ; for the value of x, y, z, which corresponds

to the primitive coordinates a-^-da, b, c,

are/(a+da, J+ c t)F{a-\-Aa+ b,ct,) ?i(a+da, b c f)=

x+J.da+^.da^^+|^.da+g-,.da^ .-j- ^.da+^.da^
da ^%da^ ^ ' da ^2.da^ ' ^ da 2,dai
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those planes, and equal to (B) ; for it is manifest that what one of these

planes takes from the parallelepiped (B), is added by the other plane.

The two bases of the parallelepiped (C) will be parallel to the plane j', t/, :

its altitude contained between its bases will be equal to the difference of

~, taken on the hypothesis that c * only varies ; consequently this altitude

will be equal to | — V dc.

the values of x, y, z, which answers to the primitive coordinates a-\-da, b, c-j-dc, will be

y"(«-j-da, b, c+dc, t) F(a.+da, b, c+dc, <) ifi(a-j-da, b, c+dc i)r:

da 2. da- ' dc ^ <2..d(? ' ''da ^ ^da- 'dc idc^

dz , d-z ^ g , dz , d*z . ,

'~'^do^'+2d^-^^'^d-a-^^+2i;^-
^^'

.'. the difference of the coordinates of these points

= -7-.dc+ —-. dc^ -f. dc+ -^_. Ac-, -. d<;+—=-:-. dc?,
dc IMc- .dc ^ Idc^ dc ^2c?c*

and as these differences are equal to the corresponding differences of the opposite side of

the figure, it follows that these sides must be equal, being equal to the square root of the

sum of the squares of these differences, in like manner it may be proved, that the other

sides are respectively equal to those to whichjthey are opposed ; and the parallelism of theee

sides is a necessary consequence of their equality, fiom which we infer that the figui-e

wliich the molecules assume is a parallelepiped. The equation of the line connecting the

points whose respective coordinates are

f{a,b,c,t), F{abcl), (p(a bct),f(a-\-da,b ct), F(_a+da, b, c t,), (p)a-^-da,b ct),

will be that of a right line, if we neglect the indefinitely small quantities of the second

order, and the same is true for all lines parallel to this line, of the sum of which the face

may be conceived to made up, .•. this facemay be considered as a plane.

* The difference between the values of z corresponding to the expressions

.=,ia,b,c,t),-J=^,.^abc+dct)^'^. dc+ ^£}.g=5|}.dc
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We shall obtain its base, by remarking that it is equal to a section of

(B) made by a plane parallel to the plane of a:, y, ; let us designate this

section by ({)• The value of z will be the same for all the molecules of

which this base is constituted, therefore we shall have

°= &3-^- tiM'^rX- ''

Let Sp, Sq, be two contiguous sides of the section (e), of which the first

is made up of molecules which existed on the face Ab. dc. of the paral-

lelepiped {A), and of which the second is composed of molecules which

existed on the face da. dc. If we conceive two lines to be drawn

through the extremities of the side Sp, parallel to the axis of .r, by pro-

ducing them to meet that side of the parallelogram (f), which is parallel

to Sp, they will intercept a new parallelogram (x) equal to (t), of which

the base will be parallel to the axis of x. The side Sp being composed

of molecules which existed on the face d6. dc, and relatively to which the

value of ~ is constant ; it is easy to perceive that the altitude of the

parallelogram (x) is the difference of y, on the supposition that a, z, and

t are constant, consequently we have

((Iz )

db+ 5 7— f . dc;
(dc i

G G 2

by neglecting quantities indefinitely small of the second order. For all the molecules

situated on the edge, which corresponds to dc in the original parallelepiped, projected on the

axis of z, the values a and 6 remain the same, nor do any molecules which occur in the face

daM enter in the constitution of this perpendicular, therefore it is equal to dz on the

hypothesis that c only varies.

* If we conceive the molecules of the face db.dc relatively to which dz is constant, to

be projected on the axis of y, it is evident that the projected Lne is equal to the difference
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from which may be obtained

a
this is the expression for the altitude of the parallelogram (x). Its base

is equal to a section of this parallelogram by a plane parallel to the axis

of X ; this section is composed of those molecules of the parallelepiped

[A), with respect to which z andj/ are constant ; its length will be equal

to the differential of x taken on the hypothesis that z, y, and t are con-

stant, which gives the three following equations

"'-XTi^'^YiV^^tW-

Ida C Idb^ idcy

-{i}-ii}-^^+{^l--

of y, on the hypothesis that a is constant, for this projection is the same for every series of

molecules, which exist on the face which corresponds to the primitive face di.dc, and rela-

tively to which z is the same. We obtain the expression which is given in the text for d^ by

eleniinating dc between the two preceding equations.

* Since the parallelogram (a) exists in the plane parallel to the axes of «, y, the value of z

will be constant for this parallelogram, and since the base of (a) is a line parallel to the axis

of a the value of y ndll be the same for all molecules situated in this base, but since in this

base molecules occur which belong to the faces da.dh, da.dc, db.dc, a,b,c, will vary for these

molecules.
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In order to abridge, let us make

~ Ida ^-
Idb^'^dc

\ lda\'ldc\'ldb^

idxl (di/l (dz^l ,
^ Idb^'ldc^'lda^

• Multiplying the second equation by
j j- f > and the third by -! ;r f . and then

subtracting we shall eliminate dc

|(i-)(i)-(|)L^)}-«+ |(l)(S)-(|)(|)}-a*.=o

"
'

, , ^ , ,
.da

in like manner we can obtain

{{7:}-{l}-{l}-{^i}'-+{{l}-{|}-{|}-{f}}-=o

.•.dc=
\ di>s'\d^s~ \Ey\da s ^^

dx

\
da' ^dz\ Sdj\_UyX idz^y-Xdb\

^ XdcS'XdbS \dcS'\dbs
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ldb\'lda\'ldc\+ ldc\-lda\'ldb\ Ucylm'idcS

we shall have

Q.da
dxzz

IdbS Idc) Idcf'l
dz_

db

this is the value of the base of the parallelogram (a) j therefore the isur-

face of this parallelogram will be equal to

^Aa.Ab

\dc)

This quantity also expresses the surface of the parallelogram {i), if we
idz'

multiply it by4(—/dc we shall have ^AaAbAc for the volume of the

\db J
• ^f/a5 \dly If/a 5 ( dx~\

Sdz-x Sd_y \_ Sdy\ frfc-i
' \ del

\dc\'\db j \dci '\dh]

, da=

{l^}{S}{i}-{^:}-{l}.{i}+{|}.{f}.^,t]

• XdcS'XdbS Xuci'Xdh)

Q. da

\dcj\db\ idcfidbi

= the base of the parallelogram (a), this expression being multiplied into the value of di/

gives the^area of (a), and this area being multiplied by the altitude gives the volume of(Q
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parallelepipeds (C), and (5). Let p represent the density of the paralle-

piped (A), after the time /; we shall have its mass equal to p Q.da.db.dc j

and by equating this to its primitive mass {f).da.db.dc we shall have

pe = (p); (G)

for the equation relative to the continuity of the fluid.

33. The equations (i^) and (G) may be made to assume another form,

which is in certain circumstances of more convenient application. Let

u, V, and V be the velocities of a molecule of the fluid, parallel to the

axes of X, of y, and of z j we shall have

{ll = -{'f|=-l.T} =
^-

By differentiating these equations, u, v, ,V being considered as functions

of the coordinates x, ?/, z, of the molecule, and of the time t, we shall have

c?'.r>_ (du\ <f^in
.

(din ,j cdu-ij d\t

*«» w> V, are respectively unknown functions of x,y, z, and /, they depend on the coordinates

X, y, z, because for a given value of t, the velocity is different in different molecules, they

depend on t, because for the same values of x,y, z, the velocity varies every instant,

•••-=m-'M<^}'^+{|}''-+ {£}•*

and since dx=udt, dy= v.dt dz='\dt,

substituting and dividing by dt, we obtain

, . dx da d^x
but u = — .: —= —

.

dt dt dt^

n .1, 1 J-*'" dv dW . . ,trom the values of^,^ ,— , givenm the text, it appears how the increment of each of

the three velocities depends on the two other velocities. F we were able to determine the
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consequently the equation (F) of the preceding number will become.

In order to have the equation relative to the continuity of the fluid
;

let us conceive that in the value of S, of the preceding number, a, b, c,

were equal to t, i/, z, and that j;, y, z, were equal to x + udt, y+vdt,

z+V.dt, which is equivalent to assuming the primitive coordinates a, b, c,

indefinitely near to cc, i/, z, j we shall have

value of !4 in a function of x, y, z,t, we could by means of the equations ~jj'— "' ^ = '"'

dz_

It'

position of this molecule, and also what function of x i/zt, uv\ are, for substituting in the

dx dy dz

_ ^V determine the position of a molecule at any instant, provided we know the initial

dt

iition I

equations— = ti, — = v, -j =V the values of t« v, V, in functions oixyxt, and integrating,
^ dt dt dt

we would obtain the values of «, y, x, respectively in a function of i, the constant arbitrary

quantities which are introduced are the values of«, y, z, at the commencement of the motion

which by hypothesis are given, consequently the values o( x y z will be completely deter-

mined for any instant. Eliminating t between values of x, y, z, to which we have arrived,

we would obtain the two equations of the curve described by the molecule, but since the

initial position of each molecule is different, the form of this curve will also be difterent, as

will be in like manner, the position.
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:dV-)

HH

• The fii-st coordinates being assumed indefinitely near to x,y, ~, we shall have da — ds,

and the quantity which corresponds to rfa:=to (/«+*«.*, in like manner we shall have

dx,+du.dt dx+diuft di/-\-dtrdt di/+dv.dt dz+dV.dt dz+dV.dt

"~d^ ' dy ' dz ' dz ' dy ' dx

respectively indefinitely small, because when t—O these quantities vanish, /. the product

of any two of these quantities may be neglected, making these substitutions the expression

for C becomes equal to

(dx+ duJl\ f
di/+ dv.dt \ (dz+dYdt}

\ dx ]•{' dy / t "~d2 )

_ ( dx+du.dt
\ fd^-hdv.dt \ (dz+ dy^t\

\ dx M" rf-' ri dT

i

, cdxj-dtudt-i (dy+dv.dt y cdz+dV^l
"^

t dy r\ dz ]l dx i

f dx-\-du.dt ) f dy+dv.dt > r dz+dV.dt 1

1 dy rl dx i'l dz y

( dx-\-dn.dl
\ (

di/+dv.dt \ cdzJ-dVJl)
"^1 dz r\ dx i'\ dy i

i dx-\-du.dl -i ^ dy+dv.dt \ f
dz-^dY.dt \

I dz \ \ dy ]\ dx \

the first term of this expression

= by neglecting quantities indefinitely small

\dx dy dzl

the other terms of this expression vanish. It appears from what precedes that €j is a con-

stant quantity independent of the time, when the fluid is incompressible S=l.
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the equation (G) becomes,

If we consider p as a function of x, y, z, and t, we shall have

therefore the preceding equation will become

* The density {, the pressure^, may be shewn to be functions ol xy z, t, by reasoning,

analogous to that, by wliich u, v, V, were proved to be functions of these quantities

;

is the increment of g on the supposition that t is constant,

"'• {1} -«•* {1} -* {|} -^- {S}

is the variation of § on the hypothesis that x, y, z, t, vary .*. their difference

is the differential of the equation (fi) taken with respect to the time

;
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this is the equation relative to the continuity of the fluid, and it is easy

to perceive that it is the differential of the equation (G) of the pre-

ceding number, taken with respect to the time t.

The equation (H) is susceptible of integration in a very extensive

case that is, when uSa:+ vJj/ + YJz is an exact variation of *, t/, z, p

being any function whatever of the pressure p. Therefore if we re-

H H 2

when the fluid is incompressible, we have

for in this case both the magnitude, and density are constant, .•.</£ and d^ are re-

spectively equal to nothing, these two equations combmed with the three, which may

be derived from the equations {H), or (f), are sufficient to determine p, {, and the three

partial velocities, u, v, V, in functions of x, y, z, t,. When the differential coefficients

-i, - ,— , — , vanish of themselves, g must be a constant quantity, and the incompressible
dt dx dy dz

fluid will be also homogenous, .-. in this case the number of unknown quantities is reduced

to four, which is also the number of differential equations. When the fluid is elastic the

number of unknown quantities will be ultimately reducible to four, for when the temperature

is given /)=yt. g, .-. the equation {K) and the tliree equations (i/Jare sufficient to determine

the unknown quantities, in this case

^1—L h.— l- S. log 5.

k will not be constant when the temperature varies, but if the law of its variation is known,

since for each different instant, and point of space the temperature is a given fonction of

x,y,z,t,}c will be so likewise, so that even in this case the equations (A') and H are sufficient

to determine ^,u,v,\. It appears from what precedes, that we have always as many equations

of partial differences as sought quantities, however the general integration of these equations

has baffled the ingenuity of Pliilosophers and even granting that it is possible to effect this

integration, still the determination of the arbitrary functions introduced by these integra-

tion, is extremely difficult, these functions depend partly, on the primitive state of the fluid,

and partly on the equation of the exterior surface.
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•present this variation by $<?, the equation (H) will give

from which may be obtained by integrating with respect to i,

* If we take the differential of the equation u2*:+v2i/-\-Y.^z with respect to i, x, y, z,

we shall obtain

'>*+ £-^-*+ E-^-'-- 1-^'=£- -"'^ t-""'^Z -'••"

«« dz -^ ' dz dz dz c/z ^ ' dx-

now substituting udl, vdt, Ydt, in place of dx, dy, dz, and remarking that, j^— j-, v=z —,

&c. and also that 3.-? = _1^we shall have
dt dt

:= the sum of the last members of the preceding equations, but these by concinnating, and

dividing by dt are evidently equal to the second member of the equation
(
H). Since the

integration is only made relative to the characteristic S, it is evident that the time is not in-

volved in this expression. When the fluid is homogenous —&c.=0.*. the equation ofcon-

tinuity is reduced to the second term, by means of this equation, and the equations uzz. -j-,
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It is necessary to add to this integral, a constant quantity, which is a

function of t ; but we may suppose that this function is contained in the

function (p. This last function gives the velocity of the molecules of the

fluid parallel to the axes of .r, of y, and of z ; for we have

The equation (AT) relative to the continuity of the fluid, becomes

consequently, we shall have in the case of homogenous fluids,

It may observed, that if the function u^s+ vS^ +YJz is an exact va-

riationof a:, t/, z, at any one instant, it will always remain so. In fact,

let us suppose that at any instant whatever, it is equal to Sep, in the sub-

sequent instant it will be equal to

'^^^'p\-^^i\'>'^m>^]
. *

D=—?, V= — , and the value for y"-^, r: in this case —, we can determine (p and p and
dy dz 5 5

consequently u, w, V, in functions oixy z.

• From the value of V

—

f.
— it appears that the pressure of a molecule, of which the

e

density is constant, diminishes when the velocity which is equal to
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therefore it will be an exact variation at this new instant, if

r}''-i:f}-^+{.?}-
:clu

^m'^Yi\'+\t]
is increased.

substituting this value of S. J ^ < b the expression for JV— £ we obtain

and since each of the terms, of the second member of this equation, are exact variations of

m, y, z, the first member will also be an exact variation, we suppose g to be a function of p.

is the differential of S0, on the supposition that the time only varies. Consequently, we are

not obliged to determine ip in j:,y, z, in order to know whether it is an exact differential or

not. .•. It appears tliat if ii^x.\-v1y-{-V.^z be an exact variation, at the subsequent instant

tts increment will bean exact variation, .-. S?i+ this increment will be an exact variation.

As in general we know the condition of the fluid at the commencement of the motion, if

at this moment t(Sx+ uJj/^-V.Si is an exact variation, it will be an exact variation when *^ ±
df, t~ ± 2dt, &c. and in general whatever may the value of t. ?<?x+ v.Jy+ V.Ss will be an

exact variation, if when t~0, the fluid either has no velocity or a consUmt one, for in first case

u=0,v—0,V=0 when t vanishes, .-. «?jr+t)Sy+VSz will be integrable for this moment,
the second case will obtain when the motion is produced by an impulse on the

surface of the fluid, such as that which arises from the action of a piston. For the velocities

u, V, V which are communicated to each of the molecules, must be such, that if they are
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is an exact variation at the first moment, but the equation (H) gives at

this moment

consequently the first member of this equation is an exact variation of

X, y, z, ; therefore if the function uSx-\-v.Sy+W.dz be an exact variation

at any one instant, it will be one in the next, therefore it will be an exact

variation at all times.

When the motions are very small; the squares and products of «, v, V,

may be neglected ; and the equation {H) will then become

therefore in this C9.se uSx+ vSy + YJz, is an exact variation, provided

that, as we have supposed, ^ is a function of p; therefore if we designate

destroyed by impressing on each molecule, equal velocities in an opposite direction the entire

fluid would quiesce ; .'. in consequence of the primitive impulsion, and the velocities u, v, V,

applied in an opposite direction, there must be an equilibrium, .*. m ti V must be such that

M3«+i'Jy-|-V.Sz may be an exact variation, see No. 17 ; it appears from what precedes, that

the integrability of the equation (//), and the consequent determination of p, g, a, f, V,

depends on the nature of the velocities, communicated to the molecules at the commence-

ment of the motion.

* In the equation {H) u, v, V, are very small quantities, and in like manner

.'. their product may be rejected .*. naming this variation 3ip we have as before,

'4'-='S-'-={{.t)-'^(.t)-'»+(?)-'-}-

'
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this variation by i(p, we shall have

and if the fluid be homogenous, the equation of continuity will become

lc/a,'^S UyA ^dz*S

the expression

o^^m+0'^o'
is the value of V

—

/ *, when uSx+v^y-^-V.h is an exact variation, it is reduced to

e

its first term when u, v, V, are very small quantities.

However though the form of these equations is comparatively so much simpler, than the

general equations which have been given in page 232, still the determination of the lav>s

of the small oscillations of the waves of the sea, is yet a desideratum in Physics. Philo-

sophers have been much more successful in investigating the oscillations of the pulses of the

air, and in the determination of the velocity of the propagation of sound.

Tlie integration of

which is the equation relative to the continuity of the fluid, when wJx+v.Sy+VS* is an

exact variation, and when the fluid is homogenous, which is consequently the simplest possible

form, is extremely difficult, however it has been completed effected by Antonie Parseval,
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these two equations contain the entire theory, of the very small un-

dulations of homogeneous fluids.*

1

1

• If the fluid which makes small oscillations be water, by making the axis of z vertical,

fl>z=g.3r,g representing the force of gravity, Pdx, Q3y are= respectively to nothing,

in like manner we may cortteive it to be homogeneous and incompressible, consequently

we shall have

/i=£....,._fe=,.{*)=,.,^'A.,^
f
=O-

at the surface p vanishes, •'•-="•
1 j7 I ' consequently when the form of ? is deter-

mined, we can derive the equation of the part of the fluid in which p=0, i, e, the equation

of the surface of the fluid.

We determine <f as was already observed by means of the equation

m^i^vv^}-"'
For, elastic fluids or those whose density varies, p^zt §, and if (j) the density of the

fluid in a state of rest, becomes in a state of motion equal to (?)+(?)?» 9 being a very

small quantity, 5 will be equal to (5)+ (^). J,
the oscillations being supposed very smaU,

•iV~^£zz'i. ^^jwai become 3 V—i, ^=:J. i^ ] , the only force acting being that of

gravity, and the motion being supposed parallel to the horizon, 3 V will vanish and the

equation will become — -^ = ?. •! ~ j- = by substituting for { its value, ({) being sup-

posed constant,— '-jr-^; •••—1. log. q= \^.\ .the equation relative to the continuity of the

fluid will become

vanish, the motion being supposed to be performed in a direction parallel to the axis of s, and
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94. Let us consider art homogetieous fluid ifiass which i-evolves Uni-

formly about the axis of x. n represeilting the angulal* velocity of

rotation, at a distance from the axis equal to unity, we shall have

v = —'nzy Yz=.ny; * consequently the equation [H) of the preceding

number, will become

P

consequentiy the velocities v,V,= respectively

which is a quantity indefinitely small of the second order, /. it may be neglected,

consequently the preceding equation becomes

« \-o>^Mm =» ^"•^—'^'- ^--{^}
con

this equation is of great celebrity in the history of the integral calculus, it was first in-

tegrated by D'Alembert, in an analysis of tlie pfoblem of the vibrating chord, which leads

to an equation of precisely the same form.

* The linear velodtyis equ&l to the angular velocity mnkiplied into tlie distance, .-.at a

distance represented by unity, the linear velocity =n, and since the angular velocity at all

distances from the axis is the same, at a distance=v' ~z^~+p' the linear velocity = n.

V 22+^1, the direction of the motion being perpendicular to the radius in order to

obtain the velocity parallel to the coordinates r,y, we should multiply n. \/z»+^» into the

cbsiiies of the ailgfes Vhich z and^'make withthe "tangent, but these cosifles are respectively

y —

z

/. „ ; .

~„ ' —
„ ' for the motion being circular, if one of the cordinates be increased,

the other will be diminished .•. v=z nz, Y=ny.

t The tenns torr^pwdfng to -{ t- f > j -7- 1 , \ -r- \
.in the equation (i!/) vanish,

because the time does not enter into the values of u, v, V.in like manner a and its differential

ooefficients vanish, and from the values of v, V, given above, it is manifest that
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wiiich equation is possible, because its two members are exact yariations.

The equation (^K) pf tjie same nu^iber will become

and it is manifest that this equation will be satisfied, if the fluid mass ,be

homogeneous. The equations of the motion of fluids will therefore be

satisfied, and consequently, the motion is possible.

The centrifugal force at the distance 4/3/* +z* from the axis of ro-

tation, is equal to the square Ti'.(_^+i/^) of the velocity, divided by this

distance; therefore the function n^.(i/Si/+ z.Sz)i is the product of the

II 2

/— ), (
—-},are equal respectively to nothing, consequently the only terms wliich have a

finite value are V.
\-f-)> '"•V j~)' which are respectively equal to zz-r-n^y,—«' «> •••the

equation (H) will become ^^ SF+n^(v5^+^Sz), this equation determines the pressure

e

when ^ is- constant, «r.when it is a function of p,

* The equation (K) is resolvable into two parts as before,

(I) +«-(|)+- (|)+-(l)+^{(|)+(|)+(£^)^

the velocity being uniform, its increment resolved parallel to the axes of x, y, z, i, e

.du \ ( ^'v\ /dV .

{di)'^~d^)'{oiry

must be severally equal to nothing, this is evident for v, V, from their values which have

been given above, with respect to the velocity u, it must be produced by the part ofthe velocity

which is parallel to x, and if it was not uniform, the fluid would not have a uniform motion of

rotation about the axis of x,

zdz-{-yh/

t The centrifugal force = ?j\\/ 2-+ v^ the variation of the distance = ,

•• "'•(z^^+ ySy) is = to th^ centrifugal force mi^ltiplied into the element of the distance.
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centrifugal force, by the element of its direction ; thus, if we compare

the preceding equation of the motion of a fluid, with the general

equation of the equilibrium of fluids, which has been given in No. 1 7,

we may perceive that the conditions of the motion are reduced, to those

of the equilibrium of the fluid mass, solicitedby the same forces, and by

the centrifugal force which arises from the motion of rotation ; which is

sufficiently evident from the nature of the case.

If the exterior surface of the fluid mass be free, we shall have Sp—Q,

at this surface, and consequently

= SV-^n^.{ySy-\-zSz)
;

*

Substituting for SFwe obtain -!—=^P.^x-\-QJy\-R.'^z-\-m.yly\-rfiz.tz,t]\e quantity added

i, e, the centrifugalforcemultiplied into the element ofdistance, beingan exact variation, itfollows

that the expression for —will in this case be an exactvariation, n is some function ofthe distance

of the molecules from the axis of rotation, as the tme is not involved in the preceding

equation, it follows that the conditions of the motion of a fluid mass, about an axis, with a

given velocity, are the same as the conditions of equilibrium of a fluid mass, the same forces as

before soliciting the molecules, combined with the centrifugal force, arising from the uniform

revolution about the axis. The molecules of the fluid, though they have a motion about an

axis, are relatively at rest.

* At the exterior free surface Sp=0, .*. 3 F+n -(?/Jy+ 2J2)=0, .-. in order that the form

of the fluid, may remain the same, during the entire motion, n must be constant. If die

fluid was water contained in a vessel open at its upper surface, j is constant, and 3 V=g.2x

the axis of rotation being supposed vertical, .•. Q.Sy, iJSz vanish, and P=g, consequently, we

shall haveZ.^

—

gx-j-n^.i " "^^ j+/«and at the free surface, wehave.T=w".^ ~^-^

j

-| for the equation of this surface ; if m*. \/ z^+ if which expresses the centrifugal force

varied at the 2r—1 power of the of the distance from the axis of rotation i, e, as

2r—

1

2. r—

I

(2*+/);" ' =a ». (a »+i^ -), and/«^0^^+zSi)

r '

\ ^r I' ^ "ir.g ) g
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from which it follows that the resultant of all the forces which actuate

each molecule, must be perpendicular to this surface, moreover it must

be directed towards the interior of the fluid mass. If these conditions

be satisfied, an homogeneous fluid mass will be in equilibrio, whatever may

be the figure of the solid, which it covers.

The case which we have discussed, is one of those in which the

variation uSx + vSy-{-YSz * is not exact ; for then this variation becomes

.•. if r is positive, x is least, when (2*4-2^)=0,when r=1 all the molecules revolve in the same

2^-4- 2/ \ li

time, and *= a * . i ^ J -i— which is the equation of the concave surface of the parabo-

loid, of which the parameter=—— , the periodic time being equal to the force divided by

the distance =— . .•. if the time of revolution, be called T, we shall have the parameter of
a

the generating curve rsto —T'Sc— = — ~ Zj/ - +A

—

ps .*. x being the same, the

pressure is gi'eater at a greater distance from the axis of rotation.

When r is negative, at the point where i*+y2 =0, x is infinite, and when=

—

h the surface

of the fluid will be such, as would be generated by the revolution of aconical hyperbola, about

its asymptote, the axis of x is in tliis case the as)Tnptote. The constant quantity h denotes

the distance of the origin of the coordinates from the other asymptote, .*. both in this case

and where the surface of the fluid is paraboloidal, the constant quantity depends on the

quantity of water in the vessel. If the vessel was cylindrical, we could determine the area

of the paraboloid, provided that we knew the area of the base of the cylinder, and also the

points of greatest elevation and depression, for the paraboloid is half the circumscribing

cylinder.

This paraboloidal figure is that which is assumed by the molecules of the fluid, in the ex-

periment which Newton adduces, in order to shew that the effects by which absolute and

relative motions are distinguished from each other, are the forces of receding fi-om the axis of

circular motion. See Princip. Math, page 10.

• wJx-t-uJy+ V.J2 is not an exact variation in the preceding investigation, for substituting

for V, and V, we obtain t,=_«;,V=ny, . •. wJx-f- v.ly+ V.S2=n.(!/Jz—z.Sy), consequently it

appears, that though the circumstance of the preceding expression being an exact variation,

would facilitate very much, our investigations, still it is not essentially necessary, that this

should be the case, in order that the motion should be possible. : Since in the case of the

sea, revolving round with the earth round its axis, and relatively quicscing with respect to the
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^^n{zh/—ySz] ; therefore in the theory of the flux and reflux of the sea,

tve are not permitted to assume, that the variation concerned is exact

;

since it is not so in the very simple case, in which the sea has no other

motion, but that of rotation, which is common to it, and the earth.

35. Let us now determine the oscillations of a fluid mass which

covers a spheroid revolving about the axis of t; and let us suppose

that it is deranged from the position of equilibrium, by the action of very

small forces.

At the commencement of the motion, let r represent the distance of a

molecule of the fluid, * from the centre of gravity of the' spheroid over

which it is spread, and which we shall suppose immoveable ; let 6 be the

angle which the radius r makes with the axis of a:, and zr the angle which

the plane passing through the axis of x and the radius r, constitutes with

the plane of x and of j/. Let us suppose that after the time t, the radius

?• is changed into r + a,s, that the angle fi is changed into 9 + aw, and

finally, that the angle t3- is changed into 7it+-By + a.v; a.s, aw, and af,

being very small quantities, of which the squares and products may be

neglected, we shall have

x= (r-\-cis). cos. (6 + Ml) }

^= Cr4-«s). sin. (9+«m). cos. (n?+ in- + aw);

2;:=(r+a5). sin. (S + aw). sin. {nt-i-zr^-aV).

eartb, u'ix-\-vii/-\-y.h is not an exact variation, we may conclude a.Jbrtiori, that it is not one,

where the oscillations arise from the attractions of the sun and moan, which produce tlie

flux and reflux of the sea.

In order to ascertain whether an incompressible fluid solicited by accelerating forces,

'and also by a centrifugal force, may be at the surface of a givenfigure of revohciion, wA

substitute in the equation 0=^V+n'^{i/di/+z.'iz) the forces parallel to x, y, z, which would

result from this hypothesis, the resulting expression should be the differential equation of

the given surface, if it is not, then we may be certain that the given curve does not satisfy

the equilibrium of the fluid. See Book 3. Chap III. No. 1'8.

* If a perpendicular is let fall from the extremity of r on the axis of a-, it will be equal to

''r; sin. (, and the projection of this perpendicular on the plane ofij,x, is equal to the coordinate

y and its value will be r. sin. «. cos. -ar, and this perpendicular projected on the plane s x

will be the coordinate•«, and it will be equal to r. sin. i. sin; «t.
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Substituting these values in the equation (^F) ofNo. 32, we sh^li obtain,

the square of « being neglected, *

* Since xu, »^, ««, are very small quantities, of which the squares and products may be

neglected, the time t will of the same order as «, so that at is of the order a. *, consequently

sin. tcu := »u— &c.= xu, COS. «a=l—-
—— =1 .•. x = {r.-{-»s). qas. («+««)

^r. COS. 6. COS. au—r. sin. i, sin. au-^-»s. cos. ^.cos, t^u—tts. ^in. I. sin, »u

= by neglecting quantities of the order <«*, r, cos. 6—r. sin. 6, ccu+*s. cos. 0,

r and t are independent of t,

dx du . , , ds . d^x d^u . , . d*s
.•.-—=—y .ar. sm. tf-f- -T- «. cos. J ;

——= — -r— xr. sm. t-\- rrr^. tt. cos. t,

dt dt ' dt df dti ^ dt^

(d'x \

d*u id^s <f*K d's=—h:ra.wa. t.cos.e.- u3r. a. cos. *S.-—l-3tf. r*«. ad. 'I'-, )^.r«.sin.J.cos.«.-r-,
df ^

dt* df dt'

rejecting quantities involving «* &c;

^ t=(r-\-ics), sin. (*+«m). cos.{nt+tt-{-»v)=r. Bva.((-iritu). cos.(wf^«+«»)

-f-(M. sin.(«+«a).cos.{n<+'5r-f «ti)=r. sin. 0, cos.(nt-\-ir)—r. sin. «.sin.(«r+n<)«u

-f-teu r- cos. 0. cos.('srf-n^)+«i. sin. *. cos. (et+''0

rejecting as before quantities of the order <**, substituting »u, civ, for sin. ^^!^ sin. ««;, and

observing that at is ofthe order «*, ,*. yz:

r. sin. *. cos.yv

—

ntr. sin. ». sin. a-.—r. sin, ^ sin. <iir cui—nrtitv. sin. <. cos. a+ aur. cos. 0, cos, w

•-^«urn^. COS. 4. sin. '^ir -fxvf• sin. I. cos. .jr-^oi^^ sin. (• .sin. 'et
;

dv • • . dv . dv .

•^= —»r.«m.f<.sm.»!—r.sin.tf. sm.^.-a.'r^—T»r. «v. sm. *..(!flS' wrr-w*^. 5-.sin.«.cos.«
dt dt dt

dv. . . ^ *'« , .•
<«r. cos, f.-coa. «. —r—«t*moos.#. ein.w—«rrrf. -r-—cos.**sui.«r
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«r«.<r9J (^)— 2w. sin. fi. cos. 6.(^) }

+ar'.jTff. )sin.^9.(^—|-) +2n. sm. 9. cos. 6. \-r) + ~"\T)i > ^^)

= ^. ,J.j/'ri-«5).sin. (9 + «mU +(^7— A

rfs . . . . . (is
4- II.-T-. sm. 4. COS. «r—«$ s. sin. 4. sin, « —»nt. sm. ^. sm, «, -r-

at at

d*y . '^^'" o -A ^'^
I .

d^"—i= —ar. sm. 6t sm. w.-rr-— Z«r. at. sm. t, cos. <r. -r- +«r.COS. 6. COS. «7. -;

—

—2«>*n. COS. ^ sm. w.-r- + <c. sm. (>. cos. «r. -^—2«n. sm. t, sm. v-^j

—

3y=3r. sin. «. cos. iir-|-9^, r. cos. i. cos. «t—Jw. r. sin. <. sin. -a,

rejecting those quantities in the value of iy, where <e occurs, for in the product of the ex-

d*ii
pression for

^
into the value of 3^, these would be of the order «s*, .«. they ought to be

neglected

;

.3v.

—

-=lr.(—«r. sin, '«.sin.«. cos.<Er)-— 2nr«. sin. ««. cos. -«r,
^ dt^ dt*

dv

dt

d'^u . . du+ «r. sm. (. cos. i. cos. * v. -; 2«rn. sm. t, cos. ^. sm. •a. cos. w. —

—

(/<» dt

+ «. sin. *tf cos. *«'-T-;—2<t».(sin. *«. sin. cr.cos. ^)-'7t )

3^(—«»•' sin. 6, COS. *. sin. w. cos. <a 2nr*a.wa. <.cos, i, cos.*c.-t-

+ <tr*. COS. **. COS. 'c-T- 2«nr*.cos,*^sin, «, C09.W-;—H«r. sin. <.cos. *. cos.'cr-—
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At the exterior surface of the fluid we have ip=:0 ; moreover in the

state of equilibrium,

o= "-S.[(r+ ccs), sin.(9 + ««;}*+ (<Jr) ;

KK

—2«nr. sin. t, cos. 6, sin. v. cos. -a.— ) + 3w (ar*. sin. '< sin. 'w.-r-j-

^ , . . •
''u . • , d^^i

+ znr'te. sin.* sin. wi cos. «t. «r*. sin. 6. cos. J. sin. w. cos. -a.—.—
dt df-

4> 2*r' n. sin. <• cos. S, sin.'w.-; »r. sin. '*. sin. w. cos. w.-—|-2«n»'. sin.'J.sin.'iiT. —V^
rf< dt^

'

«?//

(r+(»i. )sin.(«+<»tt). sin. ( n<+ OT -|-«'u)= (r+ <«.)sin. <. sin.(n<-}-w+ «i))+ ««r. COS.*. sin.(r!<+ OT

-t-«v)=r. sin. 6. sin.(n<+w)+r. sin. *. cos,(nt-\-'a).ccv-\-*ur, cos. *. sin.(ni-f-w)

*s. sin.(*+«M). sin.{n<+iir-J-«v)(=«,r. sin. tf, sin.(w<+'K;).)

=:r. sin, 6. sin. w-j-n^r. sin. 6. cos, w -j" »• sin. *. cos. •ra-. «ii—r. sin. 6. sin. w. wt. »v... . . dz
-Hwwr. cos. sin. tf, sin.«i+«Kr. cos. «. cos.«r.Rf4-«f. sin. 6. sm.«r+«i.6in. J.cos.w.nf. .*. -r^' '

at

. I • • A) . . . . dv
nr. sin. «. cos. 'o+r. sm, ^. cos. -a.u. r. sin. 6. sm. w. n«o

—

r. sin. ^. sm. 'a.nt».-r
dt dt

I
. <^M du . . tfs

-|-«r. cos. 0, sm. «.— -J-«Mr. cos. S. cos. w. n+«r.ni. cos. 6. cos. w.-^ + «. sin. I. sm. w.—-—
uc at at

. . rfs d*z .
d^v+ «. sin. t. cos. w. Ms-i"* sm. tf. cos. w, w/. -;— ; ,

,

=r«. sm. «. cos. w. -rr
dt dt^ af-

. , . dv . . dv . d^u
.

du—nret.sm.6,siD,t!T.- nrx.sm.e.sin.'Br,-,—h«r. cos. 6. sin. m.—r-U anr. cos. *. cos. w.-^-

, . du , . . d*s . ds . ds
-t-tinr. cos. 6. cos. w. -r+a. sm. 6. sin. w. r—|-««.sm. tf. cos.w.^^—|-«w.sin,«. cos. tr.—

;

3«=3r. sin. 6. sin. 's-f^^* >• cos. (. sin. to+Sit. r. sin. 6. cos. w,

neglecting those terms which mvolve », (at as was before mentioned, in the product
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(<rr) being the value of (JF which corresponds to this state. Let us suppose

that the fluid in question, is the sea j the variation(<rr) will be the product

of the gravity mlutiplied, into the element of its direction. Letg represent

d^z ...
oz. —fT^i these quantities would produce terms of the order «, » and would consequently bedf

df-
neglected. •.• «. —

—

{d^v . a . a dv
, . . o d^u

ru. sin. ^}. sin. «. cos. '^j^—2nr». sin.'^^. sin. V.-^-{-«r. sm. fl.cos. t, sin. "w.^-j

du . „ . d^s „ . . . ds\
+2«»r. sin. 6. cos. ». sin. w. cos. in.j +«. sm. '6. sin. 2©.— +2««. sm.««. sm. w. cos. «.— j-

+3*. ( r'«sm. «. COS.*. sm.iff. cos. w.-tj—2n/^<>e. sm. #• cos. <• sm. *ot.— +«r'. cos. 6. sm.^u.-^

rfa . » rf^i . . ds\
+2«Kr2.cos.2*. sin.w.cos.w.-T+aj-. sin.«. cos. 6. sin.'^cj.r-j-f2«nr. sm.«.cos.«.sm. ro. cos.w.-^^ j-

f o d% o o dv a . . <i"«

J«r. •{ »*«. sin. *<. COS. 2w. jj—2wr*«. sm. '#. sin. w. cos. «r. — +«?*. sm. (. cos. ». em. «. cos. -cr. -^

+ 2«n>-2. sin.«. cos. «. cos.^n-.^-far. sin. ^(. sin. ts-. cos. sr. -*+2«rtr.sin.-<. cos.^w. ^|

, d^x , . d^y
, ^ d^z

d^u ,dh . ,. . .„ d-v
—r«. sin. 6. cos. «. -72+«- cos. \ ^—**• ^'^•°^' sin. ^r. cos. w.^

dv d'U . . du
—2nr». sinsi. cos.^w. — + ctr. sin. 6. cos. «. cos. ^a. j-^—2ixrn.sm. «.cos. 6. sm. tr. cos.w.^

+«. sin. *tf. cos. *ar. -Tj—2««. sm. *«. sm. w. cos. w. ^

rf^t) rfu , . J,
d'u

+ ra. sin. »^. sin. v. cos. cr.jj 2nrit. sin. i'^. sin.'ar.^ +«r. sm. 6. cos. «. sin.
'"--^fr

+2«nr.5ia.<.cos.«,8Jn.«r.cos.zj-.^'+«. eio, *«. sin. *sr. ^+2«k. sin.'«. sin. w. cos-s-. -^
J^
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the force of gravity, and my the elevation of a molecule of water at its

surface, above the surface of equilibrium, which surface we shall con-

sider as the true level of the sea. The variation (JF) in the state of

motion, will in consequence of this elevation, be increased by the quan-

kk2

(= by concinnating

a'ir.
( Yt
—2n»-. sin- ^^- ^) )

;+3^- -j
»^«- "n. *«.-^—r«. sin. «. cos. «.^

d^v „ . . „ dv—<»r.* sin. «. COS. (. sin. w. cos. sr. -r-

—

2nr*{c. sin. l, cos. 6. cos. V.-r—

2«r*n COS. *i. sin.o. cos. a-. — +«r.Bm.*,cos.*. cos.**—

w

dt dt
'

rft*

ds . . . d^v—2icnr. sm. ^.cos. t, sm.«r.cos.i7.-7--|-r'« sin. i, cos. i, sin. tt. cos. 17. -rs-

—^2«r*« sin. *. cos. «. sin. ^ct. r+«'"'' cos.'^. sin. "w. —.+2«n7*.cos.*^.6in.a-.c09.w.—

p

at at* at

. a ^'s
. ^ . . ds \

-j-«r. sin. (. cos. 4. $m. V. -^—l-2«»r*sin. tf. xos.0. S1B.0. co8.n-. -r r
' dt* dt i

(and by concinnating we obtain the coe£5cient of li = to

(<Pa dv \
r*tc. j-j 2n/-*« sin. «. cos. t. —J

;

{d ti dv d^u.
ttr*. sin. *<. sin. '«. -^^—l-2nr*<t. sin. **.8in. w.cos. vr.-T-^xr*. sin, #. COS. t. sin.w.cos. w.-ry

di^ ' dt d^

--2«r*n. sin. ^. cos. I. sin. •w. -7 »r. sin. '<. sin. w. cos. iB.-rr+Zanr. sin. 'tfsin.Sw.-T-
dt dt* dt

d^v dv d^
-\-r»*.sva.*t. COS. 'w ^j 2nr*<t. sin. ««. sin. w.cos. w. ^ +*'"*• ^"^ *• cos. *. sin. «. coSj w.^

^-2«»r*, sin. #. cos. e. cos. ^lir.^ +«r sin. »<, sin. w. cos. -an +2itnr. sin.'f.eoa'irJL
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tity^ »g-Sy ; becanse the gravity is very nearly in the direction of

ay, and tends toxvards its origin ;
* consequently, if we denote by a,iV',

the part of SV relative to the nev? forces, which in the state of motion

concinnating as before we obtain

. / o . , d'v
, „ , . du

, „ . , ds ,

SzrA a^'^sin. '$. f-2«r^«, sin. (. cos. 6.—+2si}ir. sin. 6.—
, }^

dl- ' dt
'

dt r

the body having a rotatory motion about an axis, the part of the equation (H) which cor-

responds to the centrifugal force arising from the rotation is by the preceding number equal

to «*^3y+z32)= —. S. (_5^*-fz' ) = ^ . S. -j (r+ as), sin. («+«m)
J-

.'. the second num-

bers of the preceding equations, when concinnated, give the equation (Z) of the text.

* At the surface of the spheroid r= 1 + y ?, in which / is for simplicity^ considered as a function

of i only, and the semi-axis minor= 1, .•. "ir^^q. { ^ \aw,9 depends on the eccentricity, r re-

ceiving at the surface of the solid the incremented^, the corresponding increment of «=«!<»

therefore the expression forr vrill become 1 -\-ql-\-ciiiq.
(
j-

J
.'.tcs=aug.(j

j
and q being verj-

small, s may neglected in comparison ofa, and it is evidently of the order uq, i, e, ofa multiplied

into the eccentricity,and if/ be considered as a function of jj- only,we might shew thatwreceiving

an increment »t), the corresponding increment of r, is to nv, as the eccentricity multiplied into

I T— jis to unity. If we produce the radius r to the surface of the fluid in equilibrio ; it will

be represented by l-fy l+y, y being the depth of the fluid, and a function of 6 and v,

.'. 6 receiving the increment xu, the corresponding increase of the radius, dra^vn to the surface

of the fluid supposed in equilibrio, will heq.(— \ .xu + (-7-) «!<;when the fluid is in motion,

the distance of the exterior surface from thecenire,=r'-}-ai', is greater than the distance of

the surface of equilibrium, from the centre of the spheroid, measured on the same radius,

this last distance

=,+, !+,+.».
(,.(J) + (^J) ) +„. (,.(£) + (*

)),
,^W-1+? (+V+

-- -('-Wa)+(t)+-'(l)+(s))=-»
= the elevation of a molecule of water in the state of motion, above the surface of
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agitate the molecule, and which arise either from the changes, which in

the state of motion the attractions of the fluid and spheroid experience,

or from the attractions of extraneous bodies ; we shall have at the

surface,

SV={SV)—ocg.Sy + x.sv:

The variation —.J.{(r4-«s). sin.(fi+«")]* is increased by the quantity

an* Jy.r. sin. H, * in consequence of the elevation of the molecule of the

water, above the level of the sea ; but this quantity may be neglected in

comparison of the term— a.g.Si/, because the ratio —^ of the centrifugal

force at the equator, to the gravity, is a very small fraction equal

to . Finally, the radius r is very nearly constant at the surface of

the sea, because it differs very little from a spherical surface j therefore

we may make Sr=0. The equation (L) will thus, become, at the surface

of the sea.

r\,

+ T*.h {s«.{^| + .„..„...co...|^|| + >....||||

equilibrium; it is evidently a function of «andjr. y being the eccentricity, it is evident that

the differential of the normal according to wliich the gravity acts, in case of equilibrium,

differs from the differential of the radius, by a quantity which r: the product of the

eccentricity into the differential of N, a function of 0. .-. at the surfoce of the fluid in equilibrio,

{^V)—g. S, (r'+q. N), at the surface of the fluid in motion, the normal corresponding to

r' -f «^, has not the same direction as when in equihbrio, its variation=S. (r'-^/jN+ai/

+«7. qN) ; the attraction of the spheroid in motion differs from the attraction of the

spheroid in equilibrio by quantities of the order «^ •.• let it be equal to ai/g', then {g+^yg')-

i(r'-\-qN+ui/-\-cci/ q. ]S')—(g+ uyg). S[j-+jiV)+ g. Uy, rejecting quantities of the order

« S and remarking that ^r is of the order q.h, the first term of the second member of the

preceding equationz=(S f^ . •. the second term is the quantity by which in the slate of motion

(S V) is increased, as has been stated in the text.
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the variations Sy, and SV, being taken relatively to the two variables 6,

and w.

Let us now, consider, the equation relative to the continuity of the fluid.

For this purpose, let us conceive at the origin of the motion, a rectangular

parallelepiped, of which the altitude is dr, the breadth r. dw. sin. fi. and the

length 7-.d9. * Let r', 8', ir', represent what r, 6, a-, become after the time /.

By following the reasoning of No. 32, we shall find that after this interval,

the volume of the molecule of the fluid, is equal to a rectangular paral-

(dr't
lelepiped, of which the height is -j— r- .dr ; of which the breadth is

dr being eliminated, by means of the equation

Finally, its length is
'

• r Bin. »= radius of a smaU circle, whose plane is parallel to the equator, and as the

plane of the axes of x, and y, is fixed, r, sin. 6. dw= the differential of the arc of thi«

circle, to wliich dr is evidently perpendicular, also, the differential of the nieridian:=r.<^«, is

perpendicular both to r. «aa. i. d«r and to dr, .•. these three differentials, constitute the

parallelepiped mentioned in the text.

• When the fluid is in motion, this expression becomes, — J.(r+i»4+ <»y) sin. («+ »«)*

.-.the part which corresponds to«y, is «*.«3y.(r-J-<M-f-<«y). sin.(»+<tu)» = by neglecting

quantities of the order «*, tv'.aii/. r. sin.\
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dr, and iv, being eliminated by means of the equations

Consequently, ifwe make

(dr'X (d^'X f
dzr' \ (dr'X ( d^l ( rfsr' |^= \dP yid^yx 'd^yX'^rfXd^l '{w j

jd/\ (d^\ (d£X

after the time t, the volume of the parallelepiped will be equal to C. r*.

siu. 6. dr. d9. d^- ; * therefore if (p) represent the primitive density of

the molecule, and /> its density, con-esponding to the time t, we shall

obtain, by putting the primitive value of its mass, equal to its value after

the time t,

p. e'r'*. sin. y= (p). r*. sin. 9

;

this is the equation relative to the continuity of the fluid. In the case

we are at present considering,

r'= r+a.s; 6' = 9 + «u; ar=nt+zr+ aV',

* r" t s/ are generally functions of r, t, w, and t, see page 217, notes ; the reasoning is

precisely the same as in page 218, substituting the coordinates j-, t, w, in place of

j;. ;/> *•



256 CELESTIAL MECHANICS,

consequently, we shall have by neglecting quantities of the order «•

Let us suppose that after the time /, the primitive density (p) is

changed into (p) + «p' ; the preceding equation relative to the continuity

of the fluid, will give

36. Let us apply these results, to the oscillations of the sea. Its mass

being homogeneous,
f'
vanishes, consequently,

» dr'=dr->r»ds, d^=d6-^»du,d^*d^J^*dv .'. (x-)-(^)-(^)=--

(dr-\-ctds\ (d6-^»du\ ^f dtn-X-adv \ , .
{" ds \ , / du\ /dv \

it is plain, that if there was no motion, the differential of any coordinate 6, with respect to

another coordinate, would vanish, after the time <, this differential is of the order <••.

—-7—— ^ ^ ( ^T**— )'s of the order f or «", consequently it may be neglected, from
(JOT ) ^ di '

which it appears, that all the terms in expression for €' after the first may be neglected.

r»{sin. «+«M.cosO \ =(5). r». sin. «)

(»''+2«s). sin. <+«M. cos, i) > =(§). r*. sin. t, i, e,
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Let us suppose, conformably to what appears to be the case of nature,

that the depth of the sea is very small in comparison with the radius r of the

terrestrial spheroid; let this depth be represented by y, y being a very small

function of 6 and -a, which depends on the law of this depth. If we inte-

grate the preceding differential equation, with respect to r, from the surface

of the solid which the sea covers, to the surface of the sea, * it is obvious

that the value of 5 will be equal to a function of 9, w, and /, independent of

LL

(j). (r»-l-2«r5).(sln. ()+««cos. 0)+ («)• ''•«n. i.

J«-{§} + {^] + {£} }

+aj'. r'. sin. 6-=z{() r«. sin. 6.

.-. (j).r«.««cos.«+(5)2*w.sin. «+(j).r'.sin.«.|«|^|+ {^|+ {^}}

-}-«§'. r'. sin, tf=0

.•. dividing by sin. 6 and », we obtain

• The depth of the sea being inconsiderable, in comparison of the terrestrial radius, we

may suppose, that for this depth r*, and the factor of r» in the second tema, of the second

member of this equation, are constant .*. integrating we obtain

, / /du\
,

tdv \ u COS. (y

as the increment of the radius at the surface of the spheroid = aug. (-j-j +avg.
(
j-

)

see notes to page 252, .-. s' at the surface of the sea

_ f (du-) Cdvl tt.cos. «1 . <dll , / dl\
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r,togethev with a very small funetion which will be to u and tof, of the same

order of smallness as the function _; but at the surface of the solid which
r

tiljie sea covers, when the anglesfi, and^D-, are resj^ectively changed into 6+ a«,

v-^nt-^ «i', it is easy to perceive that the distance of a molecule of water,

contiguous to this surface, from the centre of gravity of the earth, only

varies by a quantity very small with respect to a.u and a,v, and of the same

order, as the products of these quantities, into the eccentricity of the

spheroid covered by the sea : therefore, the function, which occurs in

the expression for s, independent of the value of r, is a very small quan-

tity of the same order ; thus we can generally neglect s, as inconsiderable,

in comparison of u and v. Consequently, the equation of the motion of

the sea, which has been given in No. Z5, becomes,

+ r*Sz7Ss,{n.^L\~l + 2n. sin. 6. cos. 9. i— } |- =—g.S^+SV'; (M)

the equation (L) of the same number relative to any point of the interior

of the fluid, gives in the state of equilibrium,

0-
I'.

J. ( (r+ a5). sin (9 + cu) \ + {SV) — ^-^

(iV)- and {Sp) being the values of iV and S<p^ which in the state of equi-

these two last terms are to u, or v, as the product of these quantities into

the eccentricity. With respect to the first term, it may be remarked that we can derive

another expression for it, in terms of the difference of the eccentricities of the interior and

exterior spheroids, divided by r, but tlus difference is evidently proportional to y, in fact this

term will be to ur as y to r. The integral involves ( because it was taken with respect to

tbe characteiistic d and not 3.

The last member of the equation ( L ) bcconjes in a, state of motion, ia consequence of

Uiig substitution,
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librium, answer to the quantities r+ocs, 6 + *m, u+ ttt. Suppose thit

when the fluid is in motion, we have

the equation (L) will give

From a consideration of the equation (M), it appears that "•! j7 I ^^ ^'^

the same order as 1/ or s, and consequently of the order— ; the value

of the first member of this equation is therefore of the same order ;
*

thus, multiplying this value, by dr, and then integrating from the

surface of the spheroid, to the surface of the sea; we shall have

V— ^equal to a very small function, of the order-i-, plus a function of

9,Tr, and t, independent of r, which we will denote by x; therefore, if in the

|!. J S^ (r+«M).6m.(*+«tt)
I
*+(>r)— {- } + «3^'—« — . the three first terms

destroy each other .•. aiV—« — +| is equal to the first member of the equation (L), and

i

1/
liace it is an exact variation, the first member of the equation(L)wiUBe so also, .*.V — dif-

ftfenced With respect f f, is equal M the tentt of the first metrHbex of the equatioB (t).

wWch is multipKed by Sf

.

—«. sin.«.cos. »= t.'^cos.<0
, in order that —2». ^^ ^ . sin. <. cos. » may b* *f

ifienme wfder m | - - I it 16 Becessay that « | — ? should be of the order y or </whi«K is

of the order—
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equation (L) of No. 35, we only consider the two variables G and zr, it

will be changed into the equation (M), with this sole difference, that the

second member will be changed into <5'x. But A being independent of

the depth of the molecule, which we consider; if we suppose this

molecule very near the surface ; the equation (L) must evidently coincide

with the equation (M) ; therefore we have SxzzSV—gSy, and con-

sequently,

S.\v'^^^'^=SV'^gSy;

the value oiSV'in the second member of this equation, being relative to the

surface of the sea.* We shall find in the theory of the flux and reflux

of the sea, that this value is very nearly the same for all molecules situated

on the same terrestrial radius, from the surface of the solid which the sea

covers, to the surface of the sea; therefore with respect to all thesemolecules

Sp' . .— zzg.Sy; which gives ^'= f^T/, together with a function independent

of 6, T3-, and r ; but at the surface of the level of the sea, the value of a.p',

is equal to the pressure of a small column of water uy, which is elevated

*J j-^dr—'2/nrdr.sm.'i6 < — \ integrated between the the siuface of the splieroid, and

( d''s 7
the surface of sea, gives the integral of the text, the first term is — to i -— > y, which is

a function of ^.•ct, and <,=A, the other term being of the order —may be rejected. If we only

consider the terms, which refer to S and -r, the first member of the equation (L) is the same as

the first member of the equation (M), near the surface, the last term of the first member of

the equation (L') vanishes .-. the equation (L) must in this case coincide with the equation

(M), but A the member of the equation (L) does not vary .•. we have the second

member of the equation (L)— the second member of the equation(M) i. e, Ja=JF'—giy '>

but Sa = 3./ V'—JL
I

••• S- •[ V'— ^ ? =.lV'—g.ly, from the theory of the tides

* /

it appears that the 5 F' fin these two members are the same, .•. g^xf=:.— and p'^egy -^ a con-

%

slant arbitrary quantity ; when the integral is taken between the surface of spheroid, and

eurface of the sea, this constant arbitrary quantity may be rejected.



PART I.—BOOK I. 261

above this surface, and this pressure is equal to a-^.gy % therefore we have,

in the entire of the interior of the fluid, from the surface of the spheroid

covered by the sea, to the surface of the level of the sea, p' = ^gy ; conse-

quently, any point of the surface of the spheroid, which is covered by the

sea, is more pressed than in the state of equilibrium, by the entire weight

of a column of water, contained between the surface of the sea, and the sur-

face of level. This excess of pressure becomes negative, for those points,

where the surface of the sea is depressed beneath the surface of level.

It follows from which has been stated above, that if we only consider the

variations of 9 and is ; the equation fL) will be changed into the equation

(Mj, for all the interior molecules of the fluid. Consequently, the values

of u, and v, relative to all molecules, * situated on the same terrestrial

radius, are determined by the same differential equations ; thus, supposing,

as we shall do in the theory of the flux and reflux of the sea, that at the

commencement ofthemotion,the values of w,i — Vy, I — I, were the

same for all the molecules of the fluid, situated on the sanie radius,

these molecules will exist the same radius, during the oscillations of the

fluid. Therefore the values of r, u, and v, may be supposed very nearly

the same, on the small part of the radius, comprised between the solid,

which the sea covers, and the surface of the sea ; thus, if we integrate

with respect to r, the equation

^ cd.r*s 1
, , ^^du)

,
(dv}

,
u cos 9 } ,

* At the commencement of the motion u, and v, i —
f i "{ t; r > ^^^ the same, for all

molecules situated on the same radius, .•• after the interval dt, the corresponding values of

u and V, will be the same for all molecules situated on the same radius.

t r-s-(j^i)zz)%_?2.(^)4-2,-y.(i)+y2(i)for (r^)=(r—y)*

y being a function of i, and ar, when these angles are increased by the quantity «m, »v,

becomes y-\-aM.. \-t-\ +«d. 5 j - f this is the value of -/ con-esponding to the angle

<+«u, ^\-nt-\-an for the surface of equilibrium, ,•• where the fluid is in motion, we must

add ay to this expression.
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we shall have

( crf9 J Ccra-J sm. 8 )

(r»5) being the value of Vs, at the surface of the spheroid covered by the

sea. The function r^s

—

(r*s) is very nearly equal to r*. [s—(«)}

+Qry(s), (s) being what 5 becomes at the surface of the spheroid ; con-

sidering, the smallness of y, and (5), in comparison of r, we may neglect

the term 2ry.(s) ; therefore, we shall have

ros—(r*s')=r.' [«—(5)}.

Now, the depth of the sea, corresponding to the angles 0-|-ixw, ar

+ w?+«f, is y + a.[s—(s)]. If the origin of the angles 6, and

ni + sr, be referred to a point, and a meridian, which are fixed

on the surface of the earth, which we are permitted to do, as we

shall see very soon ; this same depth will be y-i- au.

^-T^^+ai'. j;r-(> plus the elevation ay of the molecule of the fluid at

the surface of the sea, above the surface of level ; therefore, we shall have

If we make cos. 4=:^, then

sin.

«

' '^ ^•' 1

—

u^

—dfi ^ ^. __ —fi.dft. ^ __j^_ COS. i

sin. $

consequently the equation of continuity, on the supposition that the sea is honiogeneouA

becomes,

— (^) +r2. r ^^ _r2.
(
rf.(«-v/rV)w Book IV. Chap. 2.

^ Md^ r+ :?:— +-d;;^ j= -r-
{ [^)+ —T^

S.ee Book IV. Chap. 1, No. 2.
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'-»=^+-gi( + 4l}'
Consequently the equation relative to the continuity of the fluid

will become *

cdyjO (d.yV? yii.cos.6 ,„.

It may be remarked, that in this equation, the angles 8 and nt-\-t!r are

reckoned from a point, and a meridian, which are respectively fixed on the

surface of the earth,and in the equation(M),these angles are reckoned from

the axis of a, and from a plane, which passing through this axis, revolves

about it with a rotatory motion, expressed by n ; but this axis, and this

plane are not fixed on the surface of the earth, since the attraction and

pressure of the fluid which covers it, as well as the rotatory motion of the

spheroid, disturb a little their position. However it is easy to perceive that

these perturbations t are to the values of«m, and «t', in the ratio of the mass

* Substituting for s— {s), its value

{du "i dv

di > ^' 1Z
and observing that

du ^ dv lu COS. *
y. .

sm. i

we will arrive at the value of y, which is given in the text.

f In the state of equilibrium, neither the pressure or attraction of the ocean, can produce

any motion in the spheroid covered by the sea, and it is only the stratum of water which irv

consequence of the attractions of the exterior bodies, and of the centrifugal force, is elevated

above the surface, wliich can produce any effect. The effects of the pressure and attraction^

may be considered separately, with respect to the first, if the mean radius of the earth be

supposed equal to unity, «y being the elevation, the action of the aqueous stratum is equal to

the diiference of the attractions of two spheroids, of which the radius of the interiors 1, of

the exterior — l+»i/, naming this difference »y.k. and t its direction, uyhdv will be the

expression for this attraction ; multiplied into the element ofits direction, t being a function of

<, and -a, dr
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of the sea, to the mass of the spheroid ; therefore, in order to refer the

angles 9, and nt+zi; to a point and meridian, which are invariable on the

surface of the spheroid, in the two equations (M) and (N) ; we should

alter u, andi^, by quantities of tl:e order^ and — , which quantities we
r r

are permitted to neglect ; therefore we may suppose in these equations,

that a.u and a.v are the motions of the fluid, in latitude and longitude.*

It may also be observed, that the centre of gravity of the spheroid being

supposed immoveable, we should transfer in an opposite direction to the

molecules, the forces by which it is actuated, in consequence of the re-

action of the sea ; but the common centre of gravity of the sea and sphe-

roid being invariable in consequence of this reaction ; it is manifest that

the ratio of these forces, to those by which the molecules are solicited by

the action of the spheroid, is of the same order, as the ratio of the mass

therefore they may be omitted in the calculation of W.

of the fluid to that of the spheroid, and consequently of the order-,

The attractions are of the orderay ; for ify vanished there would be no pressure or action, but

y is of the order— . The exact effect which the attractions, and pressures of the aqueous

stratum produce are calculated in Book V. Nos. 10 and 11.

• The centre of gravity of the spheroid is considered immoveable, because we do not

consider the absolute oscillations of the molecules in space, but only their oscillations reia^

live to the mass of the fluid. The common centre of gravity of the fluid and spheroid

covered by the fluid is not affected by the mutual action of these molecules, see No. 20.

With respect to the action of foreign bodies, their effect is not to be neglected, as in case of

the action of the sea, if we consider the centre of gravity of the spheroid immoveable, we

must transfer in a contrary direction to the molecule, the attraction which such bodies exert

on the centre of gravity of the spheroid, the oscillations «y and the force which actuates the

particles are ofthe order a.-~fix ».q. \ —-i- !• ,see preceding note.



PART L—BOOK I. 265

37. Let us consider in the same manner, the motions of the atmos-

phere. In this investigation, we shall omit the consideration of the

variation of heat in different latitudes, and different elevations, as well

as all anomalous causes of perturbation, and consider only the regular

causes which act upon it, as upon the ocean. Consequently, we may con-

sider the sea as surrounded by an elastic fluid of an uniform temperature
;

we shall also suppose, that the density of this fluid is proportional to its

pressure, which is conformable to experience. This supposition implies, *

that the atmosphere has an infinite height ; but it is easy to be assured,

that at a very small height, its density is so small, that it may be regarded

as evanescent.

This being premised, let s', u\ and w', denote for the molecules of the

atmosphere, what s, u x\ designated, for the molecules of the sea ; the

equation (L) of No. 35, will then become

2 .„ t \d*ii

{m--^->--'-m\

+

1 ^ 3- ( •
2fl

/ d""^' \ . o -ft „ A fdu'\ ,
2w. sin, ^9 / ds' \\'\-o^'rJzT.\sm.^\—-^) +271. sin. 9. cos. 9, ( — 1 -| .(— )

( dt-
' ^dt

'

r ^ dt '

.

<^-Sr. $ (^~)—2nr. sin. \ (^)^ = |-. <^.(^+ ccs').sm.^ + xu').Y

+^F- ^P.

e

M M

• x\ccording as the fluid is elevated above the surface of the earth, it becomes
rarer, in consequence of its elasticity which dilates it more and more, as it is less

compressed, and it would extend indefinitely, and eventually dissipate itself in space,

if the molecules of its surface were elastic ; consequently, if there is a state of rarity, in

which the molecules are devoid of elasticity, the elasticity of the atmosphere must diminish

in a greater ratio than the compressing force.
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At first let us consider the atmosphere in a state of equilibrium*

in which case s\ zi' andt/ vanish. Then, the preceding equation, being

integrated becomes,

—.r^. sin. *9 + F— P-^ = constant.

The pressure p being by hypothesis proportional to the density ; we

shall make j) = I. g. p, g represents the gravity at a determined place, *

which we will suppose to be the equator, and / is a constaat quantity

which expresses the height of the atmosphere, of which the density is

throughout the same as at the surface of the sea : this height is very

small relative to the radius of the terrestrial spheroid, of wliich it is less

than the 72Dth part.

The integral A^ is equal to Ig. log. f ; consequently the preceding

equation relative to the equilibrium of the atmosphere becomes,

ig. log. p = constant + r+ —.-r*. -sin. *9.

At the surface of the sea, the value of F" is -the same for a molecule of

air, as for a molecule of water contiguous to it, because the forces which

solicit each molecule, are the same ; but the condition of the equilibrium

of the sea requires, that wc should have

V-)r— . r^. sin.^S=constant

;

2

* An homogeneous atmosphere is an atmosphere, supposed to be of the same weight as

that which actually surrounds the earth ; its density being uniform, and every where equal

to the density of the air at the surface of the earth. Let h be the height of the mercury

in the barometer at the equator, and d its density, we shall have lg=h.d:. /x— and by
e

substituting for A and e^ and g their rnumerical values, /comes out equal to 5;^ miles very

nearly, which is somewhat less than ^he 720th part of the radius of the equator. When the

temperature is given, this height is a constant quantity, whatever be the ohang«s wliich 'the

pressure undergoes.
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therefore p is constant at this surface, i, e, the density of the stratum of

air contiguous to the sea, is every where the same, in the state of

equilibrium.

Let R represent, the part of the radius r, comprehended between

the centte of the spheroid and the surface of the sea, and r' the

part comprised between this surface and a molecule of air ele-

vated above it ; r' will differ only by quantities nearly of the order

— . r' 1 ,
* from the /leigkt of this molecule above the surface of

the sea ; we may without sensible error neglect quantities of this order.

The equation between p and r will give

Ig. log. f = constant+ l

+ — . RK sin. *H?^* -R/. sin. -fl

:

2

the values of V, (-p^and (-r-g) being relative to the surface of the sea,

where we have,

constant = V+ ^'R'- sin. -9j

the quantity *- l—^ \—n* R, sin. % expresses the gravity at the same

M m2

* V being a function of R, 6, and vt, i{ R receive the increment /, V becomes s V

"^ T I d~ \ "^ T9\ J~t\'^ ^^' ^^ the expression^ R^- sin. -e will be increased by

the quantity n* R/, sin. *«^—-/.' sin. *(, but this last term being indefinitely small,

may be rejected.
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surface; which we will represent by g'. The function \tll * being niul^
!;/:> €. Ldr 3

^

tiphed by a very small quantity r? we may determine it on the hypothesis,
that the earth i. spherical, and we may neglect the density of the atmos-
phere relatively to that of the earth ; therefore, we shall have very nearly,

Ur i
~ * m'

m expressing the mass of the earth ; consequently S— J =

'~Jlz= —^ ; therefore we shall have /^. log. p= constant

—^'g'—^g' ; from which may be obtained

_r'g' C r)

p= n,c t

*Ifthe earth was a sphere then r', would be equal to the height of the molecule of theatmos*

phere above the surface of the sea, and as in the case of a spheroid the height is determined

by a normal drawn to the surface from the molecule, the difference between / and the part of

this normal which is exterior to the surface, depends on the ellipticity of the spheroid, which is

1 for he afterwards supposes that the earth is at the surface of

the sea very nearly ^ spherical, .*. the only abberration from sphericity can arise

from the greater centrifugal force of the molecule of the air, the ratio of this excess of cen-

trifugal force to gravity, for a molecule elevated at the equator, above the surface of the

earth r= , and the mtercept at the surface between the du-ection of r, and the direction

of a normal drawn from the molecule of the air must be evidently of the order of the

ellipticity t, e, of the order , and the difference between r' and this height is equal

to the square of this quantity divided by R very nearly.

t Sf—P3x+ Qlj/-i-Rh, and if we refer the molecules to the polar coordinates r, i, w.



PART I.—BOOK I.
. 269

c being the number ofwhich the hyperbolical logarithm is equal to unity,

and n being a constant quantity evidently equal to the density of the air

at the surface of the sea. Let h and /?' represent the lengths of a pen-

dulum, which vibrates seconds at the surface of sea, under the equator,

and at the latitude of the molecule of the atmosphere, which has been

is that part of the force SF, which is resolved in the direction of the radius of the earth, tf:=

the complement of latitude .'. »*7l sin. '< is the part of the centrifugal force, which acts in

the direction of the terrestrial radius. The force varying inversely as the square of the dis-

1 dV m
tance, V-^ —, and — r: -j- see Book II. No. 12.R dr R'

The earth being supposed spherical
5 ;7- >• 'S nearly the same in every parallel, and .-. equal

(d'Vt
to its value at the equator, where it is equal to g very nearly ; in the value of < -j-^ > we sub-

stitute ^ in place of ^^ , for thus the error of the supposition that g =:^is somewhat cor-

rected ; substituting for

/'dV\ „ . . fd^V\ «» „, .

(^-) + mR.sm.^>,^^)+-^R'.sm.'e

.their values and of remarjiing that V-{- — R.* sin. '« is constant, we obtain the value of

Ig. log. ^ which is given in the text.

The density of the atmosphere being inconsiderable with respect to that of the earth, we

may without sensible error, neglect the attraction of its molecules.

The variable part of the value of § is necessarily negative, for the density decreases, ac-

cording as we ascend in the atmosphere

;

const ^g'-(.y\
Ig Ig V-^Rl

,
const r'c^.,1 , r'\

const

md at the surface of the sea / :rO .••{=<: = n which is consequently the value of
5

at the surface ofthe sea; when the times of vibration are given, the lengths of the isochronous

lendulums are proportional to the forces of gravity, .*. — :i -r-.
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considered : we shall have— = -, and consequently,
g h

7/ C r'\

Ih

f—n. c *

From this expression of the density of the air, it appears that strata

of the same density, are throughout equally elevated about the surface

of the sea, with the exception of the quantity -i

—

~-^ j however, in

the exact determination of the heights of mountains by observations of

the barometer, this quantity ought not to be neglected.

Let us now consider the atmosphere in a state of motion, and let the

oscillations of a stratum of level, or of the same density in the state of

equilibrium, be determined. Let acp represent the elevation of a mole-

cule of the fluid, above the surface of level, to which it appertains in the

* If we expand the value of g into a series it becomes equal to

V ' r'h'
and neglecting higher powers of /',=!—=7- .-. in strata of equal elevation above the level

h'—h
of the sea, the difference of density is equal to r. (j— j

; in like manner, if the density of

two strata, in latitudes of which the forces are respectively equal tog and g'; be the same,

we shall have

Ih

7' and r*being the heights which coiTespond to the respective latitudes, .•. neglecting quantities

of the second order we shall have, when the density is given, /A'=r"A .-. r'/= — conse-
h

quently the difference between/ and /''/(=—)= r'. ('—^V



PARTI.—BOOK I. 271

state of equilibrium ; it is manifest that, in consequence of this eleva-

tion, the value of tVvfill be increased by the differential variation

—»g.S<p ; thus we shall have, SV:=.{iV)-^s>i.g.Sip + »SV' ; (^SV) being the

value of S V, which, in the state of equilibrium, corresponds to the stratum

of level, and to the angles 9 + «w, and nt+zr+otv j SV being the part of

iV, which is produced by the new forces, which in the state of motion,

agitate the atmosphere.

Let fi=:(f) + «f', f
being the density of the stratum of level, in the

state of equilibrium. By making -4-=y, we shall have

but in the state of equilibrium we have,

0= ^J.{{r+»s). sin. ($ + «^)}»+(JD-/^'y }

therefore, the general equation relative to the motion of the atmosphere

will become, relatively to the strata of level, with respect to which ir

very nearly vanishes,

+r^.J^.|sm. .9. |-^j+2«. sin. 6. cos. 6.^-^1+ r-\rf^||

= neglecting quantities of tlie order a', Ig- 8(5) (•(s)~(g).~-«.{')
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=iV'—gJ(P'^gSy' + n^r. sin. »6.$. (/—(/)),*

a («') being the variation of r, which in the state of equilibrium corre-

sponds to the variations a?/, «u', of the angles 9, and zy.

Let us suppose that all the molecules, which at the commencement of

the motion existed on the same radius vector, remained constantly on

the same radius in a state of motion, which, as appears from what pre-

cedes, obtains in the oscillations of the sea ; and let us examine whether

this supposition is consistent with the equations of the motion and

continuity of the atmospjiere. For this purpose, it is necessary that

the values of u' and of v', should be the same for all these molecules, as we

shall see in the sequel, when the forces which cause this variation are de-

termined ; consequently, it is necessary that the variations Sip and St/,

should be the same for these molecules, and moreover that the quantities

•V

2nr. S-sr. sin. 'Q. S'^> , and n'r. sln.^^J. S <t'—(s) (,

may be neglected in the preceding equation.

At the surface of the sea, we have <p=]/, a-y being the elevation of the

surface of the sea above the surface of level. Let us examine whether the

suppositions of <? equal to y, and of y constant for all molecules of

the atmosphere, existing on the same radius vector, is compatible

with the equation of the continuity of the fluid. This equation

is by No. 2,5,

* ai' and «(^') being tlic variations of r, corresponding respectively, in the states of motion

and equilibrium, to the variations mi and «.v', the expression

p. 3.

J
(r-f«s'). sin.(i!-l-««') j

'=
Y- ^-

{ C*"
^ «(*')+«(«'-(*'))• s:n-(«+««) }

'

and when we neglect quantities of the order**, the part of this expression, which docs not

occur in the equation

0=-|-. 3. |(»- + «4 sin.(tf+«i<)
I

, is, 7j« r.«.S. | (*'—(/) |. sin. '«.
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fiom which we obtain

, C f d.r's' >
, Sdu") ^ <:dt'} u.' cos. 9 %

r + as' is equal to the value of r at the surface of level, which corresponds

to the angles 8+«m, and sr+ uv, together with the elevation ofa molecule

of air above this surface ; the part of as' which depends on the variation

of the angles G and iB-jt being of the order —'—, may be neglected in

&

N N

* Dividing tliis equation by r» (5) we shall obtain

(?)
^~ I' ^d« ) W j sin. 6 \r' dr

)'

f The part of «/ which corresponds to the variations »u', av', is of the same order as the

products of these quantities by the eccentricity of the spheroid, see page 258, and the ec-

centricity in this case is proportional to the fraction— , consequently the variation of «/

which corresponds to the variation of the angles I and 1?,=: ; the entire variation of cts' is

g
made up of two parts, of which one is equal to the elevation of the molecule above the sur-

face of equilibrium, on the supposition that the angles 6 and ar are not varied, and this part

of the variation of us'=ttip, the other part of the variation is the part which corresponds to the

variations au' and «u' of the angles 6 and w, and from what precedes it appears that this part

may be neglected, consequently we have

r d.r^sf \ 2s' . ds'

the second term= f~-
J
by substituting <p in place ofy, to which it is equal, and when

(f>
is

supposed to be equal to y ; its derivitive function with respect to r must vanish, <p being the same

for all the molecules, situated on the same radius, y is the same order &ss', or the eccen-
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the preceding expression for y, consequently it may be supposed in this ex-

pression thats'=:i?; by making <p =3/, we shall have! — | = 0,sincethe value

of (p is then the same for all molecules situated on the same radius.

Moreover, by what precedes, y is of the order Z or— ; therefore the ex-

pression for y' will become.

'_ 1 W*^^' \ \^^ y m'. cos. 6

^~ '\Xdf\ Id^S sin. 9

thus, 11 and v' being the same for all molecules situated primitively on the

same radius, the value ofy will be the same for all these molecules.

Moreover, it is manifest from what has been stated that the quantities

<2nr. iw. sin. -9. j—Land «V.sin.^9. (?.(«'—.-(y)),

may be neglected in the preceding equations of the motion of the at-

mosphere, which can then be satisfied, by supposing that u' and t' are the

same for all the molecules ofthe atmosphere, which at the commencement

of the motion existed on the same radius ; therefore the supposition that

all those molecules remain constantly on the same radius during the oscil-

lations, is compatible with the equations of the motion and of the con-

tinuity of the atmospheric fluid. In this case, the oscillations of the

different strata of level are the same, and may be determined by means

of the equations,

tricity which is proportional to -, and this last quantity is proportional to I, see page 258 and
o
2s' ds'

266, ••• we may neglect both — and— consequently we will obtain for 1/' the expression

given in the text. It is manifest from what has been stated in notes to page 253, tliat

— y«^./-sin.*^.J(i'—(«))raaybeneglectedwhenthe earth is nearly spherical.
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+r.»J^.5sm.=fl.J^ I — 2n. sin. 9. cos. 9. Yj-\ -^'^'—g-^'S'^r,

t_ , C Cc?m'> (cfw'? z/cos 9 ?

These oscillations of the atmosphere ought to produce corresponding

oscillations,, in the heights of the barometer. In order to determine

these last by means of the first, we should suppose a barometer fixed at any

elevation above the level of the sea. The altitude ofthe mercury is pro-

portional to the pressure which the surface exposed to the action of the

air experiences ; therefore it amy be represented by Ig. p ; but this surface

is successively exposed to the action of different strata of level, which are

alternately elevated and depressed like the surface of the sea ; thus the

value of p at the surface of the mercury varies, 1st, * because it appertains to

a stratum of level, which in the state of equilibrium was less elevated by the

quantity a.y; 2dly, because the density ofa stratum increases in the state of

motion, by a/ orby—yi^ . In consequence of the first cause, the variation

of f is augmented by the quantity

—

»y, ( -f
}or ^'pi. therefore the en-

tire variation of the density
f
at the surface of the mercury, is gtCp)- , .

It follows from this, that if we represent the height of the mercury, in

^ * (rfr)~ '^' (/)• '° *^ *^'® °^ equilibrium /^\=g'. (§) see (page 223) ••. (^\

=^^ consequently — ay, ( —~ J
= '

j
\-r-j 's negative because the density in-

creases as we ascend in the atmosphere

.

The temperature of the air being supposed to remain unvaried, its specific gravity will vary

as ({) its density, and this quantity varies as Jc.
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the barometer, in the state of equilibrium by k j its oscillations, in the

state of motion will be represented by the function —'^"
; conse-

quently at all heights above the level of the sea, these oscillations are

similar, and proportional to the altitudes of the barometer.

It only now remains, in order to determine the oscillations of the sea,

and of the atmosphere, to know the forces which act on these respective

fluids, and to integrate the preceding differential equations j which will

be done in the sequel of this work.

END OF THE FIRST BOOK.



TREATISE
OF

CELESTIAL MECHANICS,

BY P. S. LAPLACE,

MEMBER OF THE NATIONAL INSTITUTE, &C.

PART THE FIRST—BOOK THE SECOND.

TRANSLATED FROM THE FRENCH, AND ELUCIDATED WITH

EXPLANATORY NOTES.

BY THE REV. HENRY H. HARTE, F.T.CD. M.R.I.A.

DUBLIN

:

PRINTED AT THE UNIVERSITY PRESS,

FOR RICHARD MILLIKEN AND HODGES AND M'AKTHUR.

1827.



R. GRAISBERRy,

PRINTER Ty THE O.NIVERSITT.



TABLE OF CONTENTS.

BOOK II.

Of the law of Universal Gravitation, and of the Motion of the centre of gravity of the

Heavenly Bodies. -..-.. Page 1

CHAPTER I. Of the law of Universal Gravitation, deduced from the phenomena.

The areas described by the radii vectores of the planets, in their motion about the sun,

being proportional to the times ; the force which sollicits the planets, is directed to-

wards the centre of the sun, and conversely, .... No. 1

The orbits of the planets and comets being conic sections; the force which actuates

them is in the inverse ratio of the square of the distance of the centres of these stars

from that of the sun. Conversely, if the force varies in this ratio, the curve described is

a conic section, ...... .- No. 2

The squares of the times of the revolutions of the planets being proportional to the

cubes of the major axes of their orbits, or, what comes to the «ame thing, the areas

described in the same time, in different orbits, being proportional to the square roots

of their parameters ; the force which sollicits the planets and comets ivill be the same

for all bodies placed at the same distance from the sun, ... No. 3

The satellites in their motions about their respective primary planets, present very nearly

the same phenomena, as the planets do in their motion about the sun ; therefore the

satellites are soUicited towards their respective primary planets and towards the sun, by

forces which vary inversely as the squares of the distances. - - No. 4

Determination of the lunar parallax, by means of experiments made on heavy bodies'

and on the hypothesis of the force of gravity varying inversely as the square of the

distances. The result which is thus obtained, being perfectly conformable to obser-

vatiofis; the attractive force of the earth is of the same nature as that of all the hea-

venly bodies ........ No. 5



IV CONTENTS.

General reflections on what precedes ; they lead to this principle, namely, that all the

molecules of matter attract each other directly as the masses, and inversely as the square

of the distances, -------. No. 6

CHAP. II. Of the differential equations of the motion of a system of bodies subject to

their mutual attraction, - • - . . . 27

Differential equations of this motion. - - - - - No. 7.

Development of the integrals which we have been hitherto able to obtain, and which re-

sult from the principles ofthe conservation of the motion of the centre of gravity, of areas,

and of living forces. ....... fjo. 8

Differential equations of the motion of a system of bodies, subject to their mutual at-

traction, about one of them, considered as the centre of their motions ; development of

the rigorous integrals which we have been able to obtain. - - No. 9

The motion of the centre of gravity of the system of a planet and of its satellites about

the sun, is very nearly the same as if all the bodies of this system were united in this

point; and the system acts on the other bodies, very nearly as in this hypothesis.

No. 10

Discussions on the attraction of spheroids : this attraction is given by the partial dif-

ferences of the function which expresses the sum of the molecules of the spheroid,

divided by their distances from the attracted point. Fundamental equation of partial

differences, which this function satisfies. Different transformations of this equation.

No. 11

Application to the case in which the attracting body is a spherical stratum : it may be

proved, that a point situated in the interior of a spherical stratum is equally attracted

in every direction ; and that a point situated without the stratum is attracted by it, as

if the mass was condensed in its centre. This result likewise obtains for globes com-

posed of concentrical strata, of a variable density from the centre to the circum-

ference. Investigation of the laws of attraction in which those properties obtain.

Among the infinite number of laws which render the attraction very small at consi-

derable distances, that of nature is the only one in which spheres act on an exterior

point, as if their masses were united in their centres. This is likewise the only one,

in which the action of a spherical stratum on a,point situated within the stratum vanishes.
'

.
^

No. 12

Application of the formulae of N°. 11, tp the case in which the attracting body is a cy-

linder, ofwhich the base is a reentrant curve, and of which the length is infinite. When

this cuiTe is a circle, the action of the cylinder on an exterior point is reciprocally

proportional to the distance of this point from the axis of the cylinder. A point situ-

ated in the interior of a circular cylindrical stratum, of a uniform thickness, is equally

attracted in every direction. ...... No. 1

3

Equation of condition relative to the motion of a body. ... No* 14



CONTENTS. V

Different transformations of the differential equations of the motion of a system of bodies

subject to their mutual attraction. ..... No, 15

CHAP. III. First approximation of the celettial motions, or the theory of elliptic

motion. - - - - ---97
Integration of the differential equations, which determine the relative motion of two

bodies, attracting each other directly as the masses, and inversely as the square of

the distances. The curve which they describe in this motion is a conic section. Ex-

pression of the time in a converging series of the sines and cosines of the true motion.

If the masses of the planets be neglected relatively to that of the sun, the squares of

the times of the revolutions are as the cubes of the greater axes of the orbits. This law

obtains in the case of the motion of the satellites about their respective primary planets.

No. 16

Second method of integrating the differential equations of the preceding number. No. 17

Third method of integrating the same equations ; this method has the advantage of fur-

nishing the arbitrary quantities, in functions of the coordinates and of their first dif-

ferences. ....... Nos. 18 and 19

Finite equations of elliptic motion : expressions of the mean anomaly, of the radius

vector, and of the true anomaly, in functions of the excentric anomaly. - No. 20

General method for the reduction of functions into series ; theorems which result from

it. . - - - - - . - - No. 21

Application of these theorems to elliptic motion. Expressions of the excentric anomaly,

of the true anomaly, and of the radius vector of the planets into converging series of

the sines and cosines of the mean anomaly. Expressions in converging series, of the

longitude, latitude, and of the projection of the radius vector, on a fixed plane, a little

inclined to that of the orbit. ...... No. 22

Converging expressions for the radius vector and time, in functions of the true anomaly,

for an extremely excentric orbit. If the orbit is parabolic, the equation between the

time and true anomaly is an equation of the third degree, wliich may be solved by

means of the tables lof the motion of comets. Correction which ought to be applied to

the true anomaly computed for the parabola, in order to obtain the true anomaly corres-

ponding to the same time, in an extremely excentric ellipse. - . - No. 23

Theory of hyperbolic motion. ....-- No. 2t

Determination of the ratio of the masses of the planets accompanied by satellites, to that

of the sun. ......-- No. 25

CHAP. IV. Determination of the elements of elliptic motion. - 167

Formulae which furnish these elements, when the circumstances of the primitive motion

are known. Expression for the velocity, independent of the excentricity of the orbit,

b2



VI CONTENTS.

In the parabola, the velocity is reciprocally proportional to the square root of the radius

vector ......... No. 26

Investigation of the relation which exists between the major axis of the orbit, the chord

of the arc described, the time employed to describe it, and the sum of the extreme radii

vectores. ........ No. 27

The most advantageous means of determining by observations, the elements of the orbits

of comets. ........ No. 28

Formula; for determining by means of any number of contiguous observations, the geo-

centric longitude and latitude of a comet at a given instant, and also their first and

second differences. ....... No. 29

General method for deducing from the differential equations of the motion of a system of

bodies, the elements of the orbits ; the apparent longitudes and latitudes, and also

their first and second differences being supposed to be known for a given instant. No. 30

Application of this method to the motion of comets, supposing them to be actuated by the

sole attraction of the sun : it gives, by the solution of an equation of the seventh degree,

the distance of the comet from the earth. The sole inspection of three consecutive

and contiguous observations, enables us to ascertain whether the comet is nearer or

farther than the earth, from the sun. ..... No. 31

Method for obtaining as accurately as we please, and by means of three observations

only, tlie geocentric longitude and latitude of a comet, and also their first and second

differences divided by corresponding powers of the element of the time. - No. 32

Determination of the elements of the orbit of a comet, when for any instant whatever, its

distance from the earth, and the first differential of this distance, divided by the element

of the time is given. Simple method of taking into account the excentricity of the

earth's orbit. ........ No. 33

When the orbit is parabolic, the axis major is infinite ; this condition furnishes a new

equation of the sixtli degree, for determining the distance of the comet from the

earth. - ........ No. 34

Hence results a variety of methods for computing parabolic orbits. Investigation of that,

from which we ought to expect the greatest accuracy in the results, and the greatest

simplicity in the computation. ..... No. 35 and 36

This method consists of two parts ; in the first, the perihelion distance of the comet, and

the instant of its passage through the perihelion, are determined in an approximate man-

ner ; in the second, a method is given of correcting these two elements by means of

three observations made at a considerable distance from each other, and from them all

the others are deduced. ....... No. 37

Rigorous determination of the orbit, when the comet is observed in its two nodes. No. 38

Method of determining tlie ellipticity of the orbit, in the case of a very excentric ellipse.

No. 39



CONTENTS. Vll

CHAP. V. General methods Jbr determining by successive approximations, the ntoiions

of the heavenly bodies. - - - - - . • 23'1

Investigations of the changes which the integrals of the differential equations ought to

undergo, in order to obtain those of the same equations, increased by certain terms.

No. 40

Hence we deduce a simple method of obtaining rigorous integrals of differential linear

equations, when we know how to integrate these same equations deprived of their last

terms. -.-. ..... No. 41

An easy method is likewise deduced of obtaining continually approaching integrals, of the

differential equations. .--.... No. 42

Method of making the arches of circles which are introduced into the approaching inte-

grals to disappear, when they ought not to occur in the accurate integral. No. 43

Method of approximation, founded on the variation of the arbitrary constants. No. 44

CHAP. VI. Second approximation of the Celestial Motions, or theory of their per-

turbations. ........ 259

Formulae of the motion in longitude and latitude, and of the radius vector in the disturbed

orbit. An extremely simple form, under which they appear when we only take into

account the first power of the disturbing forces. ... No. 46

Method of obtaining the perturbations, in series arranged according to the powers and

products of the excentricities and inclinations of the orbits. - - No. 47

Development in series, of the function of the mutual distances of the bodies of the system,

on which the perturbations depend. Application of the calculus of finite differences in

this development. Reflections on this series.* .... No. 48

Formulae for computing its several terms. , - - - . No. 49

General expressions for the perturbations of the motion in longitude and latitude, and of

the radius vector, the approximation being carried as far as quantities of the order of

the excentricities and inclinations. , . . '- No. 50 and 51

Recapitulation of these different results, and considerations on ulterior approximations.

No. 52

CHAP. VII. 0/ the secular inequalities of the Celestial Motions. • 307

These inequalities arise from the terms which, in the expression of the perturbations,

contain the time, without periodic signs. Differential equations of the elements of el-

liptic motion, which makes these terms to disappear. ... No. 53

If the first power of the disturbing force be solely considered, the mean motions of the

planets are uniform, and the major axes of their orbits are constant. - No. 54



VIU CONTENTS.

Development of the differential equations relative to the excentricicities and position of

the perihelia, in any system whatever of orbits having a small excentricity and small

inclination to each other. ...... No. 55

Integration of these equations, and determination by observations, of the arbitraries of their

integrals. ........ Nq. 56

The system of the orbits of the planets and satellites is stable with respect to the excen-

tricities, that is to say, those excentricities remain always very small, and the system

only oscillates about a mean state of ellipticity, from which it deviates very little.

No. 57

Differential expressions of the secular variations of the excentricity and position of the pe-

rihelion. ........ No. 08

Integration of the differential equations relative to the nodes and inclinations of the orbits.

In the motion of a system of bodies very little inclined to each other, their mutual in-

clinations remain always very small. ..... No. 59

Differential equations of the secular variations of the nodes and inclinations of the orbits

;

1st, with respect to a fixed plane; 2dly, with respect to the moveable orbit of one of

the bodies of the system. ...... No. 60

General relations between the elliptic elements of a system of bodies, whatever may be

their excentricities and respective inclinations. . , - . No. 61

Investigation of the invariable plane, or that on which the sum of the masses of the bo-

dies of the system, multiplied respectively by the projections of the areas described by

their radii vectores in a given time, is a maximum. Determination of the motion of

two bodies, inclined to each other at any angle whatever, - . - No. 62

CHAP. VIII. Second method ofapproAmation ofthe celestial motions. - 352^

This method is founded on the variations which the elements of the motion supposed to

be elliptic, experience in virtue of the secular and periodic inequalities. General me-

thod for determining these variations. The finite equations of elliptic motion and their

first differentials, are the same in the variable and invariable ellipse. - No. 63

Expressions of the elements of elliptic motion, in the disturbed orbit, whatever may be its

excentricity and inclination to the planes of the orbits of the disturbing masses. No. 6+

Development of these expressions, in the case of orbits having a small excentricity and

inconsiderable inclination to each other. First, with respect to the mean motions and

the major axes ; it is proved that if the squares and products of the disturbing forces be

neglected, these two elements are only subject to periodic inequalities, depending on

the configuration of the bodies of the system. If the mean motions of the two planets

are very neariy commensurable, there may result in their mean longitude two consi-

derable inequalities, affected with contrary signs, and inversely as the products of the

masses of the bodies into the square roots of the major axes of their orbits. It is



CONTENTS. IX

from such inequalities that the acceleration of the motion of Jupiter, and retardation

of that of Saturn arise. Expressions of these inequalities, and of those which the same

relation between the mean motions may render sensible, in (he terms which depend on

the second power of the disturbing masses. .... No. 65

Examination of the case, in which the most sensible inequalities of mean motion occur

among the terras, which are of the order of the squares of the disturbing masses ; this

remarkable circumstance obtains in the system of the satellites of Jupiter, and we deduce

from it the two following theorems: The mean motion of the Jirst satellite, minus three

times that of the second, plus twice that of the third, is accurately and constantly equal

to zero.

The mean longitude of the Jirst satellite, minus three times that of the second, plus twice

that of the third, is constantly equal to two right angles.

These tlieorems subsist notwithstanding any change which the mean motions of the sa-

tellites may undergo, "either from a cause similar to what alters the mean motion of the

moon, or from the resistance of a very rare medium. These theorems give rise to an

arbitrary inequality, which only differs for eacli of the three satellites by the magni-

tude of its coefficient, and which according to observations is insensible. - No. 66

Differential equations which determine the variations of the excentricities and perihelias.

No. 67

Development of these equations. The values of these elements are composed of two

parts, the one depending on the mutual configuration of the bodies of the system,

which contains the periodic variations ; the other independent of this configuration, con-

taining the secular variations. This second part is furnished by the differential equa-

tions which we have previously considered. .... No. 63

Simple method of obtaining the variations which result from the nearly commensurable rela-

tions between the excentricities and perihelias of the orbits ; they are connected with those

of mean motion which correspond to them. They may produce in the secular expres-

sions of the excentricities and of the longitude of the perihelia, terms extremely sensible,

depending on the squares and products of the disturbing masses. Determination of

these terms. ......-- No. 69

Of the variations of the nodes and of the inclinations of the orbits. Equations which

determine their secular and periodic values. - - - - No. 70

A simple method of obtaining the inequalities which result in these elements, from the

nearly commensurable relation which exists between the mean motions; they are

connected with the analogous inequalities of mean motion. - - No. 71

Investigation of the variation which the longitude of the epoch experiences. It is on this

variation that the secular equation of the moon depends. - - - No 72

Reflexions on the advantages which the preceding method, founded on the variations of

the parameters of the orbits, present in several circumstances : method of inferring

from them the variations of the longitude, of the latitude, and of the radius vector.

No. 73





ERRATA

Page Line

20, 3,./o/- This readThe.

28, 7, for (2"+z'}-, read {z"—:^)'-.

34, 6, /or mm, read mm'.

50, 19, Jbr from the M, read from M.

51, 12, /or their, jeac? its.

52, 16, Jbr z—z, read z—z'.

62, 11, for its, read these.

68, 5>forr.[-^),readr.f^—y

81, last line, for the second |, read |.

96, 8, ./or supply, read solely.

96, 19, /o,iL,,,,rf4l',
dx dx

103, l.^or e, read c.

143' 17, ./or COS. en, rearf cos. tji<,

152, 19, Jbr u^, read v.

163, 3, /or tan. '^c, reafif tan. ^«.

166, 17, Jor value, read ratio.

174, 10, ybr COS. £. cos. £, rcarf cos. S. cos. S'.

174, ll.^re, read c.

174, 20, Jor sin «. sin. «'-, read sin. u. sin. u'.

216, 1,/orJS", readJS"'.

2 2
219, 1, /"or — , read .

r r

224, 20, /or t/— T', read U'—V.
240, 2, ybr the second aQ, read a Q'.

244, 11, ybr these, read the.

256, 4,/or—0, read=0.

266, l,JordR, read dR.

271, i;Jordf, readdt\

284, 3, for a\ read »\



ERRATA.

Page Line

"

a
,

a
285, 11, for a =. —-, read a = —-•

a a

287, 13, for -__i(-_), read -. ef.

287, 16, dele — before —- .

a -

299, 2, /or n+ t, read nt+i.

300, 7, for e. COS. it', read e' cos. •a'.

306, 5, /or m', rearf to.

315, l,fx"dr, readfx."dR.

318, 5, yor motion, rfac/ motions.

323, \^, for m'.^^a, read m'.'/a'

.

328, 20, ybr the second € J — €, readZt—Q^.

380. 2, /or in «, read (a).



A

TREATISE

ON

CELESTIAL MECHANICS,

PART I.—BOOK 11.

OF THE LAW OF UNIVERSAL GRAVITATION, AND OF THE MOTIONS
OF THE CENTRES OF GRAVITY OF THE HEAVENLY BODIES.

CHAPTER I.

Of the law of universal gravitation, deducedf-om the phenomena.

1. After having developed the laws of motion, we proceed to

deduce from these laws, and from those of the celestial motions, which

have been given in detail in the work entitled the Exposition ofthe Sys-

tem of the World, the general law of these motions. Of all the pheno-

mena, that which seems most proper, to discover it, is the elliptic motion

of the planets and of the comets round the sun, let us therefore consider

what this law furnishes us with on the subject. For this purpose, let

PART. I.—BOOK II. * B
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X and 1/ represent the rectangular coordinates of a planet, in the plane

of its orbit, their origin being at the centre of the sun ; moreover, let

P and Q represent the forces with which the planet is actuated in its

relative motion round the sun, parallel to the axes of ^ and of j/, these

forces being supposed to tend towards the origin of the coordinates
;

tinally, let dt represent the element of the time which is supposed to

be constant; by the second chapter of the first bool^,* we shall have

d''v

.

=^ + Q. (.)

If we add the first of these equations multiplied by — i/, to the se-

cond multiplied by x, the following equation will be obtained :

,^ d. (xdy—ydx)
,

„ „= —^

^^if
+ xQ—ijP.

It is evident that xdy—ydx is equal to twice the area which the ra-

dius vector of the planet describes about the sun during the instant dt;

by the first law of Kepler this area is proportional to the time, conse-

quently we have

xdy— ydx = cdt,

c being a constant quantity ; hence it appears, that the differential ot

the firsi member of this equation is equal to cypher, which gives

xQ—yP = 0,

* These laws refer strictly to the motion of the centre of gravity of each planet ; it is

therefore the motion of this point which is determined, and by the position and velocity
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it follows from this, that the forces P and Q are to each other in the

ratio of cT to ^ ; and consequently their resultant must pass through

the origin of the coordinates, that is, through the centre of the sun,

and as the curve which the planet describes is* concave towards the

sun, it is evident that the force which acts on it, must tend towards

this star.

The law of the areas, proportional to the times employed in theic

description, leads us therefore to this first remarkable result, namely,

that the force which solicits the planets and comets, is directed towards

the centre of the sun.

2. Let us in the next place, determine the law according to which

this force acts at different distances from this star. It is evident that

as the planets and the comets alternately approach to and recede from

the sun, during each revolution, the nature of the elliptic motion

ought to conduct us to this law. For this purpose, let the differential

equations (l) and (2) of the preceding number be resumed. Ifwe add

the first, multiplied by dx, to the second, multiplied by dy, we shall

obtain

dx.d''x + dy.d''u
, „ , ^ ,0= -—^—^+Pdx -!- Qdy

;

which gives by integrating

of a planet, we always understand, unless the contrary be specified, the position and ve-

locity of its centre of gravity ; hence it is evident, that the equations of the motion of a

material point, which have been given in the second chapter, are applicable in the present

case.

* The areas being proportional to the times, the curve described is one of single curvature,

{see Book I. page 28, Notes), therefore two coordinates [x, y) are sufficient to determine

the circumstances of the planet's motion. As the curve described by the planet is con-

cave to the sun, it is plain that in the equation —pr= P; -jj- must be taken nega-

tively, because the force tends to diminish the coordinates. See Book I. Chapter II.

page 31.
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0= -^^^^ -V2J\Pdx H- Qdy\*

the arbitrary constant being indicated by the sign of integration.

oodii^^^ufix
Substituting instead of dt, its value —-—-— , which is given by

the lavs^ of the proportionality of the areas to the time, we shall have

For greater simplicity, let us transform the coordinates x and j/, into

a radius vector, and a traversed angle, conformably to the practice of

astronomers. Let r represent a radius drawn from the centre of the sun

to that of the planet, or its radius vector ; and let v be the angle which

it makes with the axis of x, we shall have then,

xz=.r. cos. v; y =.r. sin. r ; r =. y/a* + ij* ;t

from which may be obtained,

dx''-\-dy''-=.r''.dv^-\-d7''' ; xdy—ydx zz r'dv.

If the principal force which acts on the planet be denoted by (p, we

shall have by means of the preceding number, .

P z= (p. COS. t; ; Q = (p. sin. i;
; 9 =:\/P*i-Q*

;

which gives

Pdx+Qdyz=.(pdr
;

dx -4- dii'
* The equation = ^^ h '^/{Pdx + Q(/y), has been already deduced in

No 8 ; by substituting for dx^ and dif- their values in terms of the polar coordinates, we

obtain ——p -J
———[- 1J <p.dr = ; hence if <p be given in terms of r we shall immedi-

diately obtain the velocity at any distance from the centre of force.

f The most obvious way of determining the position of any body, is by means of rectan-

gular coordinates, in which case the differential equations of motion are symmetrical

;

however, as the polar coordinates involve directly the quantities which are required to be

known in astronomical investigations, namely, the distance, longitude and latitude of a

planet, astronomers make use of these coordinates in determining the circumstances of its

motion, &c.
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and by substitution we shall have

* dx = dr. COS. D— (/u. sin. v. r, dy — dr. sin. v + </t;. cos. v. r, •/ (/j:* + d\)' = f/i-.

(COS. 'v+ sin. ';;) — 2rfr. dm. sin. v. cos. u + 2rfr. rfur. sin. u. cos.r + dv^. r^. (sin. "v +
COS. 'i;)= t?r^ + dv°. r^; xdy = r. cos. u.(c?r. sin. v + rdv. cos. u) = rdr. sin. f. cos,u +
rfu.r*. COS. *r, ydx=r. sin. u. (rfr. cos. «—r. rfu. sin. v)=rdr. sin. v. cos. u—rfur'. sin. "v, •/

xrfj/

—

ydx = r". dv ; Pdx = (f. cos. r. (dr. cos. t;— rc/i). sin. u) ; Q,dyz=<(>. sin. u.(rfr. sin. i>+

rdv.coi.v), V Pix+Qrfy= ?irfr.(cos.^u+sin. ^d), +(prft). (r.cos. r. sin. «— r. cos. v. sin.ii)

(T (dx''+ du'')= <t>dr; therefore by substituting in the equation —^

—

—rr:: + 2f(Pdx+ Qdy) = 0,

[xdy—ydxy

we obtain ijl^lj^+Ii ^ g /©t/r = ; and • • l—ch"—T\ 2f^dr). dv" = c^dr" ; as the
r «D^

variables dv and (/)• are separated in the equation dv = . j " can

r.V—c"—2r\fq)dr

be integrated and constructed, the radical ought to be affected with the sign ±, when

I) and r increase the same time, the sign is +, and in the contrary case the sign is — ;

these circumstances depend on the initial impulse of the planet. The determination of v,

or of the orbit described by a body, when the law of the force (p is given, is called the in-

verse problem of central forces, the expression for dv coincides with that given by Newton

in Prop, il, Lib. 1st. Princip. for it is there demonstrated that XY. XC =
O T^ 0\'^ XY'

, from the construction it is evident that -rrrrr = dv, that IN = dr.

Q
A

X.

XC

that Q;=c, and finally that A = r, and as Z« OC -^ , and ABTD = the square ot

XY ^- ^'^

the velocity, VABTD — Z- = v^ —fifdr— f_': -^^ = dv= ^V.^yiVT) — Z=

cdr
-H by r.

r\i/—c'—'lr"f(pdr

If the force <p be as any power w of the distance, then 2/<pdr= 2/r"dr (= the square

of the velocity) =i'4- -- . Z'"^' — . a""*"^ (a being the initial distance), hence
" ^»+ l n+l

cdr
dv =

V_ c'— bh-- -I
— r"+3 + —^ "

"
" \ as i is tiie velocity of projec-

w4-l n+ l
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from which we may obtain,

dv=:
,

^gl^...^. (3)
r.y/— c*— 9.r'J'<pdr

This equation will give by the method of quadratures, the value of

V in terms ofr, when (pis a known function of r, but if, this force being

unknown, the nature of the curve which it makes the planet describe,

be given, then, by differentiating the preceding expression of 9.f(pdr,

we shall have, to determine <p, the equation

tion, if p be the peqiendicular on the tangent at this point, c QC p b, and b"=.m-

a"+i, •• dv= — ' —
, at tlie apsides

»• /_(p2+ /-),„2an+l__:i_. yn+3 ^ _1_ „b4-2 ,S_2_

p=a, dr = 0, and •/ r= ^—r'=- ,
. , lience

_

Ir + .(a""*"'—>"+*) —pl> = 0, by squaring this equation, we get b-r'

2 2
J . o»+i r- . r"'*"3

—

p"b- = 0.

When n is even, this equation may have four possible roots, when it is odd, it can only have

three ; but as this equation is the square of the given equation, some of the roots are in-

troduced by the operation, so that the equation to the apsides can never have more than two

possible roots, consequently no orbit can have more than two apsides, i. e. there are only

two different distances of the apsides, but there is no limit to the number of repetitions of

these, without again falling on the same points, if ?2 =— 3 or a greater negative number,

the equation can have only one possible root, and the orbit but one apsid.

If in the equation —j- + -r-7-" +2/?'£?'")— be substituted in place of r, it becomes

c2_
/_ 1 J\

2f(p. —T! which is a much more convenient form, particularly when the
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dr

The orbits of the planets are ellipses, having the centre of the

sua in one of the foci ; if, in the ellipse, is- represents the angle

which the axis major makes with the axis of x, moreover if a re-

presents the semiaxis major, and e the ratio of the excentricity to the

semiaxis major, we shall have, the origin of the coordinates being in

the focus,

1 +e. cos. {y—ut)
'

which equation becomes that of a parabola, when t? = 1, and a is in-

finite, it appertains to an hyperbola, when e is greater than unity.

law of the force being given, the nature of the orbit is required; for instance the equation in

page

2rf2,

page 5 becomes, when — is substituted for r then differentiated, and the result divided by

W^"^ A f ,> , 9
/'^''^ oX , 1 1-4-e. cos. (u—sr)

j.^ . . _ . d^z e.cos.(u-ro) d-z „ 1 cV
differentiating twice -— = ~—-i,

'.--rir -H- = -75 Tx'
"• ^ =

rf„8
- «.(!—e«) ' • dir ^~ ~ «.(1—e»)' * ^ ~ rt.(l—e^)

c'".(r*.(/'D*4.rfr''') c' c'.dr"
* — ' = — ^

—

^-— r=— Ifiidr, • • by differentiating and dividing by
r*.dv r- r^.dv

by dr we obtain d.l—--A—(p.
r \r*dv^/

t The greatest and least values of r correspond to v—vs^ijr, u— ot'=0, •.• they are re-

spectively 0.(1 + e), «.(!

—

e), consequently they lie in directum; hence it is easy to per-

ceive, that when <p. varies as — , the apsides are 180° distant, and vice versa.
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This equation gives

dr'' 2 11
and consequently

c* 1
« =

a.(\—e^y rX )

therefore, the orbits of the planets and comets being conic sections,

the force (p is reciprocally proportional to the square of the distance of

the centres of these stars from that of the «un.

Moreover we may perceive, that, if the force (p be inversely as the

square of the distance, or expressed by —^ , h being a constant co-

efficient, the preceding equation of conic sections, will satisfy the dif-

ferential equation (4) between r and v, which gives the expression of if,

h c*
when (p is changed into —j- . We have then h = —— ^, which

1 _ I-t-e. cos.(u— ig) dr- _/e.sm.{v—ro) \^ a.(l— e") _

I (2.(1—e= \ ! 2n.(l—eM
„ (v—0-) •.• I

-^—— I —
-J- 1 =. e'-, COS. (v — -of =. e' — t'. sin.cos,

dr- 12 1 1
°(ti — a-), •.• -TT^ ',-\ Ti T X ;; r > and the ditferential of the se-
^ r\dv' r^ a.(l—e- r a^.{l—e*)

2 2 1
cond member divided by dr will be equal to -^ —

, consequently we have
r' a.(l—er)' r-

'

the value of

dr- \ c- c- c- 1c' c- , f dr- \

dr
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forms an equation of condition between the two arbitrary quantities a

and e, of the equation of a conic section ; therefore the three arbitrary

quantities a, c, and ra-, of this equation, are reduced two distinct

quantities, and as tlie differential equation between r and v, is only of

the second order, the finite equation of conic sections is its complete

integral.*

From what precedes, it follows, that, if the curve described is a

conic section, the force is in the inverse ratio of the square of the distance,

and conversely, if the force be inversely as the square of the distance,

the curve described is a conic section.

S. The intensity of thet force ?, with respect to each planet and

c*
comet depends on the coefficient —r- .- : the laws of Kepler fur-^ a{l—<?")

^

nish us with the means of determining it. In fact, if we denote the

time of the revolution of a planet by T; the area, which its radius vector

describes during this time, being the surface of the planetary ellipse, it

PAET I. BOOK II. c

* Conversely, when <p = —, the preceding equation of conic sections will satisfy the

differential equation (i) between r and v, and h becomes = -. , '• the three
c.(l

—

e^j

arbitrary quantities are reduced to two distinct ones, and this is the required number of

arbitrary quantities, for the differential equation between r and v being of the second

order, the number of arbitrary quantities introduced by the double integration is two,

so that the equation of conic sections is the complete integral of this differential equation.

)- The two first laws of Kepler, are sufficient to determine the ratio which exists be-

tween the intensities of the action of the sun on each planet, at different distances of

the planet from the sun ; by means of the third law we are enabled to find the relations

which exist between the respective actions of the sun on different planets. As—— — ,

which expresses the intensity of the force for each planet, at the unity of its distance from

the sun, depends on the tliree quantities a, e, c, which have particular values for each

planet, we cannot determine without the third law, whether it changes, or remains the

same, in passing from one planet to another.
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will be 7r.a*.v 1—e%* tt being the ratio of the semicircumference to the

radius ; but, by what precedes, the area described during the instant dt,

is equal to i.cdt; therefore the law of the proportionality of the areas

to the times of describing them, will give the following proportion :

i.cdt : ira\\/l—e* :: dt : T:

•onsequently

27r.rt^^/l—e*
c=

J.
.

With respect to the planets, the law of Kepler, according to which

the squares of the times of their revolutions, are as the eubes of the

greater axes of their ellipses, gives T' = k'.a^, k being the same for

all the planets ; therefore, we have

c = 2^Vg^(l^^^
k

2fl.(l— e') is the parameter of the orbit, and in different orbits, the

values of c are proportional to the areas, described by the radii vectores

in equal times ; therefore these areas are as the square roots of the pa-

rameters of the orbits.

This proportion obtains also, for the orbits described by the comets,

compared either among themselves, or with the orbits of the planets

;

this is one of the fundamental points of their theory, which corresponds

so exactly to all their observed motions. The greater axes of their

orbits, and the times of their revolutions, being unknown, we compute

the motion of these stars, on the hypothesis that it is performed in a

• The area of the ellipse being equal to that of a circle, whose radius is a mean propor-

tional between the semiaxes a and av'l—e* ; it must be equal to iraK^l—e'.
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parabolic orbit, and expressing their perihelion distance by D,* we

suppose c = —^^^ , which is equivalent to making e equal to

unity, and a infinite, in the preceding expression of c ; consequently, we

have relatively to the comets, T' = k^.a^, so that we can determine

the greater axes of tlieir orbits, when the periods of their revolution

are known.

The expression for c gives.

C* 49r*

fl.(l—£') 7.« >

therefore we have

c 2

* The polar equation of the parabola is r = ~ -; •.• when v—v = 0, i. e.•^ ^ r+cos. (u— cr)

at the perihelium, r =. —' =— =D, :• a(l—e»)=2D. Nowthis is the same thing,

(J g2\
as if a was made infinite, and e= to unity, in the equation, rz=:a.- -, which expresses

the distance of the nearest apsis from the focus of the ellipse, for substituting for the ex-

centricity its value V^a^—A^, r becomes equal to a.{— filZ—l |
— as (i* — af)

~ — -2.' and as v'a*

—

apz=a — +( }• — = when a is infinite
2a

'^

2 o

a.{a—a +-^)
„ £_ f— ''^ — JL and it is evident that e is equal in this case to

2 ' ~ 2a *

unity. •.• If we suppose that the synchronous areas are as the square roots of the parame-

ters, or c = , we will have ; . dt : ^tat ^/2D :: dtiT; :' 1 —/c* a'-

k 2k

\ The constant ratio which c bears to the square root of 2D, is that of 2x

'.h, which is the same for all the planets; -^, or --p^-rT- is the value of the
"^ «' 0.(1—e';
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The coefficient , , being the same for all the planets and comets, it

Ic'

force ip at the unity of the distance of a planet from the sun. The accelerating force of the

planets being the same at equal distances from the sun, it follows that the moving force will

be proportional to the mass; and if all the planets descended at (he same instant, and

without any initial velocities from different points of the same spheric surface, of which the

centre coincided with that of the sun, they would arrive at the surface of the sun, being

tupposed spheric, in the same time ; here, we may perceive, a remarkable analogy between

this force and the terrestrial gravity, which also impresses the same motion, on all bodies

situated at equal distances fiom its centre.

If the apparent diameter of the sun be observed accurately vvith a micrometer, it will be

found to vary in the subduplicate ratio of his angular velocity ; from this phenomenon the

equable description of areas may be inferred ; for as the apparent diameters of the sun are

inversely as the distance of the sun from the earth, the angular velocity of the sun must be

inversely as the square of the distance of the sun from the earth, therefore the product of the

diurnal motion into the square ofthe distance, i. e. the small area must be constant. If the

sun's mean apparent diameter be called m, and his least apparent diameter m—n, his appa-

rent diameter at any other time, will be m—n cos. z, z being the angular distance of the sun

from the point where his diameter is least, lience it may be inferred, that the orbit is ellip-

tic ; for as the distance is inversely as the apparent diameter, r:=i — -, when
m—n cos. (i'

—

sr)

r is greatest, v— az^O, when least v—CT=:jr, •.• viu-—nr cos. (u

—

-z) = j('«—n), x being

the greatest distance, and mr = s (m—n) -\- nr. (cos. v.—«r), let (m— ?;). x = nx', and

then 7nr = ?i(r. cos. (v—to) -|- x), :• m : « : : r. cos. (v— t!!)-\-x' : r ; now r. (cos. [v—w) is

equal to a part of the axis intercepted between a perpendicular let fall from the sun's

place on this axis, and the place the earth is supposed to occupy, and x' is a constant quan-

tity, •.• producing the axis in an opposite direction from the sun, till the distance from the

earth is equal to x', and erecting a perpendicular to the produced axis at the extremity of

its production, x -\- r cos. [v—cr) is e(iual to the distance of the sun from this perpendicu-

lar, and as it is to r the distance of the sun from the earth, in a-given ratio of major ineijua-

lity, namely m : n, it follows that the curve is an ellipse of which the directrix is a perpendicu-

lar, erected at the extremity ofx'. This conclusion might also have been inferred fi-om th«

polar equation to the ellipse r =
~^ = a(l—e'). (1-f ecos. (u—w))-'.

'^

H-ecos. (y—ot)

Kepler directed his observations to the planet of Mars, of which the motion appeared te

be more irregular, than the motion of the other planets, and by determinmg several di^

tances of the planet from the sun, and tracing the orbit which passes through them all, it

will appear that this orbit must be an ellipse, of which the sun occupies one of tlie foci, it
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follows that for each of these bodies, the force ip, is inversely as the

square of the distance from the centre of the sun, and that it only va-

ries from one planet to another, in consequence of the change of dis-

tance ; from which it follows that it is the same for all these bodies sup-

posed at equal distances from the sun.

We are thus conducted, by the beautiful laws of Kepler, to consider

the centre of the sun as the focus of an attractive force, which, decreasing

in the ratio of the square of the distance, extends indefinitely in every di-

rection. The law of the proportionality of the areas to the times of their

description, indicates that the principal force which solicits the planets and

comets, is constantly directed towards the centre of the sun ; the ellipti-

city of the planetary orbits, and the motions of the comets which are per-

formed in orbits, which are very nearly parabolic, prove, that for each

planet and for each comet, this force is in the inverse ratio of the square

of the distance of these stars from the sun ; finally, from the law

of the squares of the periodic times proportional, to the cubes of the

greater axes of their orbits, i. e. from the proportionality of the areas

traced in equal times by the radii vectores in ditlerent orbits, to the

square roots of the parameters of these orbits, which law involves the

preceding, and is applicable to comets ; it follows, that this force is the

same for all the planets and comets, placed at equal distances from the

sun, so that in this case, these bodies would fall towards the sun, with

equal velocities.

4. If from the planets we pass to the consideration of the satellites.!

we find that the laws of Kepler being very nearly observed in their mo-

tions about their respective primary planets, they must gravitate towards

the centres of these planets, in the inverse ratio of the squares of their

distances from these centres ; they must in like manner gravitate very

nearly as their primaries towards the sun, in order that their relative mo-

tions about their respective primary planets, may be very nearly the same

can also be sliewn that the angular velocities are inversely as the squares of the distances

from the sun, from which it fblluvvs that the areas are proportional to the times.
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as if these planets were at rest. Therefore the satellites are solicited to-

wards their primaries and towards the sun, by forces which are inversely

as the squares of the distances. The elliplicity of the orbits of the three*

first satellites ofJupiter is inconsiderable ; but the ellipticity ofthe fourth

satellite is very perceptible. From the great distance of Saturn we have

not been able hitherto to recognise the ellipticity of the orbits of his

satellites, with the exception of the sixth, of which the orbit appears to be

sensibly elliptic. But the law of the gravitation of the satellites of

Jupiter, Saturn, and Uranus is principally conspicuous in the rela-

tion which exists between their mean motions, and their mean dis-

tances from the ceiitre of these planets. This relation consists in this,

that for each system of satellites, the squares of the times of their revo-

lutions are as the cubes of their mean distances from the centre of the "

planet. Therefore let us suppose that a satellite describes a circular

orbit, of which the radius a is equal to its mean distance from the centre

of the primary, T expressing the number of seconds contained in the

duration of a sidereal revolution, and tt expressing as before the ratio

of the semiperiphery to the radius, —'—— will be the small arc described

by the satellite in a second of time. If, the attractive force of the pk'

* The frequent recurrence of the eclipses of the satellites, enables us to determine the

synodic revolution with great accuracy : and by means of this revolution, and of the motion

of Jupiter, we can obtain the periodic time. The hypothesis of the orbits being very

nearly circular, in the case of the first and second satellites, is confirmed by the pheno-

mena, for the greatest elongations are always very nearly the same ; besides the supposition

of the uniformity of the motions, satisfies very nearly the computations of the eclipses.

The distances of the satellites from the centre of Jupiter, may be found, by measuring

with a micrometer, their distances from this centre, at the time of their greatest elongation,

and also the diameter of Jupiter at this time, by means of which, these distances may be

obtained in terms of the diameter; however they cannot be determined with the same preci-

sion as the periods of the satellites. As it is necessary in a comparison of a great nu nber

ofobsenations, to modify the laws of circular motion, in the case of the third and fourth

•atellites, but especially in the case of the fourth, we conclude that the orbits of these sa-

tellites are elliptical.
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net ceasing, the satellite was no longer retained in its orbit, it would

recede from the centre of the planet along the tangent, by a quantity

equal to the versed sine of the arc , that is by the quantity*
;

therefore this attractive force makes it to descend by this quantity, to-

wards the primary. Relatively to another satellite, of which the mean

distance from the centre of the primary is represented by «', 7" being

equal to the duration of a sidereal revolution, reduced into seconds,

the descent in a second will be equal to , ; but if we name (p, (p',

the attractive forces of the planet at the distances a and a', it is mani-

fest, that they are proportional to the quantities by which they make

the two satellites to descend towards their primary in a second ; therefore

we have 0:0 •• —=— : ——— .

The law of the squares of the times of the revolutions, proportional

to the cubes of the mean distances of the satellites from the centre

of their primary, gives v

T* : r' :: a' : d* :

From these two proportions, it is easy to infer

1 1

<?:?>::
a* d'

consequently, the forces 9 and 9' are inversely as the squares of the dis-

tances a and d.

• T: 1" :: 2ax : arc described in a second, on the hypothesis that the motion is uni.

form, the versed sine of this arc = ^~.. As the orbits of all the satellites are notd-
2a 1^

liptic, we cannot determine from the nature of the orbits, whether the force for each satel-

lite in particular, varies inversely as the square of the distance or not.
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5. The earth having but one satellite, the ellipticity of the lunar

orbit is the only phenomenon, which can indicate to us the law of its

attractive force ; but the elliptic motion of the moon, being very sen-

sibly deranged by the* perturbating forces, some doubts may exist, whe-

ther the law of the diminution of the attractive force of the earth, is in

the inverse ratio of the square of the distance from its centre. Indeed,

the analogy which exists between tliis force, and the attractive forces of

the sun, of Jupiter, of Saturn, and of Uranus, leads us to think that it

follows the same lawt of diminution ; but the experiments which have

been instituted on terrestrial gravity, offer a direct means of verifying

this law.

Fort this purpose, we proceed to determine the lunar parallax, by

• The orbit of the moon differs sensibly from the elliptic form, in consequence of the

action of the disturbing forces, and the variation of its apparent diameter shews, that it de-

viates more from the aVcuZar form, than the orbit of the sun. The first law of Kepler may

be proved to be true, in the case of the moon, In the same manner as for the sun, namely,

by a comparison of her apparent motion, with her apparent diameter. Indeed, if great

accuracy is required, the observations ought to be made in the syzygies and in the quadra-

tures ; for in the other points of the orbit, the disturbing force of the sun deranges the

proportionality of the areas to the times employed in their description. See Princip.

Math. Lil). 1. Prop. 66. and Lib. 3, Prop. Sand 29.

f Newton demonstrates that th? force which retains the moon in her orbit, is inversely as

the square of the distance, in the following manner : if the distance between the apsides was

180°, the force would be inversely as the square of the distance, as has been already pointed

out. See Note to page 7-

Now the apsides are observed to advance three degrees and three minutes every month,

and the law of the force which would produce such an advance of the apsides, varies in-

Tersely as some power of the distance, intermediate between the square and the cube, but

which is nearly sixty times nearer to the square ; •.• on the hypothesis, that the progres-

sion of the apsides, is produced by a deviation from tlie law of elliptical motion, the force

must vary very nearly va the inverse ratio of the square of the distance; but if, as Newton

demonstrates, the motion of the apsides arises from the disturbing force of the sun, it follows,

aforliori, that the force must be inversely as the square of the distance.

X The value of the constant part of the parallax is deduced on the hypothesis, that the

force soliciting the moon, is the terrestrial gravity, diminished in the ratio of the square of
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means of experiments on the length of the penduUim which vibrates se-

conds, and to compare it with observations made in the heavens. On
the parallel of which the square* of the sine of the latitude is J, the

space through which bodies fall by the action of gravity in a second, is,

from observations on the length of the pendulum, equal to 3'°"[",65548,
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the distance ; and if this parallax agrees with the observed parallax corrected for the lunar

inequalities, we are justified in inferring, that the diminished terrestrial gravity and the

force solliciting the moon are identically the same.

• Let unity represent the radius of a sphere equicapacious w ith a spheroid, its density

being supposed to be the same with the mean density of this spheroid; if the greater semi-

axis of the spheroid be = 1+g, and the lesser = 1

—

s, we shall have for the oblong

spheroid the following equation, -—.1^=—— (1 + ^).(1

—

s)*, v P = 1+g — 2*

neglecting the squares and products of s and §, which is permitted as the ellipticity

of the spheroid is supposed to be inconsiderable, consequently we have {:^2«, ••• in an oblong

spheroid, such as would be generated by a revolution about the greater axis, the ele-

vation of the spheroid above the equicapacious sphere is double of the depression

below this sphere ; and if r be the radius of the equicapacious sphere, a the greater,

and b the lesser axis of the spheroid, we have a—r= 2r

—

2b, :• r = —-— ; if

the spheroid be oblate, i. e. such as would be generated by a revolution about the lesser axis,

4* i 43-—.1^ =— . (1—«)(l+ e)^, hence j=2j, i.e. the depression inthisca«eis equal to twice

the elevation, •-• 2a—2r=r—b, andr= ———

.

' '

3
If a sphere be inscribed in a spheroid, the elevation of any point of the spheroid above

the inscribed sphere, is to the greatest elevation of a spheroid above the inscribed sphere,

i. e. to the difference between the radius of the equator and seniiaxis, as the square of the

cosine of the angular distance A from the axis major, to the square of radius, •.• the

elevation =z {a— b) cos. *a, and as the equicapacious sphere is elevated above the

lesser axis, and •/ above the inscribed sphere by a quantity equal to r—b, the ele-

vation of the spheroid above the ctjuicapacious sphere =(a-^b) cos. "t^—r-{-b:=(_a—b).

2a4-b ., / —2a+ 2b\ ,,,,•• <^ ,,

cos. 'A — +A, ^= I, consequently when the elevation is 0, we have

2 1
cos. "-A = — , V sin. 'a =— , and a = 35°16'. This situation is also remarkable

3 3
for being the distance from the quadrature at which the addititious force of the sun, ig

equal to that part of its ablatitious force, which acts in direction of the radius of the moon's

orbit.
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as we shall see in the third book : we select this parallel, because the

attraction of the earth on the corresponding points of its surface, is

very nearly, as at the distance of the moon, equal to the mass of the

earth, divided by the square of its distance from its centre of gravity.

Under this parallel, the gravity is less than the attraction of the earth,

by f* of the centrifugal force which arises from the motion of rotation

at the equator ; this force is the - th part of the force of gravity
;

consequently we must augment the preceding space by its 432d part,

in order to obtain the entire space which is due to the action of the

earth, which on this parallel, is equal to its mass divided by the square

of the terrestrial radius ;_ therefore this space will be equal to

3'"',66394. At the distance of the moon, it must be diminished in the

ratio of the square of the radius of the spheroid of the earth, to the

square of the distance of this star, to effect this, it is sufficient

to multiply it by the square of the sine of the lunar parallax ; therefore

X representing this sine under the parallel above mentioned, we shall

have 2'*.3"'%66394, for the height through which the moon ought to

fall in a second, by the attraction of the earth. But we shall see in the

theory of the moon, that the action of the sun diminishes its gravity

towards the earth by a quantity, of which the constant part ist

• The centrifligal force at the equator is to the efficient part of the centriftigal force at

any parallel, as the square of radius to the square of the cosine of latitude, i. e. in this case,

2 1
as 1 to — , -.' as the centrifugal force at the equator is the-——th part of the gravity, the force

o 288

2 1 1
at the parallel in question, will be =-^ '"ooq"

"^
3 288 432

\ m being the mass of the sun, and d its distance from the moon, a the radius of th^

moon's orbit, the addititious force = —r—> and the part of the ablatitious force, which acts

in the direction of the radius vector ==-—-. 3 sin. ^-sr, -a being the angular distance from

quadrature, see Kev.ton, Princip. Prop. 66 ;
••• -^C—3 sin. 'sr) is the part of tlie sun's
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equal to the th part of this gravity ; moreover, the moon, in its re-

lative motion about the earth, is sollicited by a force equal to the sum

of the masses* of the earth and moon, divided by the square of their mu-

tual distance ; it is therefore necessary to dimipish the preceding space

by its 358th part, and to increase it in the ratio of the sum the masses

of the earth and moon, to the mass of the earth ; but we shall see in

the fourth book, that the mass of the moon deduced from the pheno-

raena of the tides, is a—-— th part of the mass of the earth ; therefore
5o,7

the space through which the moon descends towards the earth, in the

interval of a second, is equal to -^. —^ . r^3'"^66394.
358 58,7

Now a representing the mean radius of the lunar orbit, and T", the

duration of a sidereal revolution of the moon, expressed in seconds

;

d2

disturbing force acting in the direction of the radius, which is efficient at any point;

(hence it appears that it vanishes when sin. *w — .— , see Note, page 17); in order
3

ma
to obtain its mean quantity, multiply this expression by dtn and it becomes • :

(rfrar—Srfar. sin. »ir) = -—- {dia— --rfar-f- — rfzircos. %b), and its integral = ——{vi~-

3,3. ..„ ., ma v .

2"^
•'"Z"'

^'^
' ^^ entire circumference, z. c. when »=«-, Tr""5~' •' the

mean disturbing force := , but — : ii' the force retaining the moon in its orbit :

:

J**"*T^ '
' 2re the periods of the sun and moon) ••• -rj- r: —7^^^ Ttq' "t"^

'

= .^Q -, and

—

~qjr^^
~

'oTo''
•' " consequence of the diminution of her gravity by

the action of the disturbing force, the moon is sustained at a greater distance from the

earth, than it would be if the action of the sun was removed, and as the mean area de-

scribed in a given time in the primitive and disturbed orbits is the same, the radius vector

is increased by a 358th part, and the angular velocity is diminished by a l79th part.

* The moon being considered as a point, if it revolved about the centre of the earth, in
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9/7 *

^,^ will be, as has been already observed, the versed sine of the arc

which it describes during a second, and it expresses the quantity, by

which the moon has descended towards the earth, in this interval. This

value of a is equal to the radius of the earth, under the above mentioned

parallel, divided by the. sine of x ; this radius is equal to 6369514"'';

therefore we have

6369514""'^'
a- .

X

but in order to obtain a value of a, independent of the inequalities of

the moon, it is necessary to assume for its mean parallax of which

the sine is x, the part of this parallax, which is independent of these

inequalities, and which has been therefore termed the constant part

of the parallax. Thus, tt representing the ratio of 355 to 113, and

T' being =: 2732166" ; the mean space through which the moon de-

scends towards the earth, will be

2.(355)16369514""

(113/..r.(2732lG6)'"

the same time in which it revolves about the common centre of gravity of the earth and

moon, the central force which should exist in the centre of the earth capable of effecting

this, should be ::: to the sum of the masses of the earth and moon ; for a being the dis-

tance of the earth from the moon, and m,rril their respective masses, the distance y at which

the moon would revolve round the earth by itself, considered as quiescent, is

I

, see Prin. Math. Prop. 59, Book I. and T ' =: ^—=:—;—, , hence if a

be the distance, the central force =: m-\-m', ••• as the versed sine of the arc described in a

second is the space through which the moon descends in consequence of the combined

actions of the earth and moon, this must be diminished in the ratio of ?n : m-J-i«' to obtain

the space described in consequence of the sole action of 7«. The two corrections, wliich

are here applied to the space through which a heavy body would descend at the latitude

55' 16', diminished in the ratio of the square of the distance, are in the Systeme du

Monde, applied to the versed sine of the arc described in a second, hence it appears that

they must be affected with contrary signs.
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By equalling the two expressions, which we have found for this space,

we shall have

,3_ '2.(355)-.35S.5S,7.6369514<
^^ ~ (USy.307.59,7.3,6ii39ii'-2732l66y '

from which we obtain 10536 ",2 for the constant part* of the lunar pa-

rallax, under the parallel in question. This value differs very little

from the constant quantity 10540,7 which Triesnecker collected from

a great number of observations of eclipses, and oft occultations of the

stars by the moon ; it is therefore certain that the principal force which

retains the moon in its orbit, is the terrestrial gravity diminished in the

ratio of the square of the distance ; thus, the law of the diminution of

gravity, which in the planets attended by several satellites, is proved by

a comparison of the times of their revolutions, and of their distances, is

• In order to find the constant part of the parallax, we apply to the observed parallax,

all the corrections which theory males known, and we may perceive from this how the

theory of gravity, by indicating the forces which act on the moon, furnishes us with the

means of determining the mean motion, and the nature of the inequalities which act on it.

f If in a partial eclipse of the moon, the time be noted in which the two horns of the part

which is not eclipsed, are observed to be in the same vertical line, it would be easy to shew

that the height of the centre of the moon at this instant, will be the same as the height ofthe

centre ofthe shadow ;
•.• if at this instant the height of each of the horns be observed, the

mean height,which will be the heightofthecentreof the shadow, will be the apparent height

affected by the parallax ; but as the centre of the shadow is diametrically opposite to the

centre of the sun, the true height will bo equal to the depression of the sun, which is known

from the time of observation ;
•.• the ditl'erence of these heights will be the parallax of the

moon for the observed altitude, by means of which we can easily determine the greatest

parallax; and if in a total and central eclipse, the height of the moon be observed at the

instant that it is entirely immersed, and also when it Jint begins to emerge, the mean

height will be the height of the centre of the shadow as it is affected by parallax.

In an occultation of a fixed star, the star's parallax vanishes, and the difference of ap-

parent altitudes is = to the difference of the true altitudes -|- parallax in altitude of the

moon ; hence by the known formulae we can obtain the true parallax. A constant ratio

exists between the horizontal parallax, and the moon's apparent diameter at the same

terrestrial latitude.
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demonstrated for the moon, by comparing its motion with that of pro-

jectiles near the surface of the earth. It follows from this, that the ori-

gin of the distances of the sun, and of the planets, ought^in the com-

putation of their attractive forces, on bodies placed at their surface, or

beyond it, to be fixed in the centre of gravity of these bodies ; since this

has been demonstrated to be the case for the earth, of which the attrac-

tive force is, as has been remarked, of the same nature with that of

these stars.

6. The sun and the planets which are accompanied with satellites,

are consequently endowed with an attractive force, which decreasing in-

definitely, in the inverse ratio of the squares of the distances, comprehends

all bodies in the sphere of its activity. Analogy would induce us to think,

that a like force inheres generally in all the planets and in the comets

;

but we may be assured of it directly in the following manner. It is a con-

stant law of nature, that one body cannot act on another, without expe-

riencing an equal and contrary reaction ; therefore the planets and comets

being attracted towards the sun, they ought to attract this star according

to the same law. For the same reason, the satellites attract their respec-

tive primary planets ; consequently^'ais attractive force is common to the

planets, to the comets, and to the satellites, and therefore we may con-

sider the gravitation of the heavenly bodies, towards* each other, as a

general property which belongs to all the bodies of the universe.

We have seen, that it varies inversely as the square of the distance ;

indeed, this ratio is given by the laws of elliptic motion, which do not

rigorously obtain in the celestial motions ; but we should consider, that

the simplest laws ought always to be preferred, unless observations com-

pel us to abandon them ; it is natural for us to suppose, in the first in-

stance, that the law of gravitation is inversely as some power of the dis.

« Besides, it follows from tlie sphericity of these bodies that their molecules are united

about their centres of gravity, by a force which at equal distances solicits them equally

towards these points ; the existence of this force is also indicated by the perturbations

which the planetary motions experience.
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tance, and by computation it has been found, that the slightest differ-

ence between this* power and the square, would be very perceptible in

the position of the perihelia of the orbits of the planets, in which obser-

tion has indicated motions hardly perceptible, and of which we shall

hereafter develope the cause. In general, we shall see throughout this

treatise, that the law of gravitation inversely as the square of the dis-

tance, represents with the greatest precision all the observed inequalities

of the motions of the heavenly bodies; this agreement, combined with

the simplicity of this law, justifies us in assuming that it is rigorously the

law of nature.

The gravitation is proportional to the masses ; for it follows from No.

3, that the planets and comets being supposed at equal distances from

the sun, and tlien remitted to their gravity towards this star, would

fall through equal spaces, in the same time ; consequently their gravity

will be proportional to their mass. The motions almost circular of the

satellites about their primaries, demonstr;ife that they gravitate as their

primaries towards the sun, in the ratio oi their masses ; the slightest

difference in this respect, would be perceptible in the motions of that

satellites, and observations have not indicated any inequality depending

* See No. 58 of this book ; this also follows from Prop. 45, Book 1st, Prin. For ifthe force

which is added to the force varying in the inverse ratio ofthe square of the distance be called

X, the angular distance between the apsides = 1 SO.
.

= 180.(1

—

X), the square of
-/l+^X ^

X being neglected, and conversely if the distance between the apsides be given, wt can

determine X. The force X is supposed to vary as the distance.

f See Newton Princip. Prop. 6, Book 3, where it is shewn, that ifthe satellite gravitated

more towards the sun than the primary at equal distances from the sun, in the ratio ofd:e,

the distance of the centre of the sun from the centre of the orbit of the satellite, would be

greater than the distance of the centre of the sun from the centre of the primary, in the

ratio ofV «/ : v/ e ,
••• if the difference between d and e, was the thousandth part of the

entire gi-avity, the distance of the centre of the orbit from the centre of the sun, would be

greater than the distance of the centre of Jupiter from that of the sun, by a th part^ ' " 2000 ^

of the entire distance.
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on this cause. Therefore it appears that if the comets, the planets and

satellites, were placed at equal distances from the sun, they would gravi-

tate towards this star, in the ratio of their masses ; from which it follows,

in consequence of the equality between action and reaction, that these

stars must attract the sun, in the same ratio, and consequently their

action on this star, is proportional to their* masses divided by the square

of their distance from its centre.

The same law obtains on the earth ; for from very exact experiments

instituted by means of the pendulum, it has been ascertained, that if the

resistance of the air was removed, all bodies would descend towards its

cefitre viith equal velocities ; therefore bodies near the earth gravitate to-

wards its centre, in the ratio of their masses, in the same manner as the

planets gravitate towards the sun, and the satellites towards their pri-

maries. This conformity of nature with itself on the earth, and in the

immensity of the heavens, evinces in the most striking manner, that the

* The mutual attraction does not affect the elliptic motion of any two bodies when

their mutual action is considered, for the relative motion is not affected when a common

velocity is impressed on the bodies, ••• if the motion which the sun has, and the action

which it experiences on the part of the planet, be impressed in a contrary direction, on both

the sun and the planet ; the sun may be regarded as immovable, and the planet will be sol-

licited by a force ::' to the sum of the masses of the sun and planet, divided by the square

of their mutual distance ; •/ the motion will be elliptic ; but the periodic time will be less

than if the planet did not act on the sun, for the ratio of the cube of the greater axis of

the orbit to the square of the periodic time, is proportional to the sum of the masses of the

sun and planet; however as this ratio of the square of the time to the cube of the distance,

is very nearly the same for all the planets, it follows that the masses of the planets must be

comparatively much smaller than the mass of the sun, which is confirmed by an estimation

of their volumes. See No. 25, and Prop. 8, Lib. 3. Frincip. Math. Tlie comparative

smallness of the masses is also confirmed by the laws which Kepler was enabled to an-

nounce, for tliese laws were deduced from observation, notwithstanding tlie various causes

which disturb the elliptic motion ; hence appears the reason why, in the commencement of

this chapter, the sun was supposed to be immoveable, and to exert its action on the planets

as on so many points, which do not react on the sun, neither was the mutual action of the

planets on each other taken into account ; the same simplifications were employed, when

the motion of a satellite about its primary was considered.
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gravity observed here on earth, is only a particular case of a general

law, which obtains throughout the universe.

The attractive property of the heavenly bodies does not appertain to

them solely in a mass, but is peculiar to each of their molecules. If the

sun only acted on the centre of the earth, without attracting in particular

each of its parts, there would be produced in the sea, oscillations

much greater, and very different from those which we observe ; there-

fore the gravity of the earth to the sun, is the result of the gravitations

of all its molecules, which consequently attract the sun, in the ratio of

their respective masses. Besides, each body on the earth gravitates

towards its centre, proportionally to its mass ; it reacts therefore on

the earth, and attracts it in the same ratio. If this was not the case,

and if any part of the earth, however small, did not attract the other

part, as it is attracted by this other part, the centre of gravity of the

earth would have a motion in space, in consequence of the force of gra-

vity, which is impossible.

The celestial phenomena, compared with the laws of motion, conduct us

therefore to this great principle of nature, namely, that all the molecules

of matter mutually attract each other in the proportion of their masses,

divided by the square of their distances. We may perceive already, in

this universal gravitation, the cause of the perturbations, which the

heavenly bodies experience ; for the planets and comets being subject

to their reciprocal action, ought to deviate a little from the laws of

elliptic motion, which they would accurately follow, if they only obeyed

the action of the sun. The satellites in like manner deranged in their

motions about their primaries, by their mutual attraction, and by that of

the sun, deviate from these laws. We may perceive also, that the mole-

cules of each of the heavenly bodies, united by their attraction, should

constitute a mass nearly spherical, and that the result of their action at

the surface of the body, should produce all the phenomena of gravitation.

We see moreover, that the motion of rotation of the heavenly bodies,

should slightly alter the sphericity of their figure, and flatten them at

the poles, and that then, the resultant of their mutual action, not pass-

PART I BOOK II. E
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ing accurately through their centres of gravity, ought to produce in their

axes of rotation, motions similar to those, which are indicated by ob-

servation. Finally, we may perceive why the molecules of the ocean,

unequally acted on by the sun and moon, ought to have an oscillatory

motion, similar to the ebbing and flowing of the sea. But the deve-

lopement of these different effects of universal gravitation, requires a

profound analysis. In order to embrace them in all their generality,

we proceed to give the differential equations of the motion of a system

of bodies, subjected to their mutual attraction, and to investigate the

exact integrals which may be derived from them. We will then take

advantage of the facilities which the relations of the masses and distances

of the heavenly bodies furnish us with, in order to obtain integrals more

and more accurate, and thus to determine the celestial phenomena, with

all the precision which the observations admit of.
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CHAPTER II.

Of the differential equations of the motion of a si/stem of bodies, sub-

jected to their mutual attraction.

7. LET m, m', m", &c. represent the masses of the different bodies of

the system, considered as so many points ; let ^, i/, z, be the rectangu-

lar coordinates of the body m ; a/, y', z', those of the body m', and

corresponding expressions for the coordinates of the other bodies. The

distance of m' from m being equal to

v/ {a^-xy + (T/'—yy + (z'—z}\

its action on m, will be, by the law of universal gravitation, equal to

n^

i^—^y+ii/'—^y-^iz'—zy

If we resolve this action, parallel to the axes of a\ of y, and of z, the

force parallel to the axis of ,r, and directed from the origin, will be

m(y—x) *

W-^y+{jj'—yy-^(,z'^zy)Y^

E 2

* The force parallel to the axis of x: -7
,

.,,"*> ; •: ^—x) :

mm'
JTD -xi 1 /

/ ;;
,

, -—r^ , .. / be differenced withV(x—x)-+(y'—y)^+(2_2)- ; and if ^y_a,,i+(^'_^)i + (2'_j)i

respect to x, and then divided by m.dx, it will become

_ _j[__. nim'.(x'

—

x).d.T:
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or

^ dx )

We shall have also,

1 /* J mm" A

m '<
'v/(y'—^)'^ + {i/'—j/y+(z"—z)^ >

V dx y

for the action of m" on m, resolved parallel to the axis of x, and corres-

ponding expressions for the other bodies of the system. Consequently if

T^m' mm''

+
"^'"^''

+ &c •

A. representing the sum of the products of the masses m, rti, »»", &c,

taken two by two, and divided by their respective distances ; —

.

j—7-^f * will express the sum of the actions of the bodies rn, m", kc.

on m, resolved parallel to the axis of x, and directed from the origin of

« 1 f
'^^ \ i^j """'

'm''\dx)~ nT X V(j'—f)'+(y—y)^+(;'—z) '
"^

dx

mm" .

>
vi'.{x'—x)

__.. ., .

-^"\
dx

^/(x"-^)^f(y-^)^ +(z"_z) » ^ • 3 (C:r'-x)»+(y =_y)'-Ks'-«)*)

'

" {x"-x)
4- jT-r, ,.,,,,, .,,,., r^TT-^ 4- &c. = the sum of the actions of the bodies

m', m", »»'", &c. on m, resolved parallel to the axis of ir.
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the coordinates. Therefore dt representing the element of the time,

supposed constant ; we shall have by the principles of dynamics, ex-

plained in the preceding book,

O = m .— \ i

.

dt^ I dx S

In like manner we shall have

d^u ^ dx-)

di* Idt/S

dt^ I dz ]•
= m.-

If we consider, in the same manner, the action of the bodies m, m", &c.

on m' ; that of the bodies m, m', on m", and so of the rest, we shall

have the following equations, namely,

dt* \dci/y
'

dt* Xdy'S '

df \dz"S

The determination of the motions of m, m', m", &c., depends on the

integration of these differential equations ; but as yet they have not

been completely integrated, except in the case in which the system is

composed of only two bodies. In other cases, we have not been able to
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obtain but a small number of perfect integrals, which we proceed to

develope.

8. For this purpose, let us first consider the differential equations in

•r, x\ af', &c. ; if we add them together, observing at the same time,

that by the nature of the function x, we have

we shall obtain, = l.m.
^

• We shall have also, = S,m. -— ;

etc t»*

d'z
0= l.m. . Let A', Y, Z represent the three coordinates of the cen-

tre of gravity of the system j we shall have by the nature of this centre

l..m l.m 2,m

therefore we shall have

d'X ^ d^Y ^ d*Z
^ = -dT' "" = -dT''

"^
=
-dT'

and by integrating, we shall obtain

X = a+bt ; Y = a'+ b't; Z = a"+b"t ;t

• Suppose that there are only three bodies, then l.m.—— =^-j-y + \ 'TTj'r \~7T' /

_ m'm.{(x'—x)—(x'—x)) ^ mm"({x"—a:)—{x"—x) ) _ ,

-i- ,

—"' '" U*^ ^-^ )—v'^ ^);
3^ _Q ti)g sgjpg proof may be extended to any num»

ber of bodies.
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a, a', a", b, b', b", being constant arbitrary quantities. We may per-

ceive by this, that the motion of the centre of gravity of the system is

rectilinear and uniform, and that consequently, it is not deranged by

the reciprocal action of the bodies composing the system ; which agrees

with what has been demonstrated in the fifth chapter of the first book.

Resuming the differential equations of the motion of these bodies,

and multiplying the differential equations in y, y', y'', Sec, respectively by

a:, of, x'\ &c., and then adding them to the differential equations in

*, **, *", &c. multiplied respectively by —y, —y', —y" , &c. ; we

shall obtain

\

r x"d'y"—y"d'x" 1
, ,

but from the nature of the function x, it is evident that

c rfx ) ^ dx } „

X.m—m-''-'
grating," = a, and X=at+b, the constant quantity a depends on the velocity of the

centre of gravity at the commencement of the motion, and b depends on the position of

this centre, at the same instant.
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consequently,* by integrating the preceding equation, we shall obtain

In like manner we shall have,

xdz—zdx^ f xdz—zdx >
= ^•"^•1

—

dF-y^

f ydz—zdy \ .

1 'dt rc" ='E.m.

c, c', (f, &c. being constant arbitrary quantities. These three integrals

involve the principle of the conservation of areas, which has been ex-

plained in the fifth chapter of the first book.

Finally, if we multiply the differential equations in x, x', x', &c., re-

spectively by dx, dx, dx", &c. ; and those in y, y', y', &c. respectively by

dy, dy', dy", &c. ; those in ;:, z', z", &c., respectively by dz, dz', dz",

&c. ; and then add them together, we shall obtain

_ _, (dx,d'x4-di/.d''i/4-dz.d^z) , ,

O — ^.m.— ' % ,
— dx, T

dr

* Suppose that there are only three bodies, then
i/( j— ) + v(-p- l'*'-^Y"/^)""

n".( '^'^'y"—if'd'^x' \ _ mm'.{y{,x'—x)—y'
(
x'—x)

)

(
[x-xy+[y'—y)'-\-[^-zy

)
^

, mm"(y{i^'—x)—y"{x"—x)
) ,

m"m(
)
y'(x»—x')—y''{x'—x') ) ,

'^ {(x'-xy-\-(y"—yY+[^'-z)^)i +
(
(x/z-y) - My"-y')

'

+ (^"-^r )
*

mm'(x{y'—y)—x'(y'—
;/)

)

^
mm\x[y"—y)—x"{lj'—^j)) ,

( {x-xY+{i,—y)'^{z-zY-y —{(3!--xY^{y"-y) -^{J<-z^f
_ »»^/m'(y(y"-y)-^'(y/-y')) ,_

t Bymultiplying |^^ |^ J
+ &c. by ^., cf^. rfx",&c.;{A | ,

^ |, J
,+
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and by integrating,

h being a new arbitrary quantity. This integral contains the principle

of the conservation of living forces, which has been treated of in the

fifth chapter of the first book.

The* seven preceding integrals are the only exact integrals, which

we have hitherto been aljle to obtain j when the system is composed of

only two bodies, the determination of their motions is reduced to differ-

ential equations of the first order, which can be integrated, as we will

»ee in the sequel ; but when the system is composed of three or a

greater number of bodies, we are then obliged to recur to the methods

of approximation.

9. As we can only observe the relative motions of bodies ; we refer

the motions of the planets and of the comets, to the centre of the sunj

and the motions of the satellites, to the centre of their primaries.

Therefore in order to compare the theory with observations, it is neces-

sary to determine the relative motions of a system of bodies, about a

body which is considered as the centre of their motions.

Let M represent this last body, m, m, m", &c., being the other bo-

dies, the relative motion of which about M, is required ; Let (, U and y

be the rectangular coordinates of M, ^+x, n+ t/, y+z, those of WJ
;

l-i-x', n-t-j/', y-f r", those of m', &c. ; it is manifest that x, y, z, will be

the coordinates of vi, with respect to M ; that /, y', z', will be those

PART I. BOOK II. F

4c, by dy, dy', dxj' , &c. and then adding these quantities together, their aggregate is equal

to the differential of a considered as a function of x, x', &c. i/, y, &c. z, «', &c., and •.• it

is equal to dx.

* Three of these ii\tegrals are furnished by the principle of the consei-vation of areas,

three by the principle of the conservation of the n.otion of the centre of gravity, and one

bj the conservation of living forces.
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of m' referred to the same body, and so of the rest. Let r, r', &c., re-

present the distances of m, m', &c. from the body M, so that

and let us also suppose

m'm

Vi^v- xY + {jsJ—yy + (2'-z)*

mm"

-L— — + &c.

This being premised, the action of m on M, resolved parallel to the

axis of X, and tending from the origin, will be —j- ; that of vfi on M

resolved in the same direction, will be—-7-, and so of the other bo-

dies of the system. Therefore, to determine^, we will have the fol-

lowing differential equation

:

dt' r'
"

and in like manner.

d'n
""-

di^
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The action o£M on m, resolved parallel to the axis of .r, and directed

from the origin, will be —, and the sum of the actions of the

bodies m; m", &c. on m, resolved in the same direction, will be —

.

m

f -7-;-
j ; consequently, we will have

and substituting in place of —-1 its value S.^, we will obtain
di r^

dt^ r* f ' m I dx b

in like manner, we will have

d*z
, Ms ^ mz 1 C d\ 1 ,_,

F 2

* — . •{ -7— > is equal to the sum of the actions of the bodies m', m", &c. on m, re-

»i (^ ax 3

solved parallel to the axis of x, •.• ifwe add to this expression the action of M oh m.

which is equal to , we will have the actions of all bodies of the system on m, ana
r'

d^ip^x) Mx
•• hj the principles of dynamics established in thfr first book, —— \r ~^

1_ (d\l _
m ' \dx $

~~ '
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If in the equations (I), (2), (3), we change successively the quantities

m, X, 1/, z, into m', x', y', s! ; tw^ a!', y", z', &c. ; and reciprocally, we

will obtain the equations of the motion of the bodies w, m", &c. about

M.
If we multiply the differential equation in ^, by M+S.m. ; that in x,

by m ; that in «', by wi', and performing similar operations on the other

differential equations ; by adding them together, and observing that by

the nature of the function a, we have

''-m-m^^-^
we will obtain

from which we obtain by integrating

• The differential equation in ^, becomes by this multiplication, (M-j-2.m.) —
_ M.2.— —2.W.2.^ = ; and if the differential equations in s, jf, x", &c. be multi-

plied by m, m', m", &c., respectively, and then added together, their sum will b« =

if this expression be added to the preceding, we will have, observing the quantities which

^j +

2. TO, |-^ 1=0, and by integrating we have (M+2.OT.)- 1 "^ | +2.m. j -^ ^
=</,

V (Af+2.«)^4- 2.m^ = c+dt, and •.• if ^^i_- -a
-^^^j;^

= b, we shaU have^_

^e expression given in the text.
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a and b being two constant arbitrary quantities. We will obtain also

n=a'+ b't
^-""y

-;

a', ft', fl", 6", being constant arbitrary quantities : we shall thus obtain

the absolute motion of M in space, when the relative motions of w, m'.

Sec, about it, are known.

If we multiply the differential equation in x, by

and the differential equation in j/, by

and in like manner, the differential equation in a/, by

and the differential equation in y, by

Af+S.7»
'
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and if the same operations be performed on the coordinates of the

other bodies of the system, by adding all these equations together, and

observing that by the nature of the function x,

we will obtain

dr M-^^.m dt' M+^.m dt'

.«

ax
• Performing these operations, the difFerential equation in x becomes ~ — my. —r-^—

. , M mx ( d\ ] m d- x ,
Mmx 2 mil

m mx l.mi/ ( d?. "t
, ,. . •

-zrr: . 2. —- . l.mu —

—

— . J —— )-
; and corresponding operations being per-

M+2.m r^ ^ M+~.m \ c/x ) ' ^ ° ^

formed on tlie differential equations in x', x", &c. we obtain, by adding them all together,

d^x ,

,

i/x mx C d>^ t l.mij d^x ,

" dt* T^ ^ r^ ^ ^ \ dx S ^ M+ 2.m dt'' ^
2.my.M ^ m, ^.m.^-mj, ..J^ _ J=?f^ 2. j--j ; multiplying the differ.

Af+2.m. >•» + M+2.m ' r» M+2.m I dx i

?.mx , , ,
'^mx

ential equations in y,i/',i/", &c. by mx-m.
^^_^^ ^^^

, « *' -»«
-^^^s.,^ '

&c, we OB-

d^u xu my 5 '^^
?

*"

tain for the equation in ^, mx.—^+ M.m.^ + mx.2.—
^'I'^ij^ M+Tm.'

i-y mM y 5,»nx ^ my 'S.-mx 5^? . ]f

the same operation be performed for the equations in ^r'andy", &c. we obtam, by addmg

ihes0 equations, and concinnating

rf*y
. ,, m.xij my „ \ dx \ d y

2.mx.2.^ + ,V.2.-^+2.;«r.2.-f -2.x.|_ \
^ 2.m. ^^. ..mx

.^

iW+ 2.m
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of which equation the integral is

Const"'. = £.ff». ^ ^
,f
—-— ^rp-- S.W.

-jfat M-{ S.7» rf/

E.m?/ dx
+ —7

—

t:— . 2.WJ.-

orc =:

M^^.m '
"•'"•

(f? '

M.l.m.^^^Jl:^^^

x.mm'. {
i^'--Udy'-dy)-iy'-y-^d^-d^)

| .

^.^

. 2.—^+2.ni«.2. < —p- \ ;

JV/+2.m

this equation being added to the equation obtained, by taking the sum of the equations i*

X, K, &C. gives

f 'i.my. d's 2 m.x d^y "» S.tkx.S. I </a ") l.my.'S.
f

<^* 1

1 M+S.nt '"'S« M+2.m df J Ai+2.m 1^3
~"
M+2.m \'dx ]'

the quantities which destroy each other, by the opposition of signs are omitted.

se*

page 31.

The first term of the second member of this equation is evidently an exact differential, »ee

page 2, and the integral ofthe remaining terms which do not vanish r: —
. 2.m.

Af+2.»«- cT/

/'S.m.dy dx 2-mj; du , f 'S.nidx du
rr . 2.OT.-T . 2.7n.-^+ / . 2.m.-2-.
M-»-2.m dt M+ 2.m dt ^ J M+2.m dt
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* being* a constant arbitrary quantity. By a similar process we may ob-

tain the two following integrals :

• If there are but three bodies

*"J »"^y __ m'x'.m'dy m"x". m"du" mx.m'dy'
Af+m+;«'^m" * dl (3/-|»i-f.«i \n}:')d~ {M-\,n\m'\vi: ' )dt

~ kMA-m-\-m'^mn^dr

mx.m'dy'i m'x.mdy m'x'.m"dy" m'x".mdy
(M+m+m'Jrm'-)dt (.M + ,«+ m'+ m") d~{M-\-m-lrin'+ m").dt

~
(M-\- m+ m'+")rf<~

m"x".m'di,' my.mdx m'y'.m'dx m"y'.m"dx"

)<lt
M+m+m -^m'.)dt '^ (M-^m+ nf +m')dt'^ {M-\-m-{.m'-Jfm')dt

"^ (Ai-)-m+m'+m">

,
.

my.m'dx' my.m"dx" m'y'.mdx m'j/.m"ds;'

(M-]rm-\.ni^m')dt "'(M+ ra-f„;'+,«//)</<+ yM^m\m'^m")dt '^ {M\m + m' + m .)dt

,

m"y".mdx m" y" m'dx

^\M^;;^^^;7+^;^t+ [M^m^rn-i.m")dt ' "'^^'W'^S both sides of this equation by

M+2.7n. we have

Af+r.m. Const. = M. T m.Mzi^ 4- ^. (^''^Z-/^^') , „..
jxVy'-y'-'^VO

| ^

^^. [xdy—ydx-\-x>dy'—iifdj!^
. „ Udy—ydx-'r3^'dy'~u"dsf')mm. ________ I „,,„ _v—£

—

J —J J
(/<

^
dt

A. ^„.' (''dy'-}i'<tx' + x-di/'-y"dx')
,
{xdy-ydx)

, „ (x'dy'-t/d^

dt
+»" ^ f-™-

rfT

H-m"^ i^^^i^-5'-!!^ „, (^cLf-ydx) ,Jxdy'-t/dx') ,„ {x"dy"-y"dx^)

J , {jfdx'—xdif ) ,
„{ydx"—xdy")

^ ,
{y'dx—x'dy)

-f- mm'. —i. + mm".^ ; :i—' + mm'.-^ ;
^

lit dt
^

dt

^^rr^'.'^'^-^A^!i^^^.,^y:dx-^:d^ ^^
dt

^
dt

~
dt

„„,>\idy—ydx-ifx'dy—y'dJ\,
,
{ydJ—xdy')

, Av di —i'dy) . .mm -^—

^

———^ + mm'. -?
=—i-i -\-mm'.^ ; £.'+4c.=

dt ^
dt

~
dt

. {{x—T).(dy'—dy)—( u'—y).(dx'—dx)')
«'«--^ -^-^ y^'y yn —"'')\

... making the factors of n/m", m'm", *f.
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at

^.mm. < ^ — -—^ <-^ > ; (5)

[ydz— zdy')
c"-=.MX.m.-

dt ^

(6)

c' and c" being two new arbitrary quantities.

If we multiply the differential equation in x, by

^ , „ H.m.dx
2mdx — '2m.-

the differential equation in y, by

„ , - l.m.dv-~mdy-^m.—^,

the differential equation in z, by

li.m.dz
2mdz—2m.

and if, in like mannfer, we multiply the differential equation in x', by

PART I. BOOK II. G

also to coalese, and obliterating the quantities whicl> destroy each other, we have

(M+2.m). Const.= c=the second member of tlie equation in the text, it is evident that

the same proof is applicable to any number of bodies.
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M+Hm '

the differential equation in y', by

2m'.dy'.—2ot. ^

the differential equation in 2', by

2'm!.dz'.~'2m\-

and so of the other bodies ; if we then add together these different

equations, observing that

we will obtain

A_£>v idx,d'x-\-dy.d^i/ ^-dz.d'z) Q'E.mdx d^x

2I..m.dy ^ d^y £E.m.dz ^ d'z
. ^,, rwrfr

* The differential equation in x, being mul(iplied by this quantity becomes =

+ M. —\-2mdx.l.-~- —2A—-\dx —— .m.- -rrr^—dt*

mx 2m . »«x , 2
, /^ dx \ .„——X.mdi,~—— S.mdx.'S.-—4- rr; .S.mdx.l -r- 1, if corresponduig operations

be perfonned on the differential equations in x', x", &c. we will obtain by adding them toge-

ther,

dxd^x
. ,,„ mxdx

, „ , mx ^ (dxl .

2z.m.——-- +M.22. —+22.7nrf*.2.—- —22.-? y > dx—
dt^ r* r* \ OS

)
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which gives by integrating

const - Z TB
Jdx^+dy^-^dz^) —(•E.mdxy—(J:.mdyY-'i'£.mdzy

' ' dt* {M-\.Y..m')dt''

—2M.S.— — 2A,
r

or

h=MX.mX ^ •' L +
dt""

Z.mm'. \
(dx'—dxy+(di/'—dyy-\-(dz'—dzy ^ *

"

dt^

d'x 2M , mx 2.S.m , mx 2

dt^ M+2.W , r' M+2.W r* ^ M-\-^.m.

M+2.M

^t]''"^^
2M

this equation by reducing, and observing that — rrr . 2.wrf'.r.2.

22.»» , mx „ , mx , , , 2 , dx
2.>«rfx.2.——=— 22.»«(ir.2 , and also that . 2.mdx.^, =0,M+2.m r^ r' M+2.m ' '

*
</x

becomes

22.mrfx.-v- + M.22. 2S.-? —
J-
.rfx—22. Pidx.^.m.——

;

dt* H \dxi dt^

M+2.m
if this equation be added to the differential equations, which result by performing corres-

ponding operations on the equations in y, if, y'\ &c. z, «', /', &c., observing also that

2xdx->[-iydy-\-'2zdz=2rdr, we shall obtain the differential equation of the text.

'• ^S] '^" + '- [|] • <^+ ^-
[Zzl • '^'='^' seepage 28.

• If there are but three bodies, we have by multiplying by (Af-f-m-j-wi'+m");

Const. .(M+ )«4-»n'+"'") = h; and if we only consider the coordinates parallel

to the axis of x, we will have M (mdx^ + m'dx'^ + m"dx"^) -{- {in -}- m' + m").

(mrfx*+»i'c?x *+ m"rfx"*)— (w+ m'+?)i")rfx+fl'x'+rfx")]s = Af.2.n;i;^+mVx'

+

m'^rfx''-|-m"-rfx"^+mm'rfx"+»;m'</x'*+mH!"t/x*+ wm"rfx"'+n2'7H"e?x'»4-M'ni''rfx"«—

vi'^dx-^—m'^dx^—m" ' </x" *—2mm'dxd3?—^mm"dxdx"—2m'm"dxdx".=MX.mdx^+ wm'

(rfx—rfx')*+(7nm'r.(rfx—£fx")^+m'7?i". [d£—djf'Y, =M2.mdx'-i- Z.mm' (di'—dxY ; si-

milar expressions may be obtained for the differentials of the coordinates parallel to the

axes of z and y, and if to these be added —{^M.'Zm -|-2a) multiplied by M+S.m, we

will have the expression in tlie text.

.*^
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h being a constant arbitraiy quantity. These different integrals were

already obtained in the fifth chapter of the first book, relatively to a

system of bodies which react on each other in any manner ; but consider-

ing their utility in the theory of the system of the world, we thought it

necessary to demonstrate them here again.

10. The preceding being the only integrals which have been ob-

tained in the actual state of analysis ; we are compelled to recur to

the methods of approximation, and to avail ourselves of the facilities

which the constitution of the system of the world furnishes us with

for this object. One of the greatest arises from the circumstance of the

solar system being distributed into partial systems, composed of the

planets and their respective satellites ; these systems are so constituted

that the distances of the satellites fi-om their primaries, are considerably

less than the distance of the primary from the sun ; it follows from this,

that the action of the sun, being very nearly the same on the primary

and on the satellites, they move very nearly in the same manner, as if

they were only subject to the action of the primary. The following re-

markable property also follows, from this arrangement of the planets and

satellites, namely, that the motion of the centre of gravity of a planet,

and of its satellites, is very nearly the same,* as if all these bodies were

concentrated in this centre.

In order to demonstrate this, let us suppose that the mutual distances

of the bodies m, m'. Sec. are very small, compared with the distance of

their centre of gravity, from the body M. Let

x=X-i-x, ; 1/= Y+y, ; z—Z-Vz. ;

x'=X+<; y'-Y^y'r, z-Z^z',;
&C.;

* See Princip. Math. Lib, Ist- Prop.65»
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X, Y, Z, being the coordinates of the centre of gravity of the

system of bodies m, m', m", &c. ; the origin of these coordinates,

as also that of the coordinates, x, y, z, x', y', z', &c., being at the

centre of M. It is manifest that x„ y,, z^, x,', &c. will be the coordi-

nates of W2, 7w', &c. relatively to their common centre of gravity ; we shall

suppose these to be very small quantities of the first order, in relation to

X, Y, Z. This being premised, we will obtain, as we have seen in the

first book, the force which solicits the centre of gravity of the system pa-

rallel to any right line, by taking the sura of the forces, which solicit the

bodies parallel to this line, multiplied respectively by their masses, and

then dividing this sum by the sum of the masses. Moreover, we have seen

in the same book, that the mutual action of bodies connected together

in any manner, does not derange the motion of the centre of gravity of

the system ; and by No. 8, the mutual attraction of those bodies, does

not alter this motion, consequently, in the investigation of the forces,

which actuate the centre of gravity of the system, it is sufficient to

consider the action of the body M, which does not belong to this

system.

The action of the body M on m, resolved parallel to the axis of x,

Mx
and in a direction tending from the origin is , therefore the

entire force which sollicits the centre of gravity of the system of bodies

ffi, 7n', &c. parallel to this line, is*

— MX.-—

and by substituting in place of x and of r, their values, we have

« By what has been stated in No. 20 of the first book, it appears that —-
dt' Z.m

now in the present case 2.m.P=—Afs.-— . for P=———

.
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r* - ((X+^.)* + (F+3/,)«4-(Z+^,)»)

If we neglect very small quantities of the second order, namely the

squares, and the products of the variables x,, ?/,, z^, */, &c. j and if we

denote by R, the distance \/X*+ F*+ZS of the centre of gravity of

the system, from the body M ; we shall obtain

X _^ X X, (Xr^+I>£f^) *~~ W^ R'
"~

R'

a! x''
we shall have the values of -^j- , -777, &c. by distinguishing the let-

ters X, y, z, &c. by one, two accents, &c. ; but by the nature of the

centre of gravity,

0=S.ff2X,; 0=:S.7m/,; 0=^7nz/y

therefore we will have, neglecting quantities of the second order,

T.^„ mx^•^•— MX
S.m R^

'

((x+x,)*+(y+3/,)^+(z+2/)' ^ ^ '^^
'
^^ ^'' ^^ ^ '> ^

by neglecting quantities very small of the second order, X.(X'+2Xx,-{-Y'+2Yi/,+

3
'2Z» +2Zz,r^+ iX-S^^+ Y^+Z')-^=X{X'+ Y'-+Z^)~''—~X.{2Xx,+2 Y>/,+2Zz,)R'

+ x,{ X»+ Y'+Z^ ) ^= (by substituting R' for X*+Y'+Z^) •;p + "^—

(Xx+ Yv+Zz.) ^ ,^ mx I MX.'S.m

S.mx, rX2.«x,+ y2.n>.v,+Zv.>.z)
) _ _ MX ^^^ ^^^ ^^^ ,^^ ^^^^ ^j. ^j,,

«econd member of this equation ranish.
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consequently, the centre of gravity of the system is sollicited by the action

of the body M parallel to the axis of a:, in very nearly the same manner

as if all bodies of the system were concentrated in this centre. The same

conclusion evidently obtains for the axes of 7/ and of z, so that the

forces by which the centre of gravity of the system is actuated parallel

to these axes, by the action of M, are pT~> pT" *

When we consider the relative motion of the centre of gravity of the

system about M, we should transfer in an opposite direction, the force

which sollicits this body. This force resulting from the action of ttz, m\

ml', &c. on Mf resolved parallel to x, and acting in a direction tending

from their origin, is S.—j ; if quantities of the second order are

neglected, this function is by what precedes, equal to

XS.wi

R'

In like manner, the forces by which M is sollicited, in consequence

of the action of the system, parallel to the axes oiy and of -2, in a di-

rection tending from the origin, are

F.E.TW . ZX.m
, and

R^ R»

It appears from this, that the action of the system on the body M,
is very nearly the same, as if all the bodies were condensed in their com-

mon centre of gravity. By tiansferring to this centre, and with a con-

trary sign, the three preceding forces ; this point will be sollicited pa-

rallel to the axes of .t, of _y, and of z, in its relative motion round M,
by the three following forces :

-<M+S.»j).-^; -(M+E.m).-il; _(M-}-E./b).-^.
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These forces are the same as if all the bodies 7n, m, m", &c. were united

in their common centre of gravity ;* consequently neglecting very

small quantities of the second order, this centre moves as if all the bodies

were concentrated in this point.

* The action of m on M resolved parallel to the axis of x= — ,
•• the sum of the

r'

actions of all the bodies m, m' , m", &c. on M ; = 2.—, = by what precedes
•"

*.• if this action be transferred to the centre of gravity, with a contrary sign, this centre in

its relative motion about M, will be soUicited pai-allel to the axis of x, by the force —
(Af-f2.ni).—— ; now if all the bodies m, m', ??i",' dc. were concentrated in their common

centre of gravity, this centre would be acted on parallel to axis of x, by the force—(M-J-

2.m.)X, ••• this centre moves as if all the bodies were concentrated in it, consequently it de-

scribes very nearly an ellipse about M, the quantities which are neglected are of the order of

the square and higher powers of x, and it is easy to shew, that the aberration of the force,

by which the common centre of gravity is sollicited, from the inverse ratio of the square of

the distance, is much less than the aberration of the forces solliciting any of the bodies com-

posing the system, from the inverse square of the distance. For if tiiere are but three bodies,

and if the distance o(the greatest Mfrora the remaining m and m', be much greater than the

distance of m from m', then if 72 be the distance of M from the common centre of gravity

of m and m', p and q the distances of this centre from m and m', respectively, and 28- the

angle which r=p-^g, makes with R, the distance of M from vi, — R—p. cos. et, the

distance ofM from m' =R4-y. cos. a, :• the attraction of M on m, resolved parallel to

MR M
R = -3 = MR{R-^ +3R-*p. cos. zr+6R-^ p^ cos t«ar+&c.~— -}-

SMp.COS. w ,
GMp .COS. 'a)

, „ . ,1 ^i_ ..• c n/r I

i-=r 1-—Pi
—'- + &c. ; m like manner, the action 01 M on m, re-

R^ ^ R* ' '

„, „ MR M 3Mi7.cos.sr ,
eAT^'.cos^

solved paraUel to R^-jr; w, = -rp «1 f" /?; '
~*'"-

(/i-j-y. cos. ot)^ R- it-* li*

now we know from what has been already established in the first book, that the accelerating

force by which the centre of gravity of in and m', is sollicited in the direction of R, is ob-

tained by dividing the sum of the motive forces, by which »i and »i' are sollioited in this

direction, by 7ii-\-m', :• this force is = to

( t''!^ + __i^'^_ I . -L. = by substitation
(.(iJ—;j. COS. ar)^ ' (yi-fy. COS.ro)^ J lli+m'
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It follows from what precedes, that if there are several systems, of

which the centres of gravity are at considerable distances from each

other, compared with the respective distances of the bodies of each

PART I. BOOK II. H

f Mm SMmp.cos.v,
^
GMmp-'. cos, 'ct

, ^
Mm' SMm'q. cos. -a

J — ^' '^

(mp^ 4-m'<7' )+ &c., the first term gives the law of elliptic motion ; the se-

cond term vanishes by the nature of the centre ofgravity, •• the third and following terms

are those which cause an aberration from the law of elliptic motion in the centre of

gravity. The actions of m and 7n' on M, resolved parallel to R, are respectively

-=; ,
'

, which become by reducing, -=—
-, —;rr > and if these

{R—p. COS. vt)^' {R-\-g. COS. z,)*'
^ ^' R^' R-

be transferred to M with a contrary sign, the entire force by which the centre is urged, is

p-^ . It appears from this discussion that the centre of gravity of the earth and

moon describes very nearly an ellipse about the sun ; now a comparison of this expression,

with that which gives the action of M on m, disturbed by the action of m' on M and on m,

shews that the curve described by the centre of gravity, approaches much nearer to an ellipse

than the curve described by m, for the force on m, acting in the direction of R—p. cos. w

_ M+m m'.{R—p. COS. a) ,f 1
R-j-q.cos.ir) \

~ (R—p COS. -sry
"^ ~"

~r'
''"

l{/J+y. cos. ^=)^ r^
)'

cos. 6, ( being the angle at which r is inclined to a radius drawn from M to m, this ex-

pression becomes by rejecting very small quantities of the second and Iiigher orders,

M4-m-l-m' .
w'. COS. S

, , , . ., , .,.
- + rm —

, and the last term is evidently greater than
(R—p. COS. a)'' [R-\-q. COS. -sr)

6Af. COS. *i<r jMT)'-4-m'(7' „,, .. ,. , . ,. , ^^ • w
r— • The force which is perpendicular to R—p. cos. •a is equal to

R"- ' in-\-m'
"^

'
-^

, f R+q. cos. v! 1 !.,,.'"'• sin. t , ^
m'. } !— — —

. S. . sin. fc= by reducing ^- rj ; but
l r^ (/?+ j. cos. w)* J

'
(R-\-q. COS. -ay

if the force of M on m, be resolved parallel to r it will be = ;= rr , and the^ (R—f.COS.-sr)*

force ofM on m' parallel to r =-=: —> '•' the accelerating force on the centre of
'^

(R-^-q- cos. try

C Mmp Mm'.q 1 1 f Mmp
gravity parallel tor=

\ ^R_pJ^_^y
-

^Rj^^_,,,^^y \;^:;;^^{-Rr
SMtnp' . cos. TO Mm',Mm'q SMm'fl. 'cos. ar 1 1 , / _a

R^ ir+ 2_ 1 _p-,= because «p-^'y=0.

3MC0S 33-
I, J. U u

rr—— ,. ("iy^+w'g'); the part of this force which is perpendicular to it disturos the
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system ; these centres will move very nearly in the same manner, as if the

bodies of the respective systems were concentrated in them ; for the ac-

tion of the first system on each body of the second system, is, by what

precedes, very nearly the same, as if all the bodies of the first system were

united in their common centre of gravity ; the action of the first system

on the centre of gravity of the second, will, therefore, by what has been

just established, be the same as in this hypothesis, from which we may

conclude generally, that the reciprocal action of different systems, on their

respective centres of gravity, is the same as if the bodies of each system

proportionality of the areas tlescribed by the centre of gravity to the times, and it is evi-

dently less than —-

—

' ' —
•, See Princip. Math. Lib. 1. Prop. 66. Cor. 3, 4, &c.

'" (E+q. cos, ^Y
"^ r > '

The distance of the centre of gravity from M differs from the distance of m from M re-

til 1

solved parallel to R, by p. cos. ct, =
,

• r. cos. w. (by the nature of the centre of

gravity"). In like manner the abberration m longitude =p. sm. ss-= ———;. r. sm. a, ••• it

varies as the sine ofthe angle of elongation ofM from m ; if i be the tangent ofthe latitude of

the earth, the distance of the earth from the plane passing throughM and the centre ofgravity

m'
of »n and m',= sp = rs, r> t\ow «=tan. (f. sin. (v—$), ^ being the inclination of the

orbit of the moon to the above mentioned plane, and v—6 being = to the distance of the

m'
moon from her node. The distance from this plane, as seen from the M = —-

—

r- .
'^ m-\-m

^. See Book 7, and Newton Princip. Math. Prop. 65, 66, 67, 68. What has been
R
stated at the commencement of this note, shews the truth of Newton's 65 and 67 Prop.

Lib. 1. And it would be easy to demonstrate, as Newton states in Prop. 64, that when the

force varies as the distance, the centre of gravity describes an accurate ellipse about M, for

the force soUiciting m parallel to the axis of x, =— Mx, ••• the force which solicits the

centre of gravity parallel to this axis, —— ——MX '
', now this last terra

vanishes, if we add to this force, the force 2.mx = X2.m-fS.m.j;; by which M is sollicited

in a contrary direction, the entire force on the centre of gravity parallel to this axis = —
(M-{-'S,.m.)X, V the centre ofgravity describes an accurate ellipse, and m describes an ellipse

about the common centre of gravity ofMan d m' ; the periodic time in this elb'pse depends

on the number of bodies composing the system, and it varies inversly as the square root of

the sum of the masses.
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were concentrated in them, and that consequently those centres move, as

they would do, in the case of this concentration. It is manifest, that

this conclusion equally obtains, whether the bodies of each system are

free, or connected together in any manner whatever, because their mu-

tual action does not affect the motion of their common centre of gravity.

Therefore, the system of a planet and its satellites acts very nearly

in the same manner on the other bodies of the solar system, as if the

planet and its satellites were united in their common centre of gravity
;

and this centre is attracted by the several bodies of the solar system, as

in this hypothesis.

Each of the heavenly bodies, being composed of an infinite number

of molecules, endowed with an attractive power, and their dimensions

being very small compared with its distance from the other bodies

of the system of the world; its centre of gravity is attracted very

nearly in the same manner, as if the entire mass was concentrated in

it, and it acts itself on the several bodies of the system, as on this

hypothesis j therefore in the investigation of the motion of the centre

of gravity of the heavenly bodies, we may consider these bodies as so

many massive points, placed in their centres of gravity. But the

sphericity of the planets, and of their satellites, render this hypothesis,

already very near to the truth, still more exact. In fact, these several

bodies may be conceived to be made up of strata very nearly spherical,

and of a density which varies according to any given law ; and we novr

proceed to show that the action of a spherical stratum on a body, which

is exterior to it, is the same as if its mass was united in its centre.

For this purpose, we will establish soiue general propositions, relative

to the attractions of spheroids, which will be very useful in the sequel.

11. Let X, y, z, represent the three coordinates of the attracted

point, which we will denote by m ; let dM represent a molecule of the

spheroid, and a/, y', s^, the coordinates of this molecule, j denot-

ing the density, which is a function oi'af, y, z', independent oia;,y,z-y

we will have

dM zz ^.djfdg.dz'.

H 2
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The action of dM on m, resolved parallel to the axis of x, and tendiqg

towards the origin, will be

^,dx'.dy'.dz',(x—x)

{{^—'^y-viy-y'y^iz—z'rf^
'

and it will consequently be equal to

^ J
^.dx'.dy'.dz' ^

{. dx }

therefore if V denote the integral

p ^.daf.dy'.dz'
^^

Jy/{x-xy-^iy—j/Y^^{z^^Y
'

e.dx'.di/.dz'
* The action of dM on m, is expressed by , rrrr}— TvTTT ^ » •" ^^^ force

p.di!.di/.dJ . ,

paraUel to the axis of ^:
^^_^,^._^^^_^,^,_^^^_^^.

: : (^-x ):

^.dif.di/ .dif

•^{x-xr+{y-y'Y+^-^r .
consequently it is =

^(^_y).+(_yly).+(,_^), )i . »!«

p,dx'.dy'.d:!

expression ,-, ,^, ,

,~
yx. , , iTxTT ' differenced with respect to x, and divided by

p.dx'.dy.'dz'Jx—x') ..

dx. becomes—^j^__^,;,^^^_^,,)r)^ : V th^ express.onor

r
,

e.dx'.dy'.dz' -i

3 a. ,, ,, , /,, , ,., y , expresses the actidn of a molecule of the sphe-

l
^/ix—x)^+(t/—i/y+(.z—zy

5

dx

roid, on a point without the surface of the spheroid, consequently, if we take the sum of

the corresponding expressions for all the molecules of the spheroid, «. e. if we take

}d f ^'
^' — > = — ( -r f I

this quantity expresses the

dx

action of the spheroid, on the point m, resolved parallel to the axis of «; the characteristic,

d refers solely to the coordinates x, y, t, it does not denote an operation the reverse

of that indicated by the characteristic yt
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extended to the entire mass of the spheroid ; — < —— ?- will repre-

sent the entire action of the spheroid on the point vt, resolved parallel to

the axis of cT, and directed towards their origin. V is the sum of

the molecules of the spheroid, divided by their respective distances from

the point attracted ; in order to obtain the attraction of the spheroid on

this point, we should consider F" as a function of three rectangular coor-

dinates, of which one may be parallel to this line, and then take the

differential of the function, with respect to this coordinate ; the coeffi-

cient of this differential, affected with a contrary sign, will express the

attraction of the spheroid parallel to the given line, and directed to-

wards the origin of the coordinate to which it is parallel.

Denoting the function ((4:—a/)*+(?/—^')*+(^—2;')*)"% by S, we

will have

As the integration only respects the variables a/, y, z', it is manifest

that we will have

but we have

^-{dx'S'^idT/* S^ i^J''

• ^ —(^—x') d»e _ _i

J 3(t—/)t _—(^—r')'—(v—v')*—f2—«')'4-3f*—y^'
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consequently we will have also

This remarkable equation will be extremely useful in the theory of the

figure of the heavenly bodies ; we may make it to assume other forms,

which will in different circumstances be more convenient ; for instance,

let a radius be drawn from the origin of the coordinates to the point at-

tracted, which radius we will represent by r, let 9 be equal to the angle,

which this radius makes with the axis of x, and w the angle which the

plane passing through r and this axis, makes with the plane of the co-

ordinates X and 7/ ; we will have

a; = r. cos. 9 ; i/ =r, sin. 6. cos. w ; z = r. sin. 6. sin. w

;

consequently we shall obtain

by means of these expressions, we can obtain the partial differences of

IB like manner, -— , -—- , are respectively equal to

d'Z d-S . d'<i

rfx* t/y* dz-

-3(«:-'y-3(j/-^0'-3(g-/)' +3{ji-:^y+S{y-y'y + S(z-zy _ ^

*
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r, 6, and w, with respect to the variables x, i/, z ', from which we can

deduce the values of ^-^-^^ /—r-iiA-rxi* ^" partial differences of

V, with respect to the variables ?•, 0, and zj. As we shall have occasion

frequently (o consider these transformations of partial differences ; it

will be useful here to trace the principle of them. V being considered

first as a function of the variables x, 7/, 2, and then, of the variables

r, 6, and w, we have

i dx *

In order to obtain the partial differences, \— > A-t\ i\-^\ t it is only^
idxS IdxyidsS

necessary to make x the sole variable in the preceding expressions for

r, cos. 9, and tan. -sr, consequently, if we difference these expressions,

we will have

{rfr "> . C 6?9 > sin. 9 d-sr^|=cos.9;|^|.= —'>-^=0;

by substituting '"'
{^ C ' {^ } > we obtain the value o*"

|^ } » which has been given

IN the text.
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which gives '

m=-'-m-
sin. (dV.4^1

By this means we can obtain the partial difference 1 —r- c , in partial

differences of the function V, taken with respect to the variables r, 6,

and V. By differencing this value of^-y— C a second time, we shall

obtain the difference \ -^ ^ in terms of the partial differences of V,

taken relatively to the variables r, 9, and n-. We can obtain, by a si-

milar process, the values of -5 —^ >, and'S
. ^ r*

By the preceding operations, we can transform the equation (A) into

the following

:

^ Cd'F? cos.0 (</F) C dT > , U\rV} ,n^,

sin. *(

_ _ /y'+z'
. j <^'* 1 _ 2xVJ/^"+2^_ 2.sin. 6. COS. ^

. J^ 7 .

7* '
'

l'rfx« j
~

r*
~

7^ ' Ida )'*

tcfx^i ~ *^
'

''
1 "^ )

"~
a!) « * dx*

"^ dr'lx^'' di'- 'cfx'"^ d6' dx^^

d*V dV sin. »« , d^V sin. «« <fF 2sin.«. cos. «
• COS. *P+—. -^— -I • ;

dr- ' ^ dr' r ^
(/O" * r» ^ </« r«

C dr 7 y . frfV) 1 v' xMz* COS. *«+sin. »». sin. '»

-{|}. Bin. *. = -.^,v{|-J =^^^p^=^, bysubsUtuting for - sin. » its
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ralue ; and by substituting r. cos. S for x, and r. sin. ^. cos. d- fqr ^, we obtain,

r

'^ COS. i. COS. -KT

d^i 1 X x^* 2xy' cos. « cos. 9. cot. '«{</'«!__ x_ xy^ 2xy _ cos. «

1^ 3
— V'^M^-»'*~~ (^^+~')'-'"' V^y-f;'Jr*~ sin.«.r'

2cos.«.sin.<.cos. 'ot f f/sr T , tan.w r r,,
,

«* 1

sm. «. r

1 +tan. '•cj

un

sin

»in. IP cd^-a ) 2j/z _ 2. sin. v. cos. a- f^ 1 C dV \ { dr •*

m.i.r' Xdy^l ~{y^+z^Y sin. "«. r' '
''1 dy \~ \1? J *l'^ J

. (dV\ (d6-\ (dV ^ Cd-^f fdV} . ^ , CdVi
+ U]'\Ty\+{-dz}'{Ty\={77\-''^-'-'^^^--+{-di}'

COS. S. cos. a CdV "h sin. ar
.. f'^'^ \

r \rf^ j
' rTsmTT'

''

\ dy^ j

Crf^O C«f"^'7 C'^'''? . C^^^l id^'u,^ d'V . , , dV
ldpi+id^yiW'l'^\d^\'\^'s=^''^- ''''•

"^-i;^'

cos. '^+ sin. '< sin, 'u W'F? cos, ^g. cos, 'ct S'^^? ^ cos. <—cos. ». cos. V

2 sin. <. cos, i . cos. ^1^ ^ rf' F sin- *«t dV 2 sin. sr. cos. «r c?r «
___

P J
'^

d-a-'-
*">».

sin. ^T "5^* FTsmTTS ' 1^~T'"

>in. *«. cos. *Kr ( «?0
7 »- is? (••"•'

. , . d'r 1 z» x*+2/' COS.**. +sin
sm. 4. sui. «r; -;—= = ^— =

dz" r r^ r^

sin. *. cos)s. *. sin.CT _ S^^\ cos. *. sin. w ^^
^ rf'O

"^*£__ COS.* COS. *. sin. 'iff

V^'-f«'.r»'^(i(»+z»)-Tr» V^»^z».r* r^ sin.

«

sin. «. r»

2 sin. S. COS. «. sin. 'ar fcfw'} ^ cos. w rf'w 2zv

r* ' \dz J
"" ^*+s« ~ r.sin. «' dz^ ^*+T^

~"

2sin.ti7. cos.g fc?F-) ^dV
y S'^f\^SdV\ WHj.f'^^l V'^'l

sin.»<.r« '\1^\-\TrV\Jz\^ \di\'\Tz\'^ XdZl'lIz^

PART. I.—BOOK II.
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if COS. 6 be put equal to i*, this last equation will become

f(^ri . CdV\ COS. fl. sin. ST
.
idVt cos.w id'-V\=

|— I .m...sin..+ |_} . 4.|_}.__;|_}

C<^'^? 2, • « , Cc^^? Ccos.««.+sin. »«. COS. »o7
,
td'V\

= J^}-
-=«•««'• *- + [^^.^ S- l

+ ilFi'

COS. '*. sin. '!?
, C^^ 1 COS. «—COS. «. sin. 'KT 2sin.fi .

[. \-r- > i-T-— J— COS. fi. sin. 'w •

r* ^ «/« J r^sm.

«

r'

iT. COS. wf'^'^l COS. V 5^1 2 sin, ^j.

"*"
l"rf^J *PTsmT« Irfari* rSsin.*« '

if the corresponding terms are made to coalesce in the values of i -—
j
+ ^ -7-7

\

+ I -^ ? , we will obtain the following expression

C d''V ) dV r sin. ^6

\ —5- ^ . (cos. ""^^-sin. *«. COS. *«r^sin. '^6. sin. *«)+ -r-.)

—

'

\r

cos, "fi.+sin. '<. sin, 'ct . cos. M+sia. ^L cos, 'ct \ ^d^ Vl

sin. a<+cos. 'fi.cos. *g-+cos. ^L sin, ^ig)
J
<^^ 1 J

2 sin. «. cos. fi cos. 6") ^dV\ f2sin. «. c

r*sin. ^

cos. (. COS. *iiT 2 sin. i. cos. fi.cos. 'w cos. cos. fi. sin. ^-a

' r». sill, fl ^ " "*"
r^. sin. i r'.sin. <

2 sin.fi. cos.fi. sin, 'ct^ j^ ( rf^T i sin. 'w cos. *sr 1
_i_ J

'^^'
1"~

r» 5 I. <^a-* J r^ sin. "fi J-', sin. »fi j i^ 3

(

2 sin, ig. cos. OT—2 sin, tg. cos, zr^ _ frf^Fi nf^^l ^j.)*^^^! ^

r'.sin. »fi )~ t'^^l''" {"dV I'T l~^J *T^

, CdF-» cos.fi ((i^F 1 1
, , . , . .

-r \~jT \—7—-—-+ \ -rr- f • -r——rr=0, V hence multiplying by r«, we obtain
I rffi ) r>.sin. fi l dw^ i r».sin. *fi

tr j a j '

1 rfr» J ^ I dr i^ 1 c/fi» ) ^ i dfi 5 sin.« l^'w' i sin.ifi
"•""'"''
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12. Let us now suppose, that the spheroid ,is a spherical stratum,

the origin of the coordinates being at the centre ; it is obvious that V
will only depend on r, and that it will not contain /ut or w ; the equa-

tion (C) will therefore be reduced to

from which we obtain by integrating,

r

I 2

\ ~1F' S^^'-Xd^S'^^'X'dP]''^'' •'^"'S considered as constant, •.• r.
|-^ J

may be substituted in place of r». s ? + 2r. {— f

.

Ifwe make COS. .= ^. then—= (_).(J^), and_ = (_).-^

+f -^ V f^ J)
and as rf« is constant, and rf^= — rfO. sin. «, d*fi=: —dS*, cos. *;

d'V .d-^V. dV. ,iV. ,dV^ rf^ dV j/<^^\

cos.< _^ dV ^ '/l—f^Kft. _ /rf*FN ,rfF. cos.» _ rf*y .

sin.«~ <'/**'/lZ:^ * W«'/'^('5r}' sin.« ^ <//*»* ^ ''*'

-j-y /« = ''({1

—

t** ^-7-^ ; hence it appears how the equation (B) may be re-

dft
duced to the equation (C).

t If the attracting body be spherical, the quantity V will be always the same, when r h
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A and B being two constant arbitrary quantities. Consequently we have

from what precedes, it is manifest, that -

—

^—rc expresses the action
( dry

of the spherical stratum on the point m, resolved in the direction of the

radius r, and directed towards the centre of the stratum ; but it is evi-

dent, that the entire action of the stratum must be in the direction of the

radius; therefore

—

]~r~i expresses the total action of the spherical

stratum on the point m.*

First, let us suppose this point to be placed within the stratum.

If it was at the centre itself, the action of the stratum would

vanish : therefore when r=o, we have — <— r- = 0, i. e.— = 0, from
\ dr } r*

the same, and it only varies when r is increased or diminished. For suppose the attracted

point to move on the surface of a spliere, concentrical with the attracting body, it is evident

that the value of V remains the same when the attracting body is spherical, but when this

body i» any other figure, V will vary from one position to another of the point moving on

the spheric surface.

K-apr ) = 0. V -^ = ^, and rF= Ar+B,

it appears from this equation, that if r^O, B^O.

• From what has been stated in page 42, relative to the action of a spheroid, it ap-

pears that — (-7-/ expresses the action of the stratum parallel to r, but it is evident that

the entire action of the stratum is equivalent to this expression, for if equal elements be

assumed at each side, equally distant from the direction of r, their action perpendicular to

r will be destroyed, and the remaining action will be in the direction of r, and this being

the case for every two corresponding elements, it is true for the entire spherical stratum.
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which it follows that B=0, and consequently whatever may be the

value of r, — -| —r- >= ; from this it appears, that a point situated

within a spherical stratum does not experience any action, or, which

is the same thing, it is equally attracted in every direction.

If the point m exists without the spherical stratum ; it is mani-

fest that if we suppose it at an infinite distance from its centre, the

action of the stratum on this point, will be the same, as if the entire

mass was collected in this centre ; therefore if M represent the

mass of this stratum ; — s—:— r or — will become in this case, equal

to —r-» from which we obtain B = Af, therefore we have universally,*
r'

* When the point is at the centre —j- = 0, when r = 0, as has been already re-

marked, see preceding page ; this is also evident from other considerations, and as B must

he the same, wherever the point is assumed within the surface, B in all such cases s= ;

V V=A, the value of A may be easily determined.

When the point is infinitely distant, the action is the same as if all the molecules

were united in the centre of gravity of the sphere, see page 47, and in this

• • , M idV) B M D ,T i^ ^ .
-^^

case the action IS equal to , v

—

\ — S- or — =
,

••• B=M; V=A-\ .

hence when the attracted point is infinitely distant, A=0, •.• it is always =0 ; and V=

r r
'

If the attracted point be without the sphere, the attraction towards the convex part is

equal to the attraction to the concave part of the surface : and when the point is on the

surface, the attraction to the spherical stratum is only half of what it is, when the point is

at a distance from the surface. This is immediately evident from the expression

u*.du.d'a.d6.sm,i ^^ ,., , , „ 1 , . j j j^ • «

-jr [r—u. co».«. «.(/)), which, when ip-if)OC-— becomes u*.du.dv!.di. sm, t.

T'^^ti, COS 6
'

'

, and it is easy to shew that this expression is the same for two elements situ-

ated on the convex and concave sides of the spherical stratum, and which lie on two

lines drawn from the attracted point, and making an indefinitely small angle with each

other, for u sin. tz=. a perpendicular let fall on r from the attracting element, r—«. cos. 6 =
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with respect to exterior points,

:dV} MCrfF7 _ M
'id? i

~
r*

'

that is to say, they are attracted by the spherical stratum, in the same

manner, as if the entire mass was united in its centre.

A sphere being a spherical stratum, of which the radius of the in-

terior surface vanishes ; it is obvious, that its attraction on a point si-

tuated on its surface, or beyond it, is the same as if its mass was

united in its centre.*

This conclusion is equally true, for globes composed of concen-

trical strata, of which the density varies from the centre to the surface

according to any given law ; for this is true for each of its strata ; thus,

as the sun, the planets, and the satellites may be considered, very nearly,

as globes of this nature ; they attract exterior bodies almost, as if their

masses were concentrated in their centres of gravity, wliich is conform-

able to the result of observation, as we have seen in No. 5. Indeed,

the figure of the heavenly bodies deviates a little from the spherical

form ; however, the difference is very small, and the error which results

part of r intercepted between attracted point and this perpendicular, and it is manifest

from similar triangles that the perpendicular let fall on r, and also the intercepts between

these perpendiculars and attracted point are respectively as the distances of the attracting

elements from the attracted point, and udS is also in the same ratio in both cases, see

Princip. Math. Book I. Prop. 72, •.• for the two elements at above mentioned,

u.di.u. uu.. 6.(r—m.cos. ^) . , r , , . .1 .• i.- i_

IS the same for both, consequently the attractions which vary as

these expressions will be equal, and this being true for every two corresponding elements

existing on the same right hnes, itis true for the entire stratum. Hence if the attracted

point is indefinitely near to the spherical surface, its attraction to the molecule contiguous

to it, is equal to its attraction to the rest of the spherical stratum ; if the attracted point ap-

proaches still nearer, so as to become identified with this molecule, it will then be a part of

the stratum, and its attraction will now be only half what it was previous to its contact with

the stratum,

* For w being the radius of the homogeneous sphere M= -rr— • "'» V — < -j- f —
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from the preceding supposition, is of the same order as this difference,

relative to points contiguous to this surface ; and with respect to those

points which are at a considerable distance,* the error is of the same

order as the product of this difference, by the square of the ratio of the

radii of the attracting bodies to their distances from the points attracted,

because we have seen, in No. 10, that the sole consideration of the

great distance of the attracted points, renders the error of the preced-

ing supposition, of the same order as the square of this ratio ; the

heavenly bodies, therefore attract one another very nearly as if their

masses were concentrated in their centres of gravity, not only because

they are at considerable distances from each other, relatively to their

respective dimensions ; but also because their figures differ little from

the spherical form.

The property which spheres possess in the law of nature, of ac-

tracting, as if their masses were united in their centres, is very remark-

able, and it is interesting to know whether it obtains in other laws of

attraction. For this purpose, it may be observed, that if the law of

gravity is such, that a homogeneous sphere attracts a point placed with-

out it, as if the entire mass was united in its centre ; the same result

will have place for a spherical stratum of a uniform thickness ; for if we

take away from a sphere, a spherical stratum of a uniform thickness, we

will obtain a new sphere of a smaller radius, which will possess the

property equally with the first sphere, of attracting as if the entire mass

—j-= when r=:a,—— . a; for a point which is situated within the sphere, it is evident

the action of the strata between the point and exterior surface vanishes, consequently this

case is reduced to the former.

• This ratio may be deduced from what has been established in No. 46, page 10; sec

also Systeme du Monde, page 255, and Book 3, No. 9. If the force varied as the

distance, a homogeneous body of any figure will attract a particle of matter placed any

where, with the same force and in the same direction, as if all the matter of the body was

collected in the centre of gravity. See notes to page 50. This will appear immediately

if the force of each element be resolved into other forces parallel to three rectangular co-

ordinates.
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was united in its centre ; but it is evident, that if this property belongs

to these two spheres, it must also belong to the spherical stratum which

constitutes their difference. Consequently the problem reduces itself

to determine the laws of attraction, according to which a sphe-

rical stratum, of an uniform and indefinitely small thickness, at-

tracts an exterior point, as if the entire mass was collected in its

centre.

Let r represent the distance of the attracted point from the centre

of the spherical stratum ; u the radius of this stratum, and du itg

thickness. Let 9 be the angle, which the radius u, makes with the

right line r, -u the angle made by the plane which passes through the

two lines / and m, with a fixed plane, passing through the right

liner; m"c?m.c?ot.c?9. sin. 0,* will represent the element of the sphe-

rical stratum. If then f denote the distance of this element, from

the point attracted, we will have

f^= r*—1ru. cos. 9-f«*.

Let us represent the law of the attraction, at the distance /"by <f{f),

the action of the element of the stratum, resolved parallel to r, and

directed towards the centre of the stratum, will be

, , , ,. . , (r—u. COS. 0) . ^x
udu.dis.dM. sin. ^.- -7. . '^\J)\

but we have

r

—

u. COS. 9

~{^P/

in consequence of which, the preceding expression assumes this form

• The three sides of the element, are du in the direction of the radius, udi the ele-

ment of the curve in the plane passing through the radius u and r, and u sin.<. dm the

element perpendicular to this plane ; see Book 3, No. 1.
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u\du.dzr.dl sin. 9.

J^ | . ?>.(/ ) ;•

therefore if we denoteJ^djl (?(/), by (p,(J) ; we shall obtain the entire

action of the spherical stratum on the point attracted, by means of the

integral t^.du.fdvs.d^. sin. ^'p,{f), diiferenced with respect to r, and

divided by dr.

This integral relatively to w, should be taken from t3-=0, to n- equal

to the circumference, and after this integration, it becomes

^Tt.u^.du.fd^. sin. 6. ip/y)
;

TT expressing the ratio of the semi-circumference to the radius. The

value ofydifferenced with respect to 6, will give

TU

and consequently,

2,r.«Vw./d/9. sin. G. ^X/) = 27r.i^ • ffdf. <?,{/).

PART I.—BOOK II. K

* The attraction in the direction o^ J" :z: ti^du.dvr.di. sin. t. <p(J'), and as r u.

COS. 6 =s the distance of the attracted point from a perpendicular demkted from tfae at-

traoting element on the direction of r, it is evident that u^du.d-a.di, sin. «.?{y). •
'———

is equal to the action of the attracting element in the direction of r,

_ _
,r dy

"l _ r

—

u. COS. 9 ^
c?/._ tf«. sin. *
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The integral relative to 6, must be taken from 9 = 0, to 9 = 7r, and at

these two limits, we have J'^z r—u, andy z: r + u; consequently the

integral relative to j^ must be taken horn /"= r—u, toJ'= r+Uy
therefore let X/W- <?,(./) = ^ (f) >

^^'^ shall have*

-ffdf. <p(J) = . 3 t^r+w)—ij.(r—w)^.
r r L J

The coefficient of dr, in the differential of the second member of this

equation, taken with respect to r, will give the attraction of the

spherical stratum, on the point attracted, and it is easy to infer from

thence, that in the case of nature in which <p(X) = T^"'^
*^^^ attrac-

* The action of the entire stratum, in the direction of rzz.v.'^du.fd-a.di, sin. i. < -^ I

,

Q [f) =: u^dic./d-a.di. sin. 6.
" ' =: u^du./dia. di. sin. 6. (p,{J) differenced with res-

pect to r, and divided by dr, dr and di being independent variables. The attracting

force for each molecule = ti,''.du. dzr.di. sin. *•
]^ f • <?( /)) *•' in order to obtain the

entire force a triple integration is requisite, with respect tajl to 6, and to sr.

In order to integrate with respect to di. sin. 6. ?i, (y"), this expression is reduced to a

function ofy only, and as _/" is here considered as a function of 6 only, r comes from

under the sign of integration ; by substituting for di sin. 6, we get 2wu^du.J'di. sin. i.

^If) = -^ .duffdf, (p,{f), and a.%df\s only concerned as far as/ is a function of

t, and as the limits between which the integral of the first member of this equation ought

to be taken, are 6—0, 6=7r, to which limits the corresponding values of/ are r—u, r-j-">

i. e. the least and greatest values of/, it is evident that by makiDgJ'/df.(p,[/) = Mj')>

the integral of the second member will assume the form in the text.

t <?(/)=j5. '/df. <?{/) = Hf)^-jr' and//i/:oX/)=^K/)=-/=at

the limits,

—

r—u, +r—u; ••• i|/(?-+2i)_4(r— ;() =— 2k, consequently, the differential
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tion is equal to —^^ . that is to say, it is the same, as if the en-

tire mass of the spherical stratum was united in its centre j which fur-

nishes a new demonstration of the property, which we have already

established, on the attraction of spheres.

Let us now determine <?(y), from the condition that the attraction

of the stratum is the same as if its mass was united in its centre. This

mass is equal to 4:Tr.ti"du, and if it was collected in its centre, its

action on the attracted point, will be 47r.w*c?M.(?(r) ; therefore we shall

have

o J Sd.]—.{mr-^u)~^(r—u)-^\ ^ ,. , . ,-p,.
27r.ttf/M.< L r ^^ 3 > = 4!Tr.vrdu. ?(/•)} (D)

and by integrating with respect to r, we shall have

4'(r+u)—»]^(r

—

u) =:Qru.Xdr. (?{r) + rU,

U being a function of u, and of constant quantities, added to the in-

tegral* ^u.fdr,(p{r). If we represent ^(r-\-u)—^(r—u), by R, we shall

obtain by differentiating the preceding equation.

id'R\ , , .
, „ d.(p(r)

(. dr-j dr

K2

coefficient of the second member of this equation, with respect to r=— '—— . {—2?/)=

; iiru*dtp= the mass of the spherical stratum, for 5ra'= the area of a circle whose
r'

radius=«, •••ixu' = the surface of the spherical stratum, and ^jtu. 'du= the mass of

the stratum, of which the tliickness =; du.

* Multiplying both sides by dr, and dividing by 2ic.udu we obtain by integrating
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but by the nature of the function R, we have

t~d^s - Cd^V'^

consequently,

or

o ^^ ^ ^ .
r.d.<p(j)-> (d"Ul

3<r-) d.<p(r) _ 1 ^d'U

iu'idu' Vr dr 2m

Thus, the first member of this equation being independent of u, and

the second member being independent of r, each of these members

t For ffdj. <Pif)^^f), -.-fdj. <f,{f)=d. ^(f), and df^<pji/)->rdrf. ?(/) =
d'Mf), •• (dr+duy. (<?,(r-\-ic)+(r+u). ^(r+u))= d'4{r+u), {dr ~duY (?),(r_jO+
{r—u).q>{r-u))=d\i,{r-u);

^_ d\-^{r-^u)—d\-^{r—u) _ d^R __ d\4.(r+ii)—d'4{r~u) _ d'R
dr' ~

dr' ~ dti"
~ du'

'

In order to obtain the attraction to a sphere, we should integrate the expression

'

W'^-i-^)
—4'(''

—

u) from m=0 to u = L, L being the radius of the spliere,

and then the differential of this function taken with respect to r, and divided by dr, will

give the attraction of the sphere.—See Book 12, No. 2.
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must be equal to a constant arbitrary quantity, which we will denote

by 3A ; therefore, we have

+ —-7-—— j^ ,

r dr

from which we obtain by integrating,

B
(p{r)z=Ar+-^i

B being a new arbitrary quantity. Consequently, all the laws of at-

traction, in which a sphere acts on an exterior point, placed at the dis-

tance r from its centre, as if the entire mass was collected in this

centre, are comprised in the general formula

Ar-\—-.

In fact, it is evident, that this value satisfies the equation (Z)),t whatever

may be the values of A and B.

If we suppose A zzO, we shall have the law of nature, and it is evi-

dent that in the infinite number of laws which render the attraction

very small at great distances, that of nature is the only one, in which

* Since u does not occur in the first member, nor r in the second member of tliis equa-

tion, the equality of these members can only arise from their being respectively equal to

a constant quantity, independent of both u and r.

Multiplying both sides by r*dr, we shall have

2r.ir.?)(r)-|-r'.rf.(p(r)=3^r'.rf>-. •.• r'.<pr= Ar^-\-B.

t In this hypothesis fdf(p(f)= A.fd/.f+B/ -^=^- y- = H/)- and
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spheres are endowed with the power of attracting, as if their masses

were united in their centres.

And if a body be situated within a spherical stratum of a uniform thick-

ness throughout, it is in this law only that the body will be equally at-

tracted in every direction. From the foregoing analysis, it appears

that the attraction of a spherical stratum, of which the thickness is ex-

pressed by du, on a point placed in its interior, is equal to

^ dr ^

In order that this function should vanish, we should have

^{ii-{-r)—^(u—r) = r. U,

U* being a function of u, independent of r, and it is easy to perceive

(y4+4.r3M+6r'M''44rM^-t-M'*)— B{r-l-u), and n}^(r—u)=— . (r*—^r^u-\-6r''u''—

ira'+u*)

—

B[r—u), :• ^{r-\-ii)—-^{r—u)— A.[r^u-\-ru^)~'2Bu; and

d.i-. {i'ir-YtC^—Mr—u) \ = d. i^.A{r^u+ ru^)—'2Bu)\

dr dr

3Ar3u+Au'r—Ar^u—Au3r4-2Bu „ ^ .
2Bu= •

I
.

. =2^rM -f-
—

;

r' r'-

and if we substitute for (p{r) its value Ar •{ , in the second member of the equa-

tion (D), it comes out equal to 2Aru-\ j-.

• U being the constant arbitrary quantity which is introduced by the integration of
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tliat this is the case in the law of natvire, in which 'p(J') zz-r:^.

But in order to demonstrate that it only obtains in this law, we shall re-

present by ^'(f), the difference of 4'(/)> divided by df; we shall

likewise denote by V(X)> ^^^ difference of ^'(f) divided by df, and

so on ; we shall thus obtain by two successive differentiations of the

preceding equation, with respect to r,

^"(u+r)—^\.'Xu-~r) zz 0*

As this equation obtains, whatever may be the values of ti and r, it

follows that ^"{J") mu^t be equal to a constant quantity, whatever may

be the value ofj"; and that therefore 4'"'(y)= 0} but, we have by

what precedes,

from which we deduce

d, — (%|.(«-|-r)—^)fl—r)), differenced with respect to r, if w only

equBl to U, its differential with respect to r must vanish, for then the quantity to which this

JO

differential is equal vanishes : ue- 4wM\rfK^r=0. ^^ <P{f) ^^^-jiif^f* 9(f)=^^j(-/)~

—— , mdfdff(pXf} -—/Bdf- — B{f), :• ^u Jg. r)~^(u-r) = B.(—r—u)-

CI ") 9Sr
3.{—u+r)= —2Br; -.' d.>—. ^[uJf-r—^u—r) S = — rf. = 0; r isB.(—u-\-r)=. —^Br: •.' d.i—. ^(u-i-r—d^lu—r) > = — rf. = 0: r is less

IT

than u when the point is assunied within the sphere, •>• the limits of/ must be taken

ji+f, u—r.

* d-M-+-)^-M—r) ^ u=,^'{u+r)-nu-r) : and r{^^r)-V(«-r) =
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and therefore

= 2. K/) +/ <pXf) J

which gives by integrating, ?>(/) z: — ,• and consequently the law

of nature.

13. Let us resume the equation (C) of No. 11. If this equa-

tion could be generally integrated in every case, we would ob-

tain an expression for V, involving two arbitrary functions, which

could be determined by seeking the attraction of the spheroid on a

point situated in a position which facilitates this investigation, and then

comparing this attraction with its general expression. But the inte-

gration of the equation (C) can only be eflFected in some particular

cases, such as when the attracting spheroid becomes a sphere, in

which case the equation is reduced to one of ordinary differences j it is

also possible, in the case in which [the spheroid is a cylinder, of which

the base is a curve returning into itself, and of which the length is

infinite : we shall see in the third book, that this particular case involves

the theory of the rings of Saturn.

Let us fix the origin of the distances r, on the axis itself of the cy-

linder, which we shall suppose to be indefinitely extended on each side

of the origin. Denoting the distance of the point attracted, from the axis

by r', we shall have

r' = r.v/l—^*.

dp -
rfr

~''•

lJ/'(^t+r) is always equal to \J-"{m—r), now this could nqt always be the case unless

each of them was constant.

• M/) =ffdf. 9JJ); : ^>{J) =/. ^,(/), and V{/) = <P.(f) + /• K/), and

+"'(/)= ?(/)+ ?(/) +/<5'(/) = 0, multiplying byfdf^e obtain 2f<!>(f)df +
/'n/)-4f^0, •.fK<p(f)z=B, and <?(/)= ji'
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It is obvious that V depends solely on r' and -r, because it is the same

for all points, i-jlatively to which, these two variables are the same ;*

consequently it only involves
f/.,

inasmuch as /' is a function of this va-

riable ; which gives

thus, the equation (C) becomes,

PART I. BOOK ir. L

• / .— a perpendicular let fall fi-om the attracted point, on the axis of the cylinder, t =
the angle which ;- makes \vith the axis, •/ T^=r. sin. t=r. V' 1—^^« ; if the base of the cylin-

der was circular, F would be always the same, when / was the same, i. e- it would be a

function of r' only, but as this curve may be an ellipse, or any other curve which returns

into itself, F must depend also on the angle which the plane of x, y makes with the plane

passing through r, and the axis of x, i. e, on w.

, TfiMfi dr.dfcft dr.dfifi r.dft.'

'^ VI—jK»' ^/l—^» VI—jk"' VI—;«»

(1-^^)4'
' ^~

(i-^»)i '''d;^~id?^\'[d^\'^\d/r

Sd*r'\(d-Vl ,, ,^ ^ i'^^l ,
d^V . (d'.rVl ^

, ^ . .

[TP^in^r (l-''')-2^- {^ } +_:5l
+ ''-

i -rfF- 1 = ^^ (subst.tut,ng

1-^-
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from which we obtain by integrating,

Vzz <p(r.'. COS. OT+r'. \/—1. sin. t3-)+i]/(/. cos. -st—r'. \/— l. sin. ar);*

•• '^'•'•^•=7p^- dV^^.d-V; hence r.|^ | =-^. ,Vl_^«+r'.

( 1— ft' ). ^ -—J ^ . By substituting these values, the equation (C) becomes

1—i"

(fp 2r.(l—fc')
^ ; .—

^

— —
j^ :=. 0, and if both sides of this equation be multiplied by 1

—

fi*, we wiH

obtain the expression given in the text, by substituting }' for r.v/l

—

fc'.

d^V d^V
* This integral may be deduced a priori in the following manner : let ^

:= r,
,^

—
t, = o, then we will have r-\-r'-.t-^r'.q = 0; the general expression Rk* +

dr

Slc+T=.0, Lacroix, torn. 2. No. 752, 753, &c. becomes i'+Z'^rO, ••• k= ±r'.\/—l,

antldu= —r. (di-' +/c.rfsr), dv=—r-r- (d>' + k'd-a) become by making ——, —— =
dr dr dr dr"

respectively —p, and substituting -j- s/—\.r', — v'—i./, fori and A'; du= — +

V'— 1. rfcr, dv= —j v'—1. dvT, consequently K=log. Z-}-*^

—

l.tn, i= log. r'—^—1.
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?(?•') and 4/(r') being arbitrary functions of r', which may be deter-

I, 2

. , du 1 dt
w, are particular integrals of the preceding differential equations ; let —y = —7 = n; -r-,

1 , du ^j,= -7~"
' TT"

='^— 1.= m; —- =— V— 1. = m ; g = np' + nq', (see Collection of

r/ q'

Examples of differential and integral calculus, page 466,) = — +—y-S *" =— ""z
"1"

aZ—p'—o'+fl'-ffl' =0, -.• 4/=0, i.e. 4^ = 0, and F = <p'(«)+^(u) =^ ip'(log. /+

•^n t^)4- iJ.'(log. )'—•liT. w))= respectively, ((?' log. r'+log. e""*'^—^•)+J''(log.r'—

—^VZT
log^ ^=?''(log. (r'.lcos. «7+i/— 1. sin, w))+^'((log. r'.(cos. ro—V— 1. sin. w))

— ip{r'. cos. jT-fr'V— 1. sin. to) + 4'{>^' cos. ar—/. %/—1. sin. w), by substituting cos, w

±v — 1. sin. «r for e~ ^ , and assuming the arbitrary function <p = the function ip'.

log. This integral evidently satisfies the preceding equation, for

/ ^"\ _ d.(p{r'. cos. w+r'.V'— 1. sin. a) d.(r'.cos, isi+r'y— 1. sin, a)

^ ''' / rf.(/;cos.a-+rVZ:f sin.sr)
^^^

^^ '^•('•'•cos CT—r'.V^— 1. sin, to
)^ ^ (/. cos, to—/V^^ sin, p)

tf.(r'.cos. TO—?-'.\/-IT. sin. ar) dr'

rj_E^_ q".i?.(/.cos. to4->^.\/— 1. sin.TO) rf.(/. cos.TO+r'.^— 1. sin, to)'-

^'^''" ^ d.{y. cos. ar+;^ ^Hr. sin. ^)» * dr"*

rf. ^(r. cos-TO+Z-y/— 1. sin, to ) </'.(/. cos. to+/V— 1. sin, to)

(/.(r'.cos. TO-f-rV-ir. sin.TO) *

^'''*

t^^4-(/.C0S.TO—/.\/— l.sin ;s-) d.{r'. cos, ar—/.y/I^. sin, to)'

(/.()-'. cos. -sr—r'.V—l. sin. to)*
* d)'','-

,
d. Mr' cos. TO—/.v^— 1. sin, to) c?*.(/. cos. zr—r'.'/—l. sin, to)

rf.(r'. COS. TO—/,\/ —1 . sin. to)
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mined, by investigating the attraction of the cylinder, when a- is equal

to cipher, and when it becomes equal to a right angle.

but
rf.(r'. COS. tiT±r'V— 1. sin. 157) , /—- .—

i

-y-. =COS. •sr±V— 1. 3in. w, .*.

dr

d'-.^r'. COS. srit.r'.
' — 1. sin. iit)_

dr" i

Sin. a)
(dV\ of.ifi(r'.cos. OT+r'.^/— l.sin. w) ,, , , ,

:rj ) =—^ ,— '-. {/. cos. m+r'.'/—l.
"^ -^ d(/.lcos. OT+r'.V— l.sin.is-)

rf.-4-(r'.cos. w—/.v— 1. sin. Iff)
, , , , .

+ —^ p= '. (/. cos. «7—r' .V— 1. sin, a)
diy. cos. w—/.v—1 . sin. w)

,
,d^V. d'.i?(r'.cos.iff+/.\/IIi.sin. 57) ,, , , ^,— . . , v

r'^.(—-.\ — i —= '. /*.(cos. *ar+2V—l.sin.w.cos.»—Sin.ijr)
\dr'^ } d(r'.cos. w+jV_l.sin. ^)^

,
rf».4'('"'- COS. sr—r'.v'—l.sin. jsr)

,, , ^,—- . . , ,

-\
— —^^ ^^.r'*.(cos. 'ot—2v—1. sin. «r. cos. is— sm. 'w)

</.(/. cos. zr

—

r' . V— 1 . sin. <aY

(AX\ — d-<p{r'.co%.vs-^r'.*/—\ . sin. -0
) d.jr'. cos. a+r'V— I. sin, to

)

''"''
rf.(r'. COS. sr+r'.v'iri. sin. w) ' ^

rf.4-(j-'. COS. CT—r'.^/ — 1 . sin. sr) rf.(r'. cos. w—/. \/— 1. sin, p)

rf.(j-'. COS. a—r'.^—\. siii. ot)
"'"

J'r c?'.(p(/. COS. ar+r'.y/^T. sin, to) d.(r' . cos. ^+r'.\/—i. sin.ar)'

(/to= "£?.(/. cos. ot+Z-'*^-^. sin. to)»
*

''='"

fl?.(?i(r cos.TO+r'.\/— 1. sin, to) rf'.(>-. cos. TO+r'.\/— 1. sin, o-)

rf (/. cos. TO-f/. ^/— 1. sin. to) d^T^

,
d'^.^{r'. cos, a-—r'.y/— 1. sin, to) rf. (y-'. cos, to—r^.v*— 1. sin, g")^

(/.(/. cos. TO—r'. \/Iir. sin. ar)*
* ^^^

rf. v|'(r'.cos. ar

—

r'.ij— 1. sin. to) d'.{r'. cos. sr—r'.^/— 1. sin. to)

rf.(/. cos. TO—r'.v/—1. sin. to)
' '''»*
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If the base of the cylinder is a circle, F will be evidently a function

ofr', independent of 13- ; the preceding equation of partial differences

will consequently become,

which gives, by integrating,

t dr'i - r'

'

<^.(r'.cos.«r±/V— 1. sin. jsr) , . , , ,
—

-

—i r = — /.SUl.W±/.v' —1.C0S.W.
aw

dK(r'. COS. u±r'.'y^r. sin. zr)
, ,

,—-.. , (tl'S
-T-j =— r.cos. wrpr. v' —l.sin. w); •.• \ ^„^J

rf'.«)(»^. COS. CT+ r'.\/— 1. sin. w) ,. , . , ^ ,—- . , ,= ; . r'».(sin. ^a—'2V— 1 .sin. w. cos. «r—cos. 'w)
d.{y, COS. «r+r'.\/—1. sin. ot)^

, ^.^'(r'. COS. 3-4/. \/— l-sin. w) , ,, , ./—T • \>

4» —^ . (-^ j'.(C0S. zr-f- V—1. sm. -a))

d:{/,cos, •sr+ r'.v'— l.sin. w)

^dK4^(/. COS. ^-V^. >^.sin
^)^ ^^ ^^.^_ '^,)+2v/=T. sin. «. cos. «_cos- U).

d.{r'. cos. -a—>/— 1, /. sin. *ot)

rf.il/(r'. cos. TO—/.V

—

l.sin. w) , , , ./—r • v«
, —ii ^= '—

. (_r. (cos. -n—V—l.sin. to)).

rf.(r'. cos. ar—r'.^.— 1. sin. to)

substituted ; consequently this integral satisfies the given differential equation.

When TO Tanishes F= ^(r')-\-^{r'), and when to=:90°, V=<p(t'-»/—\)-\-^—r'.'/—\),

and as the attraction in the direction of r' = -j -rr- > , ?(/), and ij'(r') may be determined.
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H being a constant quantity. In order to determine it, we will sup-

pose / very great with respect to the radius of the base of the cylinder,

which consideration permits us to regard the cylinder as an infinite

right line. Let A represent this base, and z the distance of any point

of the axis of the cylinder, from the point where r' meet this axis, the

action of the cylinder supposed to be concentrated in its axis, and re-

solved parallel to r', will be equal to

f-Ar. dz

the integral being taken from ;:= — oc, to ^ = oc
; which reduces this

integral to —— ; this is the value of— \—r-,>j when r' is very consi-

derable. By comparing it with the preceding expression, we obtain

H = 2J, and it is evident that whatever may be the value of r, the

2A
action of the cylinder on an exterior point, is ——.*

* If the base of the cylinder be circular, V will be always the same, when / is given,

••• V will be a function of r', independent of w ; dividing by /, and multiplying both sides

by d/, we obtain

r = >/r'*-\-z'; .'. the attraction in a direction perpendicular to the base, : to the at-

traction towards the assumed point = ——;—- ) ;;/ : v^/^+z', hence as Adz is the dif-

A'/dz
ferential of the area of the base; — — ? is the differential of the entire force and its

[r +z )'^

Az
integral = . /-

,^
=, (see Lacroix, No. 192), when z = OC this integral becomes

A A—
, and when z = — OC, it becomes — —r ; and as we want the attraction of the pomt

r' r

to the cylinder between these two values of z, the difference of the expressions in these
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If the attracted point lies within a circular cylindrical stratum, of an

uniform thickness, and of an infinite length ; we have also— )

—

-i

2A
two cases, =—— > must give the attraction required.

Wlien r is very considerable with respect to the radius of tlie cylinder, it is the same

thing as if the mass of the cylinder was concentrated in its axis. When the point is situ-

ated within the cylinder, F is of a different form from what it is, when the point is situ-

ated without the cylinder ; and as it is of the same form wherever the point is assumed

witliin the cylinder, whatever it is in one case, it will be the same in all. The length of

the cylinder must be infinite, otherwise the point, even when situated in the axis, would

not be equally attracted in the direction of the axis.

When the base is circular, — ) —- i = —7- •.• — | -— i . clr — H. ——, • • V
(^<tr y r \ dr \ r

=H. log. r'-j- C. The cylinder being of an infinite length, the attraction perpendicular to

the axis is the only attraction which it is necessary to estimate.

Therefore the force varying inversely as the square of the distance, there are two cases

in which a point is equally attracted in every direction ; the first is when the point is situated

in the interior of a spherical stratum, (it will be proved in the third book, that this conclu-

sion maybe extended to the case of elliptic strata, the interior and exterior surfaces being

similar, and similarly situated ;) the second is that in which the point is situated in the in-

terior of a hollow cylinder, whose base is circular and length infinite.

If the cylinder was concentrated into a right line of a finite length, the attraction in a

direction perpendicular to this line = ——^——I. of which the inteijral is /^ ^ (j^+ z'^Y
^ V(r'+z^)r'.

And if a is ^ the length of this line, the entire attraction in a direction perpendicular to it

" ... . . 1— y , ,; hence if a be infinite, the attraction is as — ; the attraction in the direc-

z zdz
tion of a, is as ;-———3 ;

•.• the differential of the force = —r-n—rr^* the integral ofwhich

-1
1 1

1

IS ,- , . ; + C, when 2^0, C= —- , •.•the entire attraction = -— — '

Vr'-\-z^ "
' r' ' / K^r^+z"

——7==^r=- = when z =. a; ; ;
•.• the attraction in the direction of a

is to the attraction in the direction of r' ::</ r'^-\-a'^ —r'
: a\ hence it is easy to de-

termine the direction in which the point would commence to move ; it may be easily
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:r —;-
; and as the attraction vanishes, when the attracted point

r

is on the axis itself of the stratum, we have H zz 0, and consequently

shewn that a point placed in the vertex of a triangle is attracted towards the segments made

by the perpendicular with a force reciprocally proportional to the secants of the angles

which the base makes with the sides. For if r' be the altitude, and a, a, the segments of

the base, it is evident from the expression -;

—

that the attractions to the segments

(I a' are as / = to
—

r- > but these expressions will be evidently pro-

V'a^-l-r'"- Va'^+r''

portional to the reciprocals of the secants of the angles at the base of the triangle. If

the attracted point exist in a perpendicular to the plane of a circle which passes through

the centre, x being the distance ofthe attracted point from the circumference ofa circle, con-

centrical with thegiven circle, the distance of the centre from this point being=;-', then xr.fjc'^

—r'*)=the area ofthis circle, and ^.xxdx is the differential of the area, and as the attraction in

t'
the direction of r' b as—j- ; the differential of the attraction of the point towards the circle

iTT.r'.dx „,.,,. , . IW ^ , , , ,

=r , or which the mtegral is 1- C, and when x= r the attraction va-
x'^ X

ishes, ••• C=r 2a-, and the corrected integral = 1t.(\ I, hence the attraction

of a point situated in the vertex of a cone to all circular sections of the cone is the same,

and for similar cones the attraction varies as the side of the cone. If the attracted point

exist in the produced axis of a finite cylinder witli a circular base, of which the radius =«,

r' being as before the distance of the attracted point from any point in the axis, \/n''-f»"'*

will be the distance of the circumference of the cylinder from this point, the attraction to-

r
wards this circumference is as I — , , and the differential of this attraction is as

a, '''
,-

^ ,^
of which the integral = r*—v'a'l-)-'^, r, and r^, being the greatest

and least values of/, the attraction to the entire cylinder = — r, + /,, — v'a»+r^„ -j-

^a^-f-r/; r,— r//= the length of the cylinder. If the length be infinite r, =V^a*-f-r/',

•.• the attraction is as r,

—

•</a^-\-r^, and if a be infinite the attraction is as r,— r,, , the

length of the cylinder.
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a point situated in the interior of the stratum is equally attracted in

every direction.

14. We may apply to the motion of a body, the equations A, B, and C,

of No. 11, and then elicit from them, an equation of condition, wlrich

will be found very useful, in verifying as well the computations of the

theory, as also the theory itself of universal gravitation. The differ--

ential equations (l), (2), (3) of No. 9, which determine the relative

motion ofm about My may be made to assume the following form :

dt-
~

I dx)i ' df ~ IdyS' di^
~ IdzS' *^'^

„, . ,^ M-{-m ^ m'.(xx'+ 7/u' + zz') a , • •

Qbemg equal to E. ^^

^j^
^ + — ; and it is easy

to perceive that we have

:d-'Q) (d^Q) {d'Q=
dx %

provided that the variables x, y', z', x\ &c., whfch Q contains, are

independent of x, y and z.

PART 1. BOOK II. M

\dx\ (x"+^^-|-z )4 "• r-^ m'\dx\'' \dyS (j" + i/«+ z*f

-^•"TT + -;;r4 5^ r i "S 5
= - F+T+T)!-^•—

+—
• i 5; 1= ''"*

mx mV mx rf*x Mr mx 1

dx« (x^+3^H2^)t (x'4-_y^-|-2*)l 7/t'lrfxM
~

/_ —
m^ %m.{x—if .
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The variables a; y, z, may be transformed into others, which are

more convenient for astronomical purposes, r being the radius drawn

from the centre ofM to that of m, let v represent the angle which the

projection of this radius on the plane of x, and of y, makes with

the axis of x ; and 6, the inclination of r on the same plane ; we sh^U

have,

X z=. r. cos. 6. cos. V;

y =. r. cos. 9. sin. v
;

z — r. sin. 9.

By referring the equation (£) to these new variables, we shall have by

No. 11,

\d'Ql .„ UQ)
,
id-Q} UPQ) sin. 6. UQ)

O = r«.
dr' \ " 'IdrS'^ IdvA "^ MGM cos. ^.' Id^V^ ^

cos. ^9

Multiplying the first of the equations (i) by cos. 6. cos. v ; the se-

cond, by COS. 9. sin. v; the third, by sin. 9; and then, in order to

abridge, making .

d*r r.dv* „. nc?9*
iVi'=: :lj._— ^j:ri_

. cos. ^9 —
dt' dt' '

'"" " dt*
'

—"' Sm'(y'—yY \4.Ar
(x'-:r)^ + (i>'-y)^M^-zy)\ + ((x'-.r) •+(y-^) '+{z-zf )

"**

f —»/ %m'(z'—zY
,\4.&c

rf'Q rf'Q (j'Q _—3(M+ffl).r^-f3(M+OT).r
''

—3m^(J'-I)'4-(/—y)H(z'—z)-)
^

((x'—.r)- + (»/-t/)^+ (z'-^)')'

-|-3ffl'. ,; , (, 7/3^.Vl
+';--)

s :=0. In the expression for-.W + ;^ + VTi
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we shall obtain, by adding them together.

' dr

In like manner, if we multiply the first of the equations (0. by

— y. cos, 9. sin. v ; the second, by r. cos. 6. cos. v, we shall obtain by

their addition

N' being supposed equal to </.j /'«.—— . cos. *9 (.

di

Finally, if we multiply the first of the equations (Oi by—r. sin. J.

COS. V ; the second by —r. sin. 9. sin. v ; and if then we add them to

the third, multiplied by cos. 9, we shall obtain, by making P' equal to

, rf«9 , dv^ . ^ , ^r.dr.d^
r^.—, hr*. . sm. 9. cos. 9 +

dt' ' dt* dt' '

Id^y

are only considered the first terms in each, but as the other terms are precisely of the sauie

form, it is evident, that the sum of the three differential coefficients, for each of the other

terms respectively constitute a result equal to cipher.

* dx =! dr. cos. 6. cos. v—dS. r. sin. 6. cos. v—dv. r. cos. i. sin. v ;
'.• d'^x= dH. cos. *.

cos. u

—

dr.di. sin. i. cos. v—dr.dv. cos. 6. sin. v—d'-S. r. sin. C. cos. i'

—

di.dr. sin. 6. cos. v—
di^ . r, cos. 6. cos. v -f di.dv. r. sin. 6. sin. u— d^v.r. cos. 6. sin. v — dv.dr. cos. i. sin. v -|-

dvM. r. sin. i. sin. v—dv'^ .r. cos. 6. cos. v, •.' d'^x. cos. 6. cos. d= d*r. cos. '^. cos. *t>—2rfr.

«(<. sin. 6, cos. S. COS. -v—2dr.dv. cos. ^S. sin. v. cos. i'

—

d^i, r. sin. <. cos. 6. cos. 'v—(/<'. r.

COS. *«. COS. "ii-|-2c?i;.rf«. r. sin. (. cos.^. sin. r. cos. v—d^vr. cos. *^. sin. u. cos. v—rfu'. r,

cos. »«. COS. "^u ; di/=: dr. cos. «. sin. v—rd6. sin. S. sin. v -\-rdv. cos. «. cos. v; :• d'!/=d^r.

COS. i. sin. II—rfnrfS. sin. 6. sin. v + dr.dv. cos. «. cos. u

—

dr.df. sin. <. sin. v—rdS'^. cos. J.

sin. v—rdLdv. sin. «. cos. v—rd'K sin. d. sin. v\-dr.dv. cos. *. cos. v—rdv*. cos. ^. sin. v—
rdv.de. sin. ^. COS. V -|- rd'' v. cos. (. cos. v; v d^i/. cos. 6. sia.v = d'^r. cos. '(.Bin. 'v.
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The values of ?; v, and 6, involve six arbitrary quantities, which are

introduced by the integration of the preceding differential equa-

—Qdr.de. sin. 6. cos. 6. sin. ^v -{2dr.dv. cos. ^6- sin. v, cos. v—rd$^. cos. '6. sin. 'v—rd^t.

sin. <. COS. (1. sin. ^T)—rrfn'.cos. ^6.s'm.^v-i-rd'v.cos. 'i. sin. r. cos. v—Src'^.rfr.sin. *. cos. *.

sin. t). cos, u; dz—dr. sm.6-\-rd6. cos. fl ;
•.• d'z—d^r. sin. 6. -\-2drdS. cos. 6 -\-rd^e. cos. i

— rdi^. sin. S; ••• d^z. sin. 6=d'r. sin. '^6-[-2dr.dL sin. ^. cos. 6-\-rd'(. sin. L cos. ^

—

rdt'^.

, rf^x (i*u . , d'z . d^r ids'"
sin. I 6, consequently, -j-^cos. 6. cos. v-\- -~ cos. 6. sin. v-|- —3- sin. S=-t-i —rj-

ctt ctt ('i (*(• at

rdv- ^ dx dy . dz . d'x
;— . cos. '6, but -r— = cos. (. cos. V ; —p- :=cos. «. sin. ii ; -7-= sin. S. •.• -——
dt^ dr dr dv dt^

, '^'i/ . • a-
'^^^

• .
COS. *. COS. 11 + ,

. cos. L sin. v-j-—-r-. sin. ^=
di^ dt^

In like manner, if d'x and its value be respectively multiplied by the differential of x,

on the hypothesis that v is the only variable quantity, we shall obtain ;
—r.d'^x. cos. *.

sin. 1)= rd'r. cos. 'i*. sin. v. cos. vf2dr.de.r. sin. d. cos. S. sin. d. cos. v-^2dr. dv.r. cos. =e.

sin. ^v+d^6. r" . sin. u. cos. r. sin. ^. cos. i-\-di'^.r'^. cof, '^ sin. t). cos. v-\-d~v. r». cos. *#.

sin. 'u+rfi)' r-. cos. ^<. sin. v. cos. u

—

Idv.di. r^. sin. «. cos. 6. sin. 'r ; and multiplying d^y

and its value by the differential of y, taken on the same hypothesis, we obtain r,d''y.

cos. *. cos. v—r-d'r. cos. *^. sin. v. cos. i)— 2c?r. dS. r. sin. ^. cos. i. sin. ». cos. D_j_2rfr. dv,

r. cos. '^. cos. ^u

—

r'^di'^. cos. »*. sin. v, cos. d—r*<f *S.'sin. i. cos. ^. sin, v. cos. v—r'. <fo*.

cos.' S. sin. 1). cos. t'4»'^rf^u. cos.'^. cos.^u

—

2r'^ .di.dv. sin. *. cos. S. cos.*u; .• r.d^.'- cos.f_

sin. 'j+rd'y. cos. «. cos. t)zr2rcfr<^t). cos. '^6+y^d^v. cos. *«—2r*rfu. dS sin. (i. cos. *.

„ ^ dx . dy C (^^x 1= (/.(r*.(fv. COS. '^); -5-=— »• cos «. sm. u; -j- := r. cos. <!. cos, v, -.• — i -^ > .

r.cos.e.sin..+ |^|. r. cos. .. cos. . = J-j. j—j + |^j. |^^

— i— \:=zN'. Multiplying d^j and its value, by the differential of x, taken on the

supposition that 6 is the variable quantity ;
— rd'^x. sin. 9. cos. v= — rd'r. sin. *. cos. I.

COS. 'v+2rdr.d6. sin. '«. cos. 'ii4-2r(/r.rfu. shi. 6. cos. «. sin. v. cos.v+ r*d6^. sin. «. cos. t.

COS. *w ^r'di.dv. sin. '«. sin. ij. cos. v + rVu' sin. «. cos. 6. cos. ^v + r'^.d^i. sin. '«.

COS. 'D+r'd'v. sin. «. cos. 6. sin. r. cos. v. ; performing a similar operation on d^y and its

Talue, we obtain —d^y.r. sin. 6. sin. v^—rd^r. sin. «. cos. «. sin. ^ 5i-j-2) rfr.(^<'. sin.^i. sin. *«

—2r<ir.c/v. sin. 6. cos. «. sin. u. cos. v \- r^di^. sin. ^. cos. 9. sin. 'v -j- 2r^.d6. dv. sin. '<•
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tions.* Let us consider any three of these which we will denote by

a, b, c ; the equations M' = \— { will furnish us with the three fol-

( dri

lowing equations

:

idr ]'\da§'^ Xdr.dvyXdaS \dr.d^]'\da} ~ \ da J'

\dr-yldb}^ \dr.dvS'XdbS
"*'

Xdr.dl^yidb^ " t db >
'

\ dr'S'ldc J
"*

Idr.dvS'ldcy ^ Idr.dri' ldc\ -~
I dc V

We can obtain by means of those equations, the value of
^ , a y

and if we make

idv\ cd^^ cdv^ rdn
"'={Tb\'{d-A-Uj'{dby'

'' = uru}-{da}'U\'
sin. v.cosiv -J- r'dv^. sin. 6. cos. f. sin. 't'-+- r^.d^S. sin. 'S. sin. 'v

—

r'd'v. sin. *. cos. i.

sin. V. COS. v; and in liiie manner d'^z.r cos- 6:^rd''r. sin. 1 cos. tf-j-2rrfr. dS. cos. '<

—

r'^dt'.

+ , , , (/-.T.r . d^ii. r . . , d^z.r
T^d'^L cos. ^, •.• T— sin. ^. cos. V ^^-^- sin. «. sni. t) H =

—

dt^ dt^ dt^ '

2rdr.de r'^.dv^ . d') , dx . \dy
cos. i— \- sin. 6. COS. 6-\-t ".—— , but—— = r. sm. 6. cos. v ; —r- = — r.

sin. «. sin. v.

dz
, ( rf*«"l J^V ] • . f '^'^ 7—= cos. « ; and — < -r-,

f
. r. sni. «. cos. v— < -r-^ > . r.sin. 6. sin. n-J- < -rrr f

^-cos. «.

'2r.dr.d6 d-6 . (dv"]
r: j-T r-'' --I—sin. «. cos. fl+r«. -{—-!- = P.

di" ~ dt^ ^ \dt^ i

• The vakes of r, v and 6 are determined by the integration of equations of the second

order, ••• two arbitrary quantities are invoWed in the determination ofeach variable.
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^' - UayidbS LJbS' Id^V'

- ldc]'W'^dc^~^d'J'^dc^'^dby'

'^ ldhl'\dc^'\da^~^Jbl'lTa^'\Tc^'

[drl {dv\ ff/6 7 Ulrl (idvl \d^\
^dc^'^la^'^Tb^-l'ckl'idb^'^d'J'

we shall have

* From the value of J — I = M' ; it is evident that M' is a function of r, v and «';

»nd as these coordinates are functions of a, b, c, and conversely, it follows that

I da
I 1 dr \- IdaS'^ \ dv \' ida]'^ \ dS \'\da\~

fhy substituting for M' its value -I -j- \ \

Xdr^ r \da i"^ Xdr.dvS' 1 «'« j I dr.dS ]' \daS '

by similar operations we obtain the values of j —jj- }• • \ —j- \, &c. Multiplying

J —— I and its value, by m and its value, J.—jr-J and its value, by n and its value,

' dM' •%

^ —j— i and its value, by p and its value, we obtain

/rf'Ql idr\,(dv\ (di\ (dv\ f"'M ^ . ^ ''"'^
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Ib like manner if we make

(.drl Sdn Sdrl S '^^ I
'''= Ida^' idc^-lTc^'ld-ay'

Sdrl Sdn idr} ^dn
P'= lTbyiTa\-\TJ'Uby'

iTc\-{dc\-U\)=''"iiir\-

id-a\-id-a\'id-c\)'='n-drl

Sd^\ s^lfS^'l /^\_/£!\ f 'l!.\)4. S JIB}
X dr^ ]'ldcS ^ Idal'Xdb] \db]'\daP^ Idr.dvy

{dv\(idv\ Cd0-) Cdvf (dCW, i dQ\ ^dil ( <:dv1

\dcS^\da]'ldb\- IdbS'Xda])^ ld7MriToy\lday

id-bS~idbS'id'aS)^^'t'd^y

Adding these three expressions together, and observing that the coefficients off J

,

I —— ) are respectively equal to cipher, and that the coefficient of( ) = S, we will

obtain the expression given in the text. We can by a similar process obtain the values

•f f——\, ( -T-j )i now if we substitute these values in the equation (F), and also M'

and ^'' for ( J- f ; i -J- ( > 3"d multiply by € and cos *e, we will arrive at the equa-

tion (G).
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the equation N' -rzf —\ will give

Finally, if we make

Idby IdcS Idcy ldb)i
'

^dr-) cdv-i cdr) Cdv')

Ldcy Cda^ CdaS' tdcS'

P"
\drn \dv) (rtr^ S"'^?~ id^iS' (M) ~ ldh\ ' Idal'

The equation P^— -s -j^ r will give

Consequently, the equation (F) will become,

0=wi.r* cos.«8. 5 —7—( +n.r'^ cos. *e. < —rr- >-\-p.r^. cos. '9.3^ f
^ da ' t db J I dc y

+ rw". cos. 9\ \ — ^ + n". cos. ^^-{-tA + /'• cos. '9.
| -^ | .

+ S(fZrM'. cos. ='^—P'. sin. ^. cos. ^).

In the theory of the moon, we neglect the perturbations, that its

action produces in the relative motion of the sun about the earth, which

implies that its mass is indefinitely small. Then tlie variables a/, y', z',

which are relative to the sun, are independent of j:, y, z, and the
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equation (G) obtains in this theory ; it is therefore necessary that the

values found for r, v and 9, should satisfy this equation, which fur-

nishes us with a means of verifying these values. If the inequalities

which are observed in the motion of the moon, are the result of a mu-

tual attraction between these three bodies, namely, the sun, the earth,

and the moon, the observed values of r, v and 6, deduced from obser-

vation, should satisfy the equation (G), which furnishes us with a

means of verifying the theory of universal gravitation ; for the mean

longitudes of the moon, of its perigee, and of its ascending node,

occur in these values, and a, b, c, may be assumed equal to these

longitudes.

In like manner, if in the theory of the planets, we neglect the

square of the disturbing forces, which we are almost always permitted

to do; then, in the theory of the planet, of which the coordinates are

,r, 7/, z, we can suppose that the coordinates x', yf, z', x', &c. of the

other planets, are relative to their elliptic motion, and consequently,

independent oix^y^z; therefore the equation (G) obtains in this

theory.*

15. The differential equations of the preceding No.

drr rdv'
—T-s-. cos. *9

—

r.—-= }——i
dt- •

dt^ Idr^de

d.Cr^.——. cos. ^9) ,„ ,
^ dt -S^Q) J.;

(H)
dt Xdv^

di' ^ df ^ dt' I d& S
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* We arrived at the equation (G) on the supposition that x,j/, z were independent of a/ w',

»', &c. In the case of elliptic motion x, y, z, are independent of x', y', z', and conversely,

and as when the square of the perturbating force is neglected, the motion is q.p. elliptic,

it follows that x, y, z, are in this case independent of x', y' , z'. See page 49, of the

text.



90 CELESTIAL MECHANICS,

are only a combination of the differential equations (?) of the same No.

;

but they are more convenient, and better adapted to astronomical com-

putations. We can assign other forms to them, which may be useful in

different circumstances.

Instead of the variables r and 9, let us consider u and s, u being

equal to -, that is to unity divided by the projection of the ra-

dius vector, on the plane of x and of y ; and s being equal to the tan-

gent of 6, or to the tangent of latitude of m above the same plane, by

multiplying the second of the equations (H) by rdv. cos. *9, and theu

integrating, we shall obtain

I ti.dtS -^ \dv \ u^

h being a constant arbitrary quantity ; consequently we have

dv
dt —

'•V*-.^/{f}.^"

If the first of the equations (H) multiplied by —cos. 6, be added to

the third multiplied by —'-— , we shall obtain

u 1 dx^ , idQ)
, ^

^dQ)
^ u df Idu^ IdsSdt

from which we deduce

There are two distinct objects, one to verify the values of r, v, 6, and the other to verify

the theory of universal gravitation.

dv /do:^,, , ^/. dv /dQ.\
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(u'.dt) u.dt C ( du) u (ds)J

If we consider dv as constant, we shall obtain by substituting for dt its

value, which has been already given

~ dir .
jdv } ti'dv du u" \ds\

*

Cay ) vr

N 2

rfV </t)'
, rf«« rf«« rf,,i

=rfr. (X)S. S

—

rdi. sin. 9; -.'rf'.— =:d^r, cos. —2dr.dd. sin. ^.—rf'^. r. sin. 6 rdi^. cos. «

•.• by concinnating and substituting— rf*.—, for its value, and noting that r.f—

)

(dv'^\ fdv'\ . 1 dv''-—). COS. e — J-.l -J— ) . COS. 6. sm. ^6, we obtain —d^.^ 4- r.—r-
dt^ ^ ^df-

'

u '^ dt^ •

cos

de
fdQ\ f^(i\ sin. i du

(-), .„. * = _ ...c». ,. ...-
(f).

COS. ,=(f). ... CO.. .. (f) = (f).

/ofQ\ /du\ sin. « /rfQ\ ,rf.j» sin.S fdQ\ . , /<;Q\

£i:i:i;sin..=^;andL=;^v(f).(l+.0— = ('?)•«. and .ak-
r Vl-t-s* r vl4-«2 ^ds ' ^ ' ' r ds '

ing the two cofficients of(- ) to coalesce, we obtain d^
i

'"-r- =M'.(sin.««+cos.'C).

dt'
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In the same manner, by treating dv as if it was constant, the third of

the equations (H), will become

(^
—

j + us\— ) . Substituting for dt we obtain

Mt- \/'.-w(J«). ^) H- i,..V-w{^^)4

\dv J' u^

fZu

H— I -1 I — > , V dividing by dv, and the radical
du) ^ u\ ds i

quantity we obtain the expression which is given in the text.

ds
, ^

d^s 2sds^ . \+s^ , d'i d^s 2s

'1+s" 1+s^ (l+s'Y u'
' dt'~ u-dt' (l+s^)

ds^ , . ,
s ^ dv'- . ^ . s dv' ^ , 2sds

, (sin. 6. COS. 6 =z , ••• r^. —,— . sin. 6. cos. 6=— -—- : 2rdr=
,c-.dt' ' ^ l+s' dt~ u^ • dt' ' u'

^du.(l+s') „ , ,
2s-ds^ 2du.ds

,
d*6 r' A^i 1 r"^—^—

, V 2rdr.d6 =z „ ; but r^. = — .d.i— c = —;-.
M» ' {l-^s-y u^

''
dt^ dt t-dt^ dt

J — '—— f ;
•.• by substituting for d'0, d6 and r* their values already given, and

d't
for ;— its value

dt^

.,-.V.^./{g}.A^Jgi.V;..+v]fj-.^
dv
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Therefore in place of the three difFereutial equations (H), we shall

have the following

:

" - "rf^
"^ '' """

Idv /• u'dv " \du J u'Xds 5

By making these equations to assume the following form, we avoid

fractions and radicals,

(K)

+" •-r•-;-
-. V, the third equation (H) becomes =

s dv*

dv.'Uh^

r d's 2s.ds^ Cds_ 2u.du 1

X^TdF^ (l+«*).M^flfi*
*"

i a'* dv.dt J

2.^s' 2duAs_^Uai \'t\^\^3\yi\\ = oy substitut-

_—.p^ + _ . 2«rf«.p' + -,. ^. </.+ .-^-r-t- T+T?. -^;;^

—2rf«.»d^.p' _ $"^1 «a+i'^-Sj-.(14-,»); equal evidently to the third equa-

tion (K).

+
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^_d-t
,

^du.dt „ fc?Q| dt\^

"*"

/r tldvi 'ic.dv~ \duS m * | </s ) 3

'

(L)

+iv- Uv \-dv\-''n-du\ -^'^^n-ds\v

By making use of other coordinates, we might form new systems of

differential equations ; suppose, for example, that the coordinates x and

y, of the equations (i) of No. 14, are transformed into others, relative

to two moveable axes situated in the plane of these coordinates, and of

which the first indicates the mean longitude of the body m, the second

lying perpendicular to it. Let x, and ?/, represent the coordinates of m,

relatively to these axes, and let nt + i denote the mean longitude of m, or

dv^.—r- ; and by substituting -r-, -—

,

* By differentiating the first of the equations (K), we obtain d't

—2du.dv J , '^Q

dividing by dv^ ; we obtain-p^= — . u\\- J- , in the second and third equa-
^ ' dv^ udv^ dv3 lav i

tions, the second should be multiplied by the denominator, and then divided hyh-, the

third should be multiplied by the denominator, and afterwards divided by A^M^
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the angle which the moveable axis of a;,, makes with the axis of a: ;
we

shall have

x=x,. cos. (nt+t)— ^^. sin. (nt+i)
;

y=-X^. sin. (jit-\-i)-\r y,. cos. (n^+
;

from which we collect, on the supposition that dt is constant,

d'^x. COS. {nt-^C)-\-d^y. sin. {nt-\-i)—^x—n^x,. dt^~^ndy,.dt;

d^y. COS. {nt+t)~-d''x. sin. (nt^ri')-=d^y,—n-yf.dt^-\-^ndxM.

By substituting in Q, in place of x and of y, their preceding values,

we will obtain

This being premised, the differential equations ij) will give the three

following

;

df '

dt IdxS

\dQ\

'-d~y:.

d^yj „ _ dx^ ^dQ-)

- df Idz S'

* dxzzdx,. COS. (nt-{-i)—dy^. sin. (n<-ff)— nx,.dt. sin. (n<+£)—nj/^.(?i. cos. (n<-ft)-

dy=dx^. sin. (n<4.e)-j.rfy^. cos. (n<+s)H-nx,.</i. cos. (nt+i)—ni/,.dt. sin. («<+i).

d^x=d'x^.cos.(nf+6)—ti*^^. sin.(n<+6)—2»diB,.rf<. sin. {«<+0—2«fi?5/,.</f. cos.(«/+ t).

—n'^x,. dt^. COS. (n<+e)+ w*J/'.di'. sin. (k<-[-s).

d\y=d^Xr sin. (wf+6)+c/^?/^, cos. (nf+s)+2«(/j:,.(/<. cos. {nt+,)—2ndi/^.dt. sin. (««+f)
— ?^'a:_.c?i^ sin. (?!f-f-s)—n'y,. r/i*. cos. (ni-fe).

V d^x. cos. (nf+s)+ «?»«/. sin. (ni+i):zd''x,—2ndi/^.dt—n^x,.dt^.
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After having deduced the differential equations of a system of bodies

subject to their mutual attraction, and also the only exact integrals, which

we have hitherto been able to obtain, being determined ; it remains

for us to integrate these equations by successive approximations. In

the solar system, the heavenly bodies move very nearly as if they were

only subject to the principal force which actuates them, and the dis-

turbing forces are inconsiderable ; we are therefore permitted in a first

approximation, solely to consider the mutual action of two bodies,

namely, that of a planet or of a comet, and of the Sun, in the theory

of the planets, and of the comets ; and the mutual action of a planet

and its satellite, in the theory of the satellites. We will, therefore,

commence with determining rigorously the motion of two bodies which

attract each other ; this first approximation will conduct us to a second,

in which we will consider the first power of the disturbing forces ; af-

terwards we will take into account, the squares and products

of these forces; and proceeding in this manner, we will determine

the celestial motions with all the precision which the observations

admit of.

d*i/.cos.(nt+i)—d^a:. sin. {nt-}-t)=d^!/^-\-2ndx^.dt—n\i/,.cit^.

= _.„.,„,+„•. {^«} = {f}.coM..+.)-{|}..in. (.<+.).

x^—x. COS. («i-fO+3/- ^'"- ("'+0 ; 2/i—^- <^os. (ref+t)—ar. sin. (nt-\-i) ; hence may be in-

dx dy
ferred the values of—--^ —f^ , &c. &c.

dx dx

^. COS. (»*+.) ={g}. cos.(»^+.)= {g}.cos.H«^+0-{g}. sin.(».+ 0.

COS. (.HO; ^. sin. («/+0= {f }•-•(«'+')= {g} • -• ^(''H^)+ {g} .

sin. {nt + i). cos. (n«+ s). .•. —~— cos. («<+0 + —
tt"- sin. (nt-\-i) = -j-f n-x^.dt—
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CHAPTER III.

First approximation of the celestial motions, or the theory of

elliptic motion.

16. It has been already demonstrated in the first Chapter, that a

body attracted to a fixed point, by a force which is inversely as the

square of the distance, describes a conic section ; but in the relative

motion of the body m about M, if this last body be considered at rest,

we should transfer to m in an opposite direction, the action which m
exercises on M ; therefore, in this relative motion, m is sollicited to«

wards M by a force which is equal to the sum of the masses divided by

the square of their distance, consequently the body m describes a conic

section about M. But the importance of this subject in the theory of

the system of the world, requires that it should be resumed under new

points of view.

For this purpose, let us consider the equations (K) of No. 15. If

M+m be made = ji*, it is evident from No. 14, that if we only con-

sider the reciprocal action of AI on m, Q is equal to — or to
r

fJ.U

/ o, the equations (K) will consequently become,

dt= ^"^

h,u,2 >

PART I. BOOK II.
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=: —X +s.

The area described by the projection of the radius vector, during

dv
the element of time dt, being equal to i. —= ;t the first of these

IT

equations indicates that this area is proportional to this element, and

that consequently in a finite time, it is proportional to the time. By

integrating the last equation we obtain

s =. y. sin. (u—8),t-

* [f\ = _^_, /^l=_Z^3, <^m =0; therefore if these values

ofi— >,^— ^,^-r-^ be substituted in the equations (K);

tlie second of these equations becomes

rf'zi , dQ s clQ d^u fi ,
u.s^ d'u

+ " - -d^l
— T- ^7r= rxi +""-" + •- '

rfu*
^ du u ds

—
^^dv^

"^
^Vf+T*" k^(l+s^)^ dv'

j^ u L_
5 J and the third equation becomes •

' -

h^[\+s'^y- dv"

U.US uus d^s ,

+ • — :r: — . dv. r"-. cos. '« r: tbe element of the area described in a given ti»e

by the projection of the radius vector ; see page i.

rf'5 d'^s.ds .,„,,,. ds^
, .

X + i = ;
•••—; h sds = 0, therefore by integrating —rrr + ** =: c, it

dv^ dv' dv
is evident that s = sin. v. or s= cos. ti, and that •.• s = a sin. v, or « = i. cos. v, and

consequently s = a. sin. v-\-b. cos. v. will satisfy the given equation, and be its com-

plete integral ; as it contains two independent arbitrary quantities. Now, a sin. v + 6.

COS. V. may be reduced to the form y sin (v— 6), by assuming a — -y. cos. 6, b—— y.

sin i, which gives a. sin. v + b. cos. ti = y. (sin. u. cos. 6 — cos. v. sin. f) — y. sin. (v'—e),

and it may be shewn that y. sin. (d — 6), Ukewise satisfies this equation. It is also
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y and being two arbitrary quantities. Finally, the seconi equation

gives by its integration

« =T^7rT-5T •(^l+«' + ^' cos- (^'-^) \ =
\/l+s*

r

.*

e and isr being two new arbitrary quantities. By substituting in this

o 2

evident, that s= a. sin, (d— 6) -[- o. cos. (u— ^) will satisfy the equation - + * z: 0,

and may be used when convenient, but in this case a, h and i, must be selected in such

a manner, that they may be reduced to two independent quantities.

* In the equation -j-^ + m — ,,,,'" ,^ 3 , let P = '^
•% , and m = a. sin.

(u—(l)-4-5. cos. («—<) will be the complete integral of the equation -7-5- -|- «= 0; and a

sin. (v— d) and 6. cos. (v—6) will respectively satisfy the equation ——^ -f u — ; now if

the expression a. sin. [v— 6) + b. cos. (t)— S) be regarded as the integral of the differ-

ential equation —; \- v — P = ; a and b must in this case be functions of the va-
dv

riables v, and as there is only one equation to verify by means of a and b, we can impose

certain conditions on them whicli will facilitate their determination ; supposing them to be

functions of v in the equation a = a. sin. (v— «) -f- *• cos. (u— 6), we shall have

du= adv. COS. (y— S)— b. dv-sm. [v— 6) \- da. sin. (u — 6)-\- db. cos. (u— f);

but as there are two quantities to be determined, and as the proposed question furnishes

us with but one condition, we are at liberty to select the other condition ; for this pvir-

pose let

da. sin. (u— () + db. cos. (v— 6) = 0;

then duz^ dv. {a. cos. (u— 6)—5. sin. {v— 6)) ; and consequently,

d'u=^— dv'^. {a. sin. {v— f) -\-b. cos. («— t)) -}- dv, da. cos. (v— I) — dv.db. sin. (y—6) ;

and this value of d'u being substituted in the equation —-— \- u — ,—

—

-3 gives,
dv^ A^(l4-s^)T

adv'' . (sin. (u— f)— sin. {v— 6)) +Wd^. (cos. (d— 6)— cos. (u— *) ) + da-dv. cos. (y
—i)

—db.dv. sin. (u— 6) —Pdv^ =0; ••• da.dv. cos*, (u— S) — db.dv. sin. (v— «). cos. (w—')
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expression for u, in place of s, its value in terms of v, and then sub-

stituting this expression, in the equation dt — ——j-
; the integral of

the resulting equation will give t in a function of v ; therefore we shall

have V, u and s, in functions of the time.

—P. COS. (v— 6). dv^ — 0; and if this equation be divided by dv, and then added to the

equation da. sin*, (u — S) -\- db. sin. (u — 6). cos. (u — 6) =0, we shall have da z= P.

COS. [v— 6). dv, of which the integral h a —a' -\-f P. cos. [v — 6). dv; in like manner if

the same equations be respectively multiplied by cos. (v — 6), sin. (v — 6), we obtain by

subtracting the second, divided by dv, from the first ; db=— P. sin. {v— 6) dv; and •.•

hz=.b' —J P. sin. {v — i). dv. Therefore u = a. sin. (v — 6) -\- h. cos. {v— 6) = a'.

sin. {v— 6) + sin. {v— 6) J' P. cos. (u— 6) dv. +6'. cos. (v— e)— cos. (v— i)./P. sin,

(a—i) dv ; a' and b' are the values of a and b when P— ;

P = ;,,. .—r;3 = (by substituting for s^ its value) -: —. ~3, therefore

6m.{v—I)/P. cos. (v—6)dv = ^ -.-i -. f ^ :
3 , but

^ '-^ ^ ' A' •^(l-f-y\sin. "(u—e))''

cos, {v—6) dv _ sin. (m— i) sin. (ti—
9)

•^ /i^(l-|-y=.sin.i(t)—«)^
^ A*(l-fy\sin.^-(u—9)t ' *"^

' /j'(H-y'.sin.^(u—(i)i

COS. (u

—

e\dv y^.sin ''{t' — fl). cos. (ti

—

^^.dv , , .^ :
— —1. — ;

—

^ = by reducmg to a cotn-
^^l+y^sm. ^(«— 0)^ A'(l +y-. sin. '(!;—«))i

' ^

co%.{v—6).dv K.sin. (p— «)mon denommator 77-- —— 3 ; consequently A

cos, (t)

—

6).dv _ ^ sin, ^{y—6)

•^(l+ y^sin. ^(v— «;)! ""F"* (14-y^sin. ''0^— «)^*

— cos. (u— S). f P. sin. (u— 6). dv =

, , .\ /.
sin. (t)—d). dv , sin. (n

—

6). dv-^.(cos.i.-^).fj,^^--—---,^ , ,r.if.^^_^^—-—.^,

_ —1 cos. {v—6) 1 COS. (f—
~ (l+V^)* F(I+771iir>i::«)' ' 1+7'-" Ani+y^sin.a(x,_9))^

1 sin, (v— 6). dv I ^ sin. (v—e). cos. '{v—e). dv

l+y''h'{l-i-'y\sm.'{v—e))i i+ya-'i'- A"(l+y=, sin. =(v— «))
-^

: by reducing — —i fa'n-(t— ^) +y^ sin. (t,-0) (sin. ^(t^-Q+cos. ^(v-ll)).dv

^ + y'"
A^{l+y^sin.*(«_(l)l
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The calculus may be considerably simplified, by observing that the value

of s indicates that the orbit exists entirely* in a plane of which y is the

tangent of the inclination to a fixed plane, and of which 9 represents

the longitude of the node, reckoned from the origin of the angle v.

Consequently, if we refer the motion of m to this plane, we shall have

s =0, and y = 0, which gives

= — = -|^< 1-he. COS. (v—;!r)>.

This is the equation of an ellipse, in which the origin of the radii is

at the focus :
—rr- j-, is the semiaxis major, which we will repre-

sent by a ; e is the ratio of the excentricity to the semiaxis major

;

1 sin. (u— (l).(l +y^). rfu sin. (v

—

6).dv
' 1+yi* A'(l+ySsin. ^(u—«))4 A"(l-fy'.siu. ^(u—«))T '

ft. sin. {v—6). fcoi. [v—9). dv ft. cos. (v—(l)ysin. [v— S). dv

/j»(l fy^ sin. '(v—6)f. h'(l+y\sm.''{v—6))i

__ ftsiD.^(v—6) 1 ^ COS. "(u

—

e)

~ F(r+y^^'sin~HJ^—^^ HV ' /j'.(H-y^ sin. i(v—6))^
~

(sin. ''{v—S)+cos.^(v—e)-^y^.s\n.^v—e) _ (l +y ^. sin,^(v-«))^

(l+y)'./%»(l-|-y«.sin. «(d—9)«

"

(l+y"). A«

\i

= f'-
(i+y«)/^^

'
•'•'*= °'- sip.(v-e)+i'.cos.(.-^) + ^.-^\;;;^,;^.^

,
and as e'.

d'u
cos. {v—w) satisfies the equation -yT + " = 0, we may write this function instead of

a', sin. {v—6) -\- 5'.(cos. (v—C), and as e is arbitrary we can assume it equal to / ——, •

e, by means of which the expression for u will assume the form given in the text.

* y is evidently equal to the tangent of latitude, when v—i= 90, and consequently

it is in this case equal to the inclination of the orbit ; and as sin. (v—6) = — = s. cotan-
y

gent of inclination ; the orbit described must be a plane, for this equation expresses the

relation between the two sides, and invariable angle of a spherical triangle.
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dv
finally, tb- is the longitude of the perihelium. The equation dt zz -j—,

becomesj by substituting in place of i/,

\/[A. (l+e. COS. (y
—•B-))^

Let us expand the second member of this equation, into a series pro-

ceeding according to the cosines of the angle v—a-, and of its multiples.

For this purpose, we will commence by expanding >—-
, ^_

into a eimilar series. By makiag

X =
1 + ^1-e^'

we shall have

l+e.cos. (t;-..) v'r=?tl+ ^. c^"—^^-^ l+^.c-^'-'^-'^-^J
'

* — = r = -7; ; r: — —

n

-,
—^r- ,

••• a = — • ; hence h =1
u ^(l-|-e. COS. (u

—

•a)) 1+e. cos.(u— ar) jit{l—e»)

t By reducing the coefficient cX—=^
^ \a. the second member of this equadon to the

same denominator, it becomes equal to

1—^"

(u—ar)7^/_l _(u_sr)V—1)•1—e=.(l + x» + ^(c^ '4- c

but c —

c

=2 COS. (v

—

to), •.• this second member =
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e being the number of which the hyperbolical logarithm is equal to

unity. By expanding the second member of this equation, into a

series ; namely, the first term relatively to the powers of c ~^' *

and the second term relatively to the powers c~^~'°)'^—y^ , and

then substituting in place of the imaginary exponentials their expres-

sions in sines and cosines ; we shall find

1 1

\+e. cos. (w—w) y/i ^'

(1

—

2x. cos. (u

—

c3-)+2a^ cos. 2(y—=r) —2a'. cos. 3,(u—w) + &c.)
;

By representing the second member of this equation by ?>, and making

q — — , we shall iiave generally,

1 x» g
, ; and from the equation a = , we obtain
VI—««)(14A=' + A. COS.(t)—ar)) (l-j-v/l_e^)

~
\Tl/, n? ) . and 1 + A' = S J=i-; •. by substituting for

!->.*, andl+A« we obtain
2(1—g^+y/l-e') ^ i

2.'/l_e"(l+^l—e").(l+e.cos.(u—w)) 1 + e. cos. (v—,,)

* The expression of the first term gives the following series

:

the expansion of the second term gives

making the factors of the same powers of a to coalesce in the two series, and observing

. ^ i. ilv—a).</— 1 ,
—i(v—'a)\/— 1) i

that A (c +c —A . COS. t{v -sr), we will obtain the value of

l+c.cos.(v->) -' ""^'"^ '^ S'^^" '" t'le text.
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e-'"-\dr^-^±______iJL
(1-fe. cos.(w—•sr)) 1'2'3 m.dq^

in which rfg' is supposed to be constant, and the sign is + or — , ac-

cording as m is even or odd. From this, it is easy to to infer, that if we

make

:!^ — (I gs^—

I

(1+e.cos. (t;—Tir)7 "~^
^

(14-E^^\ COS. (v—sr) 4- -E^^^. cos, 2(i)—x^)+£(^). cos. 3(t)—TS-) + &c.) J

we shall have, whatever may be the value of i.

(l + \/l—e»>'

the sign being +, if i is even, and — if i is odd ; therefore if n be

Substituting — for e we obtain —
7;

-. r =— '- = ip, :•
° ^r 1 "t^e. COS. (11

—

st) y+cos. (d— ar)

(9+COS. (u—w)) 9'" y+ cos. (i;—w) ' " (^+003,(1)—w)' " 1 9 J
'

iaiAd\\— \=d- — -^dq= , % -, and di. 1^1 =
[q) {g+ cos.(v—T^y {ij-f-cos.(v— ar)-5 lyj

=d.; ; rr .1- dg = —; -^ —
• : hence generally we obtain d"' i — J-

(y+COS. (e— sr))i • ^ (y+COS. (u—ar))+ ^ ' \ g j

^ ±. 1.2.3 w ± 1.2.3 me '^

7W 4-

1

?K 4- 1

(jr+C08. (v

—

a)) (1-fff. COS. (l)

—

to))

t Substituting — for e, in the value of ffl, we obtain—

=

.(1—2>. cos. («—«;)+ 2a'.

? ? •?»—

1

1 -2 f )

cos, 2(i>—«7)— 2a 3. COS. 3(r—s-)+ &c.) v 77-; ,,, =e .d.{ — Vz^\he
^ ' ' (1 +e. cos. V

—

a)Y \ 9 J
dq
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supposed equal to a '•v /*, we shall have

) ^ (5

. COS. (v—u7)-\-E

COS. Z(y—zs) + &c.)
;

(1) (2) (3
ndt = dv. (l-h- E . COS. (v—3-)-f£ . cos. 2(t'— o-) + E •

and by integrating

nt + t=v+E . sin. (f

—

zr^ + ^.E . sin. 2(t;—w) + ^£ .

sin. 3(v— -sr) + &c.

s being a constant arbitrary quantity. This expression for nt-\-i is very

converging* when the orbits have a very small excentricity, such as

the orbits of the planets and of the satellites ; and we can, by the

PART I. BOOK II. p

preceding series differenced with respect to q, and divided by e' ; the differential of the

—2 , 1 ^ i „ —

2

2 terra = e

—2 V 1 ^^—21
2e. —r^x3'—

—

.
±2e

(y+^y^_l)H-l

= by simplifying and reducing to a common denominator,

— °* —,
,• , which becomes, by substituting— for o,

, 2<r'(l + J VTH:?) ^ . . . ,^
3

^ - • , the expression given in the text.

* (l—e'')^ occurs both in the numerator and also in the denominator of the value of n.o'^,

as is evident from the value of dt given in page 101, compared with the preceding expres-

sion ; when the excentricity of the orbit is inconsiderable, e which expresses the ratio ofthe

excentricity to the semiaxis major will be very small, •.• the value of £(0, in which e'occurs

as a factor will be very small, and perpetually less and less.
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reversion of series, conclude the value of v in terms of /; we will

effect this, in the subsequent N°'-

When* the planet returns to the same point in its orbit, v is in-

creased by the circumference v/hich is always represented by Stt ; nam-

ing T the periodic time, we shall have

This value of T may be easily deduced from the differential expression

for dt, without recurring to series. In fact, let us resume the equation

-^ dv r^.dv ^ . ,, rr r ^*-^^
at = , or at = —; . from it, we obtam I := I —;— ;

h.u^ h ^ h

rr^.dv is double the surface of the ellipse, and consequently it is equal

to 27r. a*, tj \—e^ ; moreover, A* is equal to ^a. (1—e') j thus we

shall obtain the same expression for T, as has been given above.

If the masses of the planets be neglected relatively to that of the sun,

we have •/ ^ =z ^M; the value of /* is then the same for all the

planets ; T is therefore proportional to a'^ , and consequently, the

squares of the periodic times, are as the cubes of the greater axes of

the orbits. It is evident, that the same law obtains in the motions

of the satellites about their primary, their masses being neglected rela-

tively to that of the primary.

17. The equations of the motion of two bodies, which attract each

* When the
j
planet returns to the same point, the terms of this equation will be-

come

n(i4-r)-l-e = o-f-2x+£^ '.sin. ((r—sr)-}-2!r)+£^ '.sin. 2{(v—a)+2^)+ &c.

if this equation be taken from the equation nf-f- e =

v+E^^\sm.{v—^)+E^^\ sin.2(u—ar)-f£;^^^8in.3(r—ro) + &c. the difference wUI

he»7'=2T.



PART I—BOOK II. 107

other in the inverse ratio of the squares of the distances, may be also

integrated in the following manner : the equations (1), (2), (3), of

No. 9, become, when we only consider the action of the two bodies M
aud m,

(O)

(/A being equal to M + m).

The integrals of these equations will give the three coordinates

X, 1/, z, of the body m, referred to the centre of M, in a function of

the time, and then by No. 9, we can obtain the coordinates ^, IT and y
of the body M, referred to a fixed point, by means of the equations

0= ^'^

dt'
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in which we suppose that s is successively equal to 1, 2, 3, n;

^, 5, ...^ being functions of the variables a; , x , x , x ,

and of ^, symmeti-ical with respect to the variables x ,x , x »

that is such, that they remain the same when any one of these variables

is changed into the other, and vice versa, we can suppose

J'^= a}V"--'+'^+ l.^'\J"-'+'^ + L^'\ /^
^(2)^J2)^(„-.+l)^^(2)_^(.-H2) _^^^(2,^(„).

(„_i) (n—t) (n-i+l) An-i) {n—i+ 2) Jn—i) (n)

X :^a .X +y .x + /« x ,

a^ ', b h ; a , b , &c. being arbitrary quantities of which

the number is equal to i(n—?'). It is evident that these values satisfy

the proposed system of differential equations : moreover, they reduce

these equations, to i differential equations between the i variables

X ' , X r . Iheir integrals will introduce «* new

fjj i+3) In)
X ,

« ) quantities satisfy this equation; then their sum will also satisfy

the same equation, as will appear by substitution, and we are at liberty to assume

^(1)^^(1) /n_Hl)^^(i)_ ;«-+2)._.^(l),«
In each of the values of;^\.(2\

(n)
X , there are i arbitrary quantities ;

••• in the sum of all the values of then

—

t

quantities these are i.{n— i) arbitrary quantities. In the integration of a differential equa-

tion of the i order, there are i arbitrary quantities introduced. .•. In the integration of i

differential equations of the i order, there must be in all, i" arbitrary quantities.

This theorem is evidently applicable to the differential equations (O) ; for these equations

are symmetrical wirh respect to x, y, z, and remain the same, when any one of the va-

..,.,,. ,_ J (') («—«'+!) («—J+2)
nables is changed mto another ; •.• as x, y, z, correspond to jr , ^ , x

Sec. in the theorem, we are at liberty to assume one of them z equal to the other two, mul-

tiplied respectively by arbitrary quantities.



PART I.—BOOK II. 109

arbitrary variables, which combined with the i.(?i— i) variables, already

given, will constitute the arbitrary quantities, which would be pro-

duced by the integration of the proposed difFei-ential equations.

The application of this theorem, to the equations (O), gives 2=:ax-i-

by, a and b being two arbitrary quantities. This equation is that of a

plane passing through the origin of the coordinates ; consequently,

the orbit of m exists entirely in the same plane.

The equations (O) give

but by differentiating twice successively, the^equation rdr = xdx+7/di/

-\-zdz, we obtain

r.(Pr+Sdr.d^rzzx.dlx+y.d^y-\-z.d^z

+ 3.(dx. d*x+dy.d*y+dz.d*z).

and consequently,

By substituting in the second member of this equation, in place of

d^x, d'y, d^z, their values determined by the equations (O'), and then,

* rd'r-\dr*=xd^x+ 1fd^'1/+zd''z{.dx^^dl/^+dz^, :• rd3r-\-Sdrd'r= xd^x+yd^j/+

zd^z-]-Sdx.d'x-{-3di/,d^i/+ 3dz.d'z, and multiplying by r' we obtain the expression in

the text.
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in place of (Px, d-y, d^z, their values given by the equations (O) ; we

shall find

'=4'--^\+^-» , ^..dj\
dt^

The comparison of this equation with the equations (O'), will give, in

consequence of the theorem which has been announced above,

( dx dy d2 dr , . , i ,. ,

I -r-j —jr, —j-f
-J-,

benig considered as correspondnig to the particu-
dt dt dt dt

• variables

the time /;)

lar variables x , x ,x , x , and r being supposed a function of

dr zz X. dx+ y.dy
;

A, y, being constant arbitrary quantities ; and by integrating,

r — — +xa;+7^,t

h^— being a constant quantity. This equation combined with the fol-

lowing :

» From the equation (O') we obtain r'^.x. —j— = — Sr^.x. -^. dr — f^j^ilx, and by

substituting for -7-^ , we have r^x.-— =3 ^— dr—fudx ; .: the second member of the

, „ (x=H-y^+2^ , (xdx\ydyi^zd£\ „,«»'/,, .

preceding equation = + 3^. \—Ll-L-.). dr— ^.-i 2_^^ 3-^ {xdxSf-ydy

-\-zdz), hence the second member is reduced to —/^..dr, wliich combined with the mem-

ber at the right hand side, gives the expression in the text.

f It is clear from an inspection of the equations (O') that the theorem already an-

nounced, is applicable to them, and to this last equation, since any one of these variables

dr dx
may be changed into the other without affecting the constant quanttjes, ••• 'IT— ^- "IT

^''-dT'
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gives an equation of the second degree, between either x and y, x and

z, or y and z, consequently the three projections of the curve described

by m, about M, are lines of the second order, and therefore as all the

points of this curve exist in the same plane, it is itself a line of the se-

cond order, or a conic section. It is easy to prove from the nature of

this species of curves, that when the radius vector r is expressed by a

linear function of the coordinates x, y ; the origin of the coordinates

must be* in the focus of the section. Now from the equation, rz=
/*

+ A. a; + y.y, we can obtain, in consequence of the equations (O),

^{-^}

By multiplying this equation by dr, and then integrating, we sliall

obtain

rfr' ur°
rK -^ — Qf^.r+ J^^ h'=0,f

d being a constant arbitrary quantity. From which may be obtained

,^ rdr

' ' a fJL,

this equation will give r in a function of t ; and as by what precedes,

* It ig a distinguishing property of the foci of conic sections, that if their equation be

expressed by means of polar coordinates, these coordinates will be linear, when the origin

is at the focus.

d'r d*x d^y r y.^
, y.y 1 < ^' ?

+ ^="--rfF + y^ =-^. ^--l-^^:^-^. Ir—y ^' Multi.

plying by dr, we obtain, -^-^ = — /». ~+k\-f; and by integrating -^
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X, y, z, are determined in functions of r
J
we shall have the coordi-

nates of w?, in functions of the time.

18. We might arrive at these several equations, by the following

method, which has this advantage, that it detennines the arbitrary-

quantities in functions of the coordinates x, y, z, and of their first dif-

ferences ; which will be extremely useful in what follows.

Let us suppose that V = constant, is an integral of the first order of

(ijc {In dz
the equations (O), F being a function of .t, y, z, —7- , — , — : Let

X', yy z , represent these three last quantities, and then the equation V
= constant, will give by its differentiation.

dz_

dt
^_ §dV\ dx <dV\ dy CdV\

Xd^S' dt'^Xdyj' dt'^XdzS-

CdV^ dx idV\ dy'§dV-k dz' ,

but the equations (O) give

dx _ fj.x dy' _ \^ ^_i jt--
1t~ 1^' ~di~ '^'dt- r''

consequently, we have the following identical equation, of partial dif-

ferences,

HSdV) ,
UV}

,

SdV)\ ^^^

'W\+^-U'\-''-id7U'

It is manifest, that every function of x, y, z, x', y\ z', which, sub-

stituted in place of (F) in this equation, renders it identically nothing,

• As F is in an immediate function of the six variables, x, y, s, x, 1/, z', its differential

coefficient with respect to another variable t, must be equal to the several differential coef-

ficients of V, considered as a function of x, y, z, x', y, z, multiplied respectively, into

the differential coefficients of these variables, considered as a functions of i.
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becomes, when it is put equal to a constant arbitrary quantity, an in-

tegral of the first order of the equations (O),

Let us suppose

V= U + U'^-U" + &c.

U being a function of the three variables x, y, z; U being a function

of the six variables x, y, z, x', y', z', but of the first order i-elatively to

a/, y', sf ; U" being a function of the same variables, and of the second

order relatively to x', y\ z', and so of the rest. Substituting this value

in the equation (I), and comparing separately, first, the terms in which

x, y, 3', does not occur ; secondly, those which involve the first power of

these variables ; thirdly, those which contain their squares, and their

products, and so on of the rest ; we shall have

( ^dU'i^ S'^U"-)^ S'^U'l-.

&c.

The integral of the first of these equations is, as we know by the

theory of equations of partial differences.

hao

PART I. BOOK II.
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TJi •=. func. {xy'— yod, xz'— zx, yz'— zj/, x, y, s.)*

As the value of V must be linear with respect to x', y', z', we shall

suppose it of the following form :

U' = A.(xy'—yx)+B,(^xz'— zx') + C.(yz'— zy')
j

A, B, C, being constant arbitrary quantities. Let the value of V be

continued as far as the term U", so that U'", V"", Sec. may vanish ; the

third of the equations (F) will become

The preceding value of U' satisfies also this equation. The fourth of

the equations (I') becomes

The integral of which equation, is

JJ" — funct. {xy —3/a;', xz' — jsa/, ysi— zyf, x', y', z')A

This function ought to satisfy the second of the equations (!'), and

• For the integration of this equation see Euler Integral Calculus, tome 3, chapter 3,

No. , and Lacroix Traits Complete, Tom. 2, No. 634.

I P being the derivative function of V, —ry = — (i'+z). F',—-= (i-s). F*; —-^,

= (X Vy)-F;:-x.-^+y.-^-\rZ.-^= (-«.(y+«) +y.[x-»)-\.z.{x +y)).F'

= 0; -j-=(y'+s').F'; -7— =(z'— x). i^'; —- =—(x +/). F'; .-.x.

+ y.^ +z'. ~—= (x'.(/+z')+ y'-(z'-^')—«.(x'+y).r'= O ; Multiplying the

(dU dx , dU dy
,
dU dx-)

,

first member by dt, and substitutmg we obtam j
--—

• -jt.+ -j— . -^ + ~t~' "jT i • "

= dV.
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the first member of this equation multiplied by dt, is evidently equal to

dU ; therefore the second member must be an exact differential of a

function of ^, y, z. But it is evident that we can satisfy at once this

condition, the nature of the function U", and the supposition that this

function is of the second order in z', y', x ; by making

U" = {Dy'—Ex'). (xy'—yx') + {Dz'—Fx').

(xz'—zx) -1- (Ez'~Fy'). (j/z'—zy') +G.(x"-ty'°-+z'')i

D, E, F, G, being constant arbitrary quantities ; and then r being equal

to ^/x^+y'+z^, we have

U =— -^. (D,T+Ey+Fz+2G) ;•

Q 2

dU
•

"^l-

— =_ D^y+ «-) +£.(2^x'-xy)+J'.(2xz--xi')-}-2G*',

dU"-^ = D^yx-yx')— £.(xx'+«2')+ F.(2ry—yz') +20/,

-^ = D.{2z'x _rx )+£.(2y2'-;:y)-P.{w'+yy)+2Gs'.

dU" dV dU'^l

da/
'*'^'

rfy
+^-

rfz' 3-

—Z).((yxy+ zxs/)+ E. ( 2yx.x'—X 'yO+ F.{2zxJ—i^z'+ 2Gxx')-^

+ Z).((2xvy-y^x')-£.(xyx' +zys:')+F.(2zy.y—y'r')+2Gyy) J5L

+ D.{(2xzz'—z'x')+E.(yzi'—z'7/')—F.(xzxi- yzy") + 202/) -^,

= by concinnating and omitting those terms which destroy each other, (—Z).(y^-j-z')

^-E\x-'Jr~')-i/—F.[x'-^z^y^D.{xy)y'-irD.{xzy-{-E.{yx)x'^E{yzy^F.(zx)x'+F.{zy)

y+ 2G.(xx' 4- j^y'+sz')) -^ = (by observing that y' 4-i'=r^—x^ ; x'-|-z»=>-»_y^

4c.) the value of 17, differenced with respect to x, y, 2, successively, for

1^ =- f • -0+73 -^^^ + Ti (£i/*+^«+2Gx)=_ -^. (2).(y'+z»)-%x -
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consequently we can obtain, by this means, the values of U, U', U" ;

and the equation V zz constant, will become

const. = — 4- {Dx+EyJ^Fz+2G)^{A-\-Di/—Ex').{xy'—ya:')*

+ {B + Dz'—Fs').(xz'—za:') -i- {C-\-Ez—F>j').{yz'—zy')

This equation satisfies the equation (I), and consequently the dif-

D.xy-F.y.-1Gii), ^ =- ^- F.^. ^ . Fz^+^ (Dxz+Eyz+2Gz) =- fr- {

J

(.T*4-y*) — -Dx2

—

Eyz—2Gz), ••• if these equations be multiplied by :c', y', J , respec-

tively, the sum of the terms at the left hand side will be equal to d\], and the sum of those

on the right hand, will coincide with those already given.

* This equation evidently satisfies the equation (I), for

ir= _il. D.+— . (,D.v'+Exy+Fxz4-2Gjc)+Ay+Dy"—Ex'y'+Bz'-^Dz-—Fx'z'
dx r r^

^=—^,E + -^.(Ey''+Dxy-\-Fyzj-2Gy)—Aj^—Di/'se'^Ex''-iCz'+ Ez'''—F,/:^,
dy r r^

'^Z.= .-fl.F+—. (Fz^ + Dxz4-Eyz-{-2Gz)—Bx'—Dz'x'+ Fx"—Cy'—Ez'y'+Fy'^.
dz r r^

, dV
,

, dV
, ,

dV
dx dy dz

_JLm)f-\-z^)—Exy—Fxz—2Gx).x'.+Ay'JJrDy'^-v'—Ex''-y'-\-Bzx^Dz'^x'-F£'z',

_ iL. (£(xH2" )-Dxy-Fyz—'iGy),/-Ay'x'-Dy'^x+Ei^^y'-\- Cz'y'^Ez'iy'-Fy^'z'

,

— ^. {F{x^-^y^)-Bxz -Eyz->f2Gzy-Bx'z'-Dz''x>J[. Fx'^z'—Cy'z'—Ez''y'+Fy"z:

= by obliterating the quantities which destroy each other

_fL.(Dh/''+z')-Exy-Fxz-2Gx)x'J^E{(x^^z')-Dxy-Fyz-2Gy)y'^F{x^^y')-Dxz-Eyz

-2Gz)z'; '^=—E{xy'—yz')—y{A + Dy' -Ex' ]—F{xz'-zx')-z{B+Dz'-Fx-)+2Gx,



PART I.—BOOK II. 117

ferential equations (O), whatever may be the arbitrary quantities

J, B, C, Z),. ^. F, G. Supposing them all to vanish first , with

the exception of A ; 2dly, with the exception of B ; Sdly, with the

„ „ . , .
. dx dt/ dz . , c > ' ,

exception of C, &c., and restoruig —— , -^ , -r:, m place oix,y, z',

dt dt dt

we shall obtain the integrals

c =
xdy—1/dx ^_ xdz—zdx

_ „
_ydz--zdy__ \

dt
c'zz

dt
; C"

-
dt

n-f.^S'^ (dl±dz-)l ydxj.dx zdzxlx
..

"-•/+'^-\7
-Of

)+ de ^ df '

f*
{da^^dz^) \ xdx.dy zdz.dy \

S^ dl^ "^ df '
I

a~f"j.. S ^ {dx^^df) ) xdx.dz ydy.dz^
_"-/ +^-|7 2f > dt^ ^ de '

a r dt-

(P)

/

c, c\ c'', f,f',f", and a being constant arbitrary quantities.

'^-L= B{xj/-t,jf)-^x{A+D^--E=if)-F{y^-Z!/)-z{C+E^-Fy')+'2Gy',

^= D{xJ-zxf)-\rx(B^D^—Fx-)J^E{y:^-Z!/)+y{C^Ez'~Fy')-^^Gz', '

Multiplying these three equations by x, y, z, respectively, and observing that those terms,

of which one factor is the product of two of the coordinates, x, y, z, destroy each other,

we obtain, by concinnating —r-;X-{—tt- V + -r-r- z^ — £(x'+z^)v'—i)(y^+3*U''

—

' ^ dx dy' -^ dz
^ ;,y w

,

Fiy'' +x''y+E{yx)-\-Fxz+2Gi)x-^(Dxy+Fzy+2Gy)iJ+{pxz+Eyz-^2Gz)z', and

It
dV

this expression, when multiplied by -^ is identical with the preceding valueofj:'-^ \-

, dV , dV
.V--T- + ^

dy dz

* Supposing all the constant quantities but A to vanish, the preceding equation be-

comes const. =^A{xy'—^x') ; supposing them all except D to vanish, we shall have const.=
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The differential equations (O) can only have six* distinct integrals of

the first order, by means of which, if the differences dx, dy, dz, be eli-

minated, we shall obtain the three variables %, y, z, in functions of the

time t; therefore one at least of the seven preceding integrals should

occur in the six others. We may perceive even, a priori, that two of

these integrals must occur in the five remaining. In fact, as the sole

element of the time, occurs in these integrals ; they are not sufficient

to determine the variables x, y, z, in functions of the time, and conse-

quently tiiey are inadequate to the complete determination of the mo-

tion of m about M. We proceed to examine how it happens that these

integrals are only equivalent to five distinct integrals.

zdii^^vd '*'

If we multiply the fourth of the equations (P) by —
, » ^^^

then add it to the fifth, multiplied by — ; we shall obtain

A- r i^dy—ydz) {xdz-zdx) {xdy—ydx)
^-J'

It
^^ '

dt + ^'
dt

C|iA (dx^ + dy'^) } (xdy—ydx) f xdx.dz ydy.dz\ t

(T If i"** di \~~dF"^~~df~S'

yy.J— zzV which will be equal to the fourth of the equations (P), by substituting for

x', y, ^, their values. Supposing G to be the only constant arbitrary quantity, we ob-

lu. , , . const. u, , , . .

tain, const.= G
{

—+ (^"+i/^-\-'^-))\ •' makmg —-—= -i-
, and substituting

r

for x'. y, j/, we obtain the expression given in the text.

* As the differential equations (O) are of the second order, and since the complete

integration of each equation furnishestwo constant arbitrary quantities, the entire number

cannot exceed six.

f Performing this multiplication and addition, we obtain

ft. (xzdy—xydz)—xzdy^ —xzdy.dz''+xydy-.dz-\-xydz- ,
zydy^ .dx-\-zldxdydz
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T, 1 ^v x- • 1 r z'hi~—udx xdz—zdx ydz—zdy , .

By substituting m place of —-—-^—

»

; 1- — their' 6 f
^; dt dt

values, which have been determined by the three first of the equations

(P), we shall have

—f^'—f^" -L o. Sit _ C^ljh^l X . ^^f^^dz ydy.dz

c '^ Ir I dt' S)'^ ~dF~'^~^t''~'

This equation coincides with the sixth of the integrals (P), by making

./' = LE^ZiJL, or 0=fc"—f(f+f'c. Thus the sixth of tlie integrals

(P), results from the five preceding, and the six arbitrary quantities

c, d, c'', f, J", f", are connected together by the preceding equation.

If we take the squares of the values o?f, f, f", which are deter-

mined by the equations (P), and then add them together, we shall

obtain

—y}.dx.dy.dz—yz.d*z.dx
fi j t f^ (xy.dz— t/zdx) —yxAx^dz—yxdz^

yz.dx^ + yz.dz'.dx x^.dx.dy.dz-\-x.zJz'.dy xz.dx'.dy z'.dx.dif.dz+ ^3 +
-dT^ df^ d^

=by mak-

ing factors to coalesce-/c'^i/'c'+..^ iffc^ _ z. ±^(J^l+^^ ,.
fd_y

^ -^ ^ ^ r dt dt dt" ~ dt

{dz^—dx'^)xy.dz(dy^+ dz-) xy.dz (dx^+dz^) _ y.dx {dy^~dz^) y.dx

^^ '^'Yt d? dT dt' + ^"
dt df" "^""ir

*

{dz^+dx')
, ,

,^dx.dydz
, , . dxdy.dz „ . . , .,

-^:
^^ i- + («'—^') —^ij—+ (x'—«'). j^— = after all reductions, and obli-

, . , , , , , (zdy—ydz) (xdz—zdx) su
terating quantities which destroy each other, j — r/ •

j, 1-
—^.

(xdy—ydx) (xdy—ydx) {dx^ + dy"^ ) xdy ^ ydy.dz xdxJzl ydx

~^t ^"^^ 1? ^~dr'i de + dt'' s~~dr'
€ xdx.dz , ydy.dz) ),.,., ...
< ———V , 1 i

which IS the expression in the text.
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/~K=(^- 1
a? S~lTtS \'

I d? T>

in \vhiclW= is, for the sake of abridging, put equal to /'' + /*4-/"%

but if we take the square of(, tlie values of c, c, c", which are given by

the same equations, and then add them together, we shall have, by

making c + c' +c = n
;

*•>'"— ~7r-+ ^
'

dt^ r ' dt'

rfdy'^.dx^+z''dz-.dx^ 2yz.di/.dz.dx^ l^x (ydy.dx-\-zdz.dx) ^ (dy*+dz^)

+ ''

di^
*

dt* + r dt'
^'

^i"

(ydy.dx^zdz.dx
) .„_ j^V, ,

(</a-*+2(fo'.&»+tfe*) _ 2^,y'- (rfx'+</z')

dt' '-^ "" r" 4-^' rfi* r c^^*

x'-dx'^.dy- -\-z''dz-.dy'' '2,xz.dx.dz.dy'^ If/.y (xdx.dy-^-zdz.dy) dx' -\-dz^

+ '~~dF '' ' dF ^~ di^ ^' W^

(xdx.dy+zdz.dy) _ f^ _, (dx*+2dx\dy\+dy*) _ '^ ^, (dx*+di/^)

d? '-^ - r^'^~- dt* r " ' dt^

x^dx\dz''+y''dy\dz'' ,
Qxy.dx.dy.dz" 2ft (xdx.dz+ydy.dz)

^
(/<+

~
(/« ^ r di-

(dx^+dy^
^
(^dx.dz+ydy.dz)

^
. , ^^ obtam/'+/'^+/*^-^^=

c/i' eft'

* '-^
3F^^ ^ y'' d0 '^^' di*

"
r
'^

^<-^ r dt'- r ' dt^

"^
dt' dt*

"^
dt'' dt'

"^
rf/^ dt^

dy.dz dx- 2xz.dx.dz dy- 2yz.dy.dt dx'^

2k ( rfw.c?^ rfx.c/z , dx.dy
,

du.dz
,

£/:r.tfe , dy.dx )
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X dl' J X dt S " '

consequently, the preceding equation will become,

PART I. BOOK II. R

C dx.du dx.dz 7 dt/'^ -\-dz^ C dy.dx du.dz 1

,2, 2 , ,^
{dx*+d,/* 4-dz* + 2dx-.di/' i-2dx'-dz'-\-2dy'>.dz')

{x +y +z% ~ X .

(
dx^+^dx^dy^-^-^dx^'.dz^

) , (
rfi/*4-2^^'rfy'+2%^f/^°) _^ (dz*i-2dz^.dx'-^2dz--d,,')

dt* ^
'

dt^ "
'

df-

dx-dy ,^ dxdz
,
^ dii.dz idx'^A-dy^-X-dz') 2/* , , ,

((/j'+rfy''4-&') 2^ (T^f/c''.4-,yVv'+zV/;:-42-r.y-c?-r-"'.y) (2xz.dx.dz-\-'2yz.dy.dz

)

dp •"
r M*

"^
dt''

, , (du\dx''+d!/\dz') '(dx\dy'+dx\dz')
, , {dz'du^+dz\dx') „ ^

literating tlie quantities which destroy each other, and observing that r''dr^ =x'</x*+

y*di/^+z'dz'+2xi/.dx.di/ + 2xz.dx.dz+2yz .dy.dz

, dx''Xdij*Jf.dz^4-2dx'^.df-\2dx''.dz^A-'idui.dz'')
, , ,

r'. ^i-^l-l. X ^|_I -1 '~(—x\dx*—y-dy*—z-dz''

f 2xif.dx.dy 2xz.dz.dy 2yz.dy.dz'' \ rdx^+ dy-^dz' l 2fc 2^

t (it-' dt^ dt^ l*\ rf<^ J——•»+—

•

-! -—• V , which may be evidently reduced to the expression in the text.

* Squaring these equations and then adding tliem together, gives

^
{dy^+dz^

^
{dx^-\-dz') __ {dx^+dy^ _ 2xy.dy(dx 2xz.dx.dt*

dt' '^^''
dt"-

"^"''
dt^ dt' dt"

2yz.dy.dz _ (dx^- +dy'-i-dz^) x^.dx' y'dy- z'^.dz^

ly.dz _ J
{dx-+di/^+dz-) ( rdr \'

~'
*

at~ i"^J •

dt-
\ -ry -r I- ^^, ^^, ^^j j^

^xyAx.dy 2xz,dxdz 2yzdy.d:

dt* dt" dt'



122 CELESTIAL MECHANICS,

° = d? 7+""F"*

The comparison of this equation, with the last of the equations (P),

will give the following equation of condition

h' a'

Therefore it follows, that the last of the equations (P), occurs in the

six first, which are themselves only equivalent to five distinct integrals,

the seven arbitrary quantities c, c', c", f, f, f", and a being connected

by the two preceding equations of condition. From hence it results,

that we shall obtain the most general expression for V, which satisfies

the equation (I), by assuming for this expression, an arbitrary function

of the values of c, c', d', J\ andy, which are determined by the five

first of the equations (P).

19. Although these integrals are inadequate to the determination of

ic, y, z, in functions of the time, they .nevertheless determine the

species of the curve described by m, about M. In fact, if we mul-

tiply the first of the equations (P), by z, the second by —y, and the

third by x, we shall obtain, by their addition,

— cz— c'y [c"j:,*

which is the equation of a plane, of which the position depends on the

constant quantities c, c', c".

If we multiply the fourth of the equations (P) by a;; the fifth by

y, and the sixth by z, we shall obtain

* Performing this multiplication the members at the right hand side of the equation

will disappear, for they become

_ xzdy— yz.dx —xy.dz+ gi/.dx -\-yx.di.—zx.dy _cz-<iy\-<;x —^ —j^ —2^ 0.
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but by the preceding number we have,

'•
W- IF- '

consequently,

0=!.r— fr+fv+fi/+f"z.

This equation, combined with the following, namely,

= d'a:—c'j/ + cz ; r" zz x^ + t/" + z* ;

gives the equation of conic sections, the origin of r being at the focus.

From this it follows,* that the planets and the comets describe very

nearly conic sections about the sun, this star existing in one of the foci,

aud these stars move in such a manner, that the areas described by the

radii vectores, increase proportionally to the time. In fact, if dv re-

r2

* Performing this multiplication, and then adding the products together, we obtain

rfu' , dz' dx.dy
, „ di dz du dz

(d£jd£A^ , dr^

dt" + '
•

dt^
'

From the first of these equations we obtain

^/'•/"•yt and by means of the equation = c"j:— c'y-\.cz, and r* = x- +y^-Uz^

,

we can eliminate, 2^ and z, and then substituting for r* its value, we arrive at an equation

ofthe second degree between y and x, by similar process we obtain equations of the se-

cond degree between x and z, y and z, from which it follows that the curve described

is a conic section ; and as the value of r is given in a linear function of the coordinates

X, y, s, the origin must be at the focus.
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represents the indefinitely small angle, intercepted between the radii

r and r+ dr, we shall have

dx* + cIt/- -\-dz^ = rVt)«+ dr^;*

the equation

^
(dx'^ + dij^ + dz^) r*dv* _ ,

,

' jr* di^
- '

will consequently become, r*dv'^= h^dt^ ; therefore

hdt
dv =

r«
•

From this it appears that the elementary area ^rdv, described by the

radius vector r, is proportional to the element of time d/, consequently

the area described in a finite time, is proportional to this time. It

also appears, that the angular motion of m about 3J, is at each point

of the orbit, inversely proportional to the square of the radius vector;

and as we can, without sensible error, assume very short intervals of

time, for the indefinitely small moments ; by means of the preceding

• The differential of the curve z= ds = \/ dx+dj/'+dz^ = the hypothenuse of a

right angle triangle, of which one side = dr, and the other side about the right angle

~rdv, :• dx' +di/''+dz' = ofs^ = dr'+r^.dv^-

As h varies as the square root of the parameter, it follows that tlie angular velocity

varies as the square root of the synchronous areas divided by the square of the dis-

dt

tance, see page 10 ; hence the angular velocity in a conic section is to that in a circle at

the same distance r, as A : : v r ; ••• they are equal at the extremity of the focal or-

dinate ; substituting for h its value
g'raVl—e' dv_

^.^^
Q^a.'x/l—e-

. .^^

T ' dt T.r^

body describes a circle at the unity of distance in a time equal to T, then the angular

velocity in the circle — -:^= the mean angular velocity in the ellipse, consequently,

when the angular velocity in the ellipse is equal to the mean angular velocity, we havt

gy _ 27ra . —e
^ ^^^ ^ _ ^^^j _ ^^^i^ _ ^ ^g^jj proportional between the

semiaxes ; in this position the equation of the centre is a maximum.



PART I.—BOOK II. 125

equation, we can obtain the horary motions of the planets and comets in

different parts of their orbits.

The elements of the conic section described by m, are the constant

arbitrary quantities of its motion ; they are consequently functions of

the preceding arbitrary quantities c, c\ c, J, f, f', and — ; we now

proceed to determine these functions. Let fl represent the angle which

the intersection of the plane of the orbit with the plane of a; and of y,

constitutes with the axis of x, which intersection is termed the line of

the nodes ; let ip be the mutual inclination of these two planes. If x

and y represent the coordinates of ni, referred to the iine of the

nodes, as axis of the abscissce ; we shall have

x' = X. COS. 9 4-?/. sin. 9

;

y' = y. COS. fi— X, sin. 6.

We have also

z = y'. tan. (p ;

consequeutly we shall have

z = y, COS. 9. tan. (p
—x. sin. 6. tan. p.

The comparison of this equation with the following,

=. c"x •— dy-^cz'y

will give

d — c. COS. 9. tan. <p ;

c" = c. sin. 9. tan. ip ;*

from which may be obtained

r , . . c'
• A companson of these equations, gives y. cos. t, tan. ^ — x. sin. i. tan. ^=— ,

c" d
I— . X •.•— = COS. 4. tan. ip

;

c c

See page 3, and page 34 of 1st Book.

-'/«c" c* c" c' ^ +c"
y— . x •.•— = COS. «. tan. ip; — = sin. i. tang. <p,

•.•
^j

= tang. *f.

—

C C C G
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tan. 6 =—y ;
c

tan. , zz ^/f+Zl.
c

By means of the preceding equations, the positions of the nodes, and

the inclination of the orbit are determined in functions of the constant

arbitrary quantities, c, c', c". At the perihelium, we have

rdr = ; or xdx + ydy + zdz -=.0
;

let therefore X, Y, Z, represent the coordinates of the planet at this

point ; and from the fourth and fifth of the equations (P), of the

preceding No. may be obtained.

But if we name / the longitude of the projection of the perihelium, on

the plane of x and of j/, this longitude being reckoned from the

axis of X, we have

Y

consequently,

X ~ *'^"* ^ '

f
tang. I

=-f>

this equation determines the position of the axis major of the conic

section.

* Substituting —xdx ior ydy + adz, and —ydy for xdx -{-zdz in the two last terms of

the second member of this equation, and they will become

.-. multiplying the first by Y, and the second by X, and then subtracting, we obtain the

expression given in the text. /
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If by means of the last of the equations (r), -tjz be eli-
df

minated from the equation r .
—

,:^ ro-= « > we shall'
at' dr

obtain

~di
^.r-J^-l^^^h-

but dr vanishes at the extremities of the greater axis ; therefore at

these points we have,

The sum of the two values of r in this equation, is the axis major

of the conic section, and their difference is equal to twice the excen-

tricity ; thus, a is the semiaxis* major of the orbit, or the mean dis-

tance of m from M ; and v 1— is the ratio of the excentricity

to the semi-axis major. Let e represent this ratio j and by the pre-

* The coefficient of r with its sign changed is the sum of the two values of r, and

their difference is equal to twice the radical, and •.* = to 2 a. y 1
, andV-'^

\/ 1 is the ratio of the excentricity to a ; \/ »« — -^-— =s fte

fi. \ ft • r = ;«'e* = i' ; c?r = ae. sin. udu, •.• rdr= a\e. sm. udu.{l —e cos. u\

2r = a.((2—2e. cos. a)—( 1 -}- e* . cos. * «— 2e. cos. «)) := a.( 1 — e » , cos. *u), and

V 2r a.(l—e')= ac^.(l— cos. *u) = ae*. sin. *«, and therefore

rdr , , a'-.e. sin. u.[\—e cos. m) du a^
; _ __ - {~dt\ = = —-.

V^.\j2r-rl.-.a.{X-e^).
•^^/«^sin.^« V'^

(1

—

e COS. u)du.
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ceding number, we have

a ~ k' '

therefore f^e ~ I. Thus, we can know all the elements which deter-

mine the nature of the conic section, and its position in space.

20. The three finite equations found in the preceding number, be-

tween ,r, 7/, z, and r, give x, y, z, in functions of r ; thus, in order to

determine these coordinates in a function of the time, it is sufficient to

have the radius vector r, in a similar function, which requires a new

integration. For this purpose, let us resume the equation

a ar

by the preceding number, we have,

therefore we shall obtain

rdr
dt =

\/ju. \jlr~- a.(l—e°)

In order to integrate this equation, let r =. a.{\—e. cos. w), we shall

have

at = —-pz^. (I—e cos. U),

from which may be obtained by integrating,

t -^ T = —p.' (w

—

e sin. u) ; (S)

T being a constant arbitrary quantity. This equation determiuM u.
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and consequently /• in a function of ;; and as x, y, z are determined in

functions of r ; we shall obtain the values of these coordinates, for any

instant whatever.

We have thus completely integrated the differential equations (O)

of No. 17 ; this integration introduces the six arbitrary quantities

a, e, I, 6, <p, and T: the two first depend on the nature of the

orbit ; the three following depend on its position in space ; and the

last is relative to the position of the body m, at a determined pe-

riod, or, what comes to the same thing, it depends on the instant of

its transit through the perihelium.

Let us refer the coordinates of the body tn, to other coordinates

which are more convenient for the usages of astronomy, and for this

purpose, let v represent the angle which the radius vector r makes

with the greater axis, reckoning from the perihelium ; the equation

of the ellipse will be

a.n—e')
r — ^^ —

•

i+e. cos. V

The equation r — a.{\—ecos. u), of the preceding number, indicates

that u vanishes at the perihelium, so that this point is the origin of the

two angles u and v ; it is easy to shew, that the angle u is formed by

the greater axis of the orbit, and by the radius drawn from its centre,

to the point where the circumference described on the greater axis as

diameter, meets the ordinate drawn from the body m, perpendicular

to the greater axis. This angle is termed the excentric anomaly, and
the angle v is the true anomaly. A comparison of the two values of r

gives

1 — e. cos. u =
1+e. cos. V

from which may be obtained

PART 1. BOOK 11. S
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tang.i .r = v/l±£. tang, i ii.*

1—e

If the origin of the time t be fixed at the very moment of the passage,

through the perihelium, T will vanish ; and by making, in order to

abridge, —f^ ~ )^ yfQ g\^^\\ have, ntzzii— e. sin. u.
1^

a"-

By collecting together the equations of the motion of m, about M,
we shall have

nt := u — e. sin. ti, \

r — fi.fl

—

e. COS. u) f

tan. 4 u = V -^- tan. i u. \
1—e -

J

the angle nt being what is termed the mea7i a?iomali/. The first of

these equations determines u in a function of the time /, and the two

remaining equations will give r and v, when tc shall be determined.

The equation between u and v is transcendental, and can only be re-

solved by approximation. Fortunately, from the circumstances of the

celestial motions, the approximation is very rapid. In fact, the or-

bits of the celestial bodies are either almost circular, or extremely ex-

sin. a + sin. i {"-\-i) , , , sin. a a
* 7— — tan. —-— , let 6 :r 0, and , = tan. -- , i. e.

COS. a-}- COS. 6 2 l-}-cos. a 2

v^'-^»^-
"-" ^ ^^Lh-A«i-«_ = tan. 4- ; now .. cos. u =e i£+^hA, and cos. v =

J + COS. a v/i+cos.a ^ 1+ c.cos.^

1—e. cos. M ' " '2
IL_</l— cos. v V^'^T

_ cos. u
cos. M—

e

tan.

\/l-4- cos. u A / , .
—e+ COS. m

V 1—e COS. u

y/l -fc— e. COS. tt— cos lt /(l-f-e). (1—COS ;<) V^l-f-e «

\/l—e—e. COS. H+cos. u ~ V(i—e).{l-\-cos. u) s/]ZIe ' 2 •
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i

centric, and in these two cases, we can determine tt in terras of t,

by very convergent fonnulEe, which we proceed to develope. We
shall give for this purpose, some general theorems on the reduction

of functions into series, which will be extremely useful in the sequel.

21. Let u be any function of a, which it is required to expand into a

series proceeding according to the powers «. ; this series being supposed

to be represented by

u, q, qo, &c., being quantities independent of a ; it is evident that ii

is what u becomes, when a, is supposed to be equal to cypher, and that,

whatever be the value of n,

{^}= ^'^-^ n.g„+2.3 («+)i.«y^_j^j-j- &c.

the difference j—z— f, being taken on the hypothesis, that in u every

thing is made to vary which ought to vary with «. Consequently, if we

suppose that after the differentiations, a=:0, in the expression of s— r-
Ldx. J'

we shall have

9n =
Xdl'^y

1.2.3 n

If M is a function of the two quantities a and «', and it is proposed to

expand it into a series, proceeding according to the powers and pro-

ducts of a. and a.'
J

this series being represented by

U ZZ. U + a.yi,o-|-a".5'2,o4- &C.

4-a'-.yo,o+ &C.

s 2
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the coefficient q„,„, of the product «".«'", will be in like manner equal

to

j- /+•» I
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case the ?n'* difference of u, taken with respect to a, and divided by

(/as"*, is evidently equal to this same difference, taken with respect to t,

and divided by dt . The same equality obtains between the differences

taken relatively to a.' and t', or relatively to a." and f, &c. j hence it

follows, that in general, we have

I a u I— J d ^ (

\dx.da.'^ .c?»"" . &c. J t di'.dt .dV'' J

If in the second member of this equation, u be changed into u,

that is, into>(^, f, f, &c.) } we shall have, by what precedes,

,. _5 /+"'-^""^'^".Ku'.r.&c.) I
^"'-•""' •" 1 1.2.3...«. 1.2.3...n'. 1.2.3...n".&c.i

If M is a function of t and a, only, we shall have

^'' ~ 1.2.3. .M.dr'

therefore

K^+.)_,(/)+—^^+_-^^^+^—^.^-^ + &c. 0)

Let us in the next place suppose that u, instead of being given im-

mediately in a and t, as in the i^receding case, is a function of x, x

being given by the equation of partial differences, i-j— c — •^* )1~[ »

Cdx J Cdt J

in which z is any function whatever of x.

In order to reduce u into a series proceeding according to the

C d^u")
powers of a, the value of }—-^\^ must be determined in the case in

which ji=:0 ; but in consequence of the proposed equation of partial

differences, we have



\din _ d.fz.du ,^ (Jc)

\- dt
'
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fc5-terW~~'w*i dt r
therefore, we shall have

(dtci _
ldZ\~

This equation being differenced with respect to «, gives

c d'u 1 _ d-.fz.du

\'dJ'\~ do^.dt
'

but the equation [k) gives, by changing u into fz.du,

(.d.fz.du} _ ^ df^.du 1

id^VX dt y

consequently

[c?^M> d-.fz^.du

ldA~ df '

This equation being differenced again with respect to a, gives

id^Wi _ d^.Jz-.du

w\~ dx.df
'

but the equation (k) gives, by changing u into ^Vm

. . du' du dx du' dx dii fz.du'

* Let /.rf« =u', then -^ = -^. ^=--^-^ ^-rfT = ' "1^- '^'^'^ '^

. d.fz.du _ d.Jz-.du
substituting for du' its value, we obtain — ^j—

.

f As the characteristic/ indicates an operation, the reverse of that denoted byrf.we

can remove the sign f, by depressing the index of d by unity.
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therefore

Ldx'\~ I df~y
By continuing this process, it is easy to infer generally

SdHi) U':fz\dzn (d''-\z\\-]\
id^^\=l—dF-r\ —r-^r

Les us now suppose that by making «=0, we have x zz. T, T being

a function t ; we shall substitute this value of x, in z, and in u.

Let Z and u represent what these quantities then become ; we shall

have on the hypothesis that azzO,

^d'tn di

teS
~

dt^'~

'

and consequently, by what precedes, we shall obtain, -

which gives

.= u + «.Z._ +— .^.J^^+^^.c/^)^(+&c;(P)

It only now remains to determine what function of t and «, x repre-

sents ; which will be effected by the integration of the equation of

partial differences jT-f^^'jjTf- For this purpose, we shall ob-

serve, that

rf^ = {§}.rf^4-{|}.^«:
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and by substituting in place of< -r^t its value ^' < -7- r we will ob^

tain

therefore, we shall have

dz\

—-. <:f.(/+a3)

1 +
\dxy Idt}

which gives by its integration, x =^(t+a,z'), (i>(t-\-a.z) being an ar-

bitrary function of t-\-o(,z; so that the quantity which we have termed

T, is equal to qi^t). Consequently, as often as there exists between

a. and X, an equation reducible to the form x = (p(^t+ az) ; the value

of u will be determined by the formula (P) in a series proceeding

according to the powers of «.

dz
* zd»'=dicz — a. —7-. dx, therefore, by substituting this value of zd», we obtain the

dx

expression for dx given in the text; now as dx is an exact differential, the member, at the

dx
right hand side of the equation must be also an exact differential, consequently, —r- •—

I !-)-«. •—3—) > must be equal to (^(t-\-itz), ip' denoting the derivative function
\ dx dt '

of (p.

2 being by hypothesis a function of x, let it equal F(x) and we shall have x =
^{t \-aF[x)), and it is easy to obtain from this expression the proposed differential equa-

tion of partial differences, for

dx_

da
= ?'(<+«FW)- ^

(F(x))^»F'{x\^^ ^ -^ = «''('+«-fW)
{
^+''-^<^)-^^ =

and by eliminating <p'{'+«.F{x)), and reducing, we shall obtain

dx , dx
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Let us now suppose, that m is a function of the two variables x and z',

these variables being given by the equations of partial differences

{d^\ -. fdx\ Cdx'\ _ , cdx'^

in which z and z' are any functions whatever of x and x'. It is easy

to be assured that the integrals of these equations are respectively

X = (p(^t-ir a.z) ; x' = v|/(/' + aV) ;*

(p(f-)-«2), and tJ/C^'+ajV) being arbitrary functions, the one of t-^<xz,

PART I. BOOK II. T

and as u is supposed to be equal to <p(;r),

du „ . dx du ,, , dx

hence, by eliminating <p(i) we obtain —r- « -r- = —r- . -—-, and by substituting for —

-

da at dt dec da.

its value F{x).-^—t and making Fix) =z, we obtain after ail reductions —;—=z. —r—
dt d» at ;

dx d\x
when 1= ^ + »F{x) ; x=.t when « = 0; —-- =.1; a, Z, and —r- become respectively

at. dt

i|/(«), F(t), and -^'(t), consequently, the equation (P) will become 4'{t) + 4''{f)- P(*)

«. d.{m).F{ty) u^ d\{^'(t). F(t)^) *3 „ .^ . ,.

tion, azrl, then we shall have x = f-i-F(x), and the preceding series becomes ^'(a:) ==

i|/<+ r)-'(i). /(<) + -— . '

' •!—-^+ &c., which Lagrange first announced in 1772,

an epoch deservedly celebrated in the history of science for the many beautiful applica-

tions of this series, if F(x) = 1, then x= F{t-\-a), and ••• u =4'(''^)'

* Let z=F(xx') ;
2' = F,{x x); :• x = <p(i+ «. F(xy)), X = Mi" + «'• -f,(^ ^)), <"

the functions indicated by F, F,, be defined, and if the form of the preceding equations

permits us to eliminate, the values of z and z, may be respectively obtained in terms of

X, t, a, t', we may v regard x, x', as functions of those four quantities.

^ =,'(*+*. F(x .')).(! +«.^). '£=,'(t+..Fix^HF+.. ^);
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and the other of f+xz. Moreover, we have

% =^(^+'-'-i^XV)Mi +<«'• ^);-|;= ^(*' + «'.FXx/).«'. % ;

§ = 4^(.'+.'.F{x'x')).(l+.'.f); % = ^'(^'+ .'.F(xx')..'. ^' ;

dx QX
when a, a' vanish, we have —r- = <p'{t), -y- = <p'(t'). F,

;

at a»

dx ^ rfx „ dx' „ dx ,„ ,, daf ,,, ,, „

in this case x-=<p{t) ; x' = vf'(''), ••• !f is a function of t, t', only ; as u \t only an explicit

function of x, x', we shall have

du du dx du dz , , , , . , dx=— • U -r-,'-T- ; aid when « and « vanish —j- = (?'(;) F.
aa dx da dx dot da

dx' du du ,, . r, du du dx du dx' , , , „—- =0; •.• -^ =— . (l>'(t). F; -— = -7-. —
, + — .

-J-;,
and when a, a =0,

rf« c?« rfar d* dx da dx da,

dx daf . , » „ , du du
, , , „ _ , , , dx , ,, . dx

. . ^ =^/^. F= *i. F; ^= 4^1, ^. F=^, F, .-. by substituting z for
da dx dt dt ' da' d»'- df ' dt '

^

F we obtain— — 2. —r-= when x = <p{t + az), conversely, when this differential
da at

equation obtains, we can deternune the value of a; = cp(t-\-az).

As a depends explicitly only on x, t', a', and as «' is one of the independent variables

in differencing u with respect to a, it is only necessary to have respect to x, •.• the rea-

soning of the preceding page is applicable in this case.

du du . ,

.

, . du
When a is equal to cipher — = s. -jj-, •.• m this case we may substitute -^

- du
for z. -^.
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This being premised, if we conceive that x is eliminated from u and

from z, by means of the equation a/ = \{i! + a's') ; u and 2 will be-

come functions of x, a! and t' without a or / ; therefore we shall ob-

tain, by what goes before,

I dx"y\ dt"-' y

'

If we suppose «nO after the differentiations, and if besides, we make

X = <p{t-\- a,z"") in the second member of this equation a; = (?(/+ ««"), and

consequently i ;?- f = ^"^
-> ;7- f » ^^ shall have on these suppositions,

and consequently,

\d"'.u}

\d«.\dx"''S ( dx S'

dt"

We shall have in like manner.

m-{'-m\df

If we suppose a' to vanish after the differentiations, and if besides we

suppose that in the second member of this equation, x' — »J/(/'+a'y»');

we shall obtain

dr-\di"
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provided that we make a. and a' to vanish after the differentiations,

and also that we suppose in the second member of this equation

a; = ?.(^+«^") ; x' =^(lf-\-ai.'z"^)',

which comes to supposing in the second member as well as in the first

mem-and to change in the partial difference ] ;( , of this second
c dx.da. J

ber z into z", and z' into z''^. Thus, we shall have on those suppo-

sitions, and also by changing z into Z, s/ into Z', and u into u,

C d" -"'-"-. [ -^^^ }
- __< l.da..da.') y

( 1.2.3 n. 1.2.3 n'.dr-\dt"^'-^ J
°

By following on this reasoning, it is easy to infer, that if we have r

equations,

x"=n(r+o^"z")i

&c.

z, z', z", &c., being any functions whatever of x, x', sf', &c. j u being

supposed to be a function of the same variables, we shall have generally

t n+n'+n"+&c.-r^ C d'U ? ^
_-^ Xdx.da.'.d!a.'

. &C.5 r"

^". »'
« ' &c. - ( 1.2.3.. .w.l.2.3...?z'.1.2.3,..n".&c.c?r-'.rfr'-'.c?r.""-'' ^

c^-^M

provided that in the partial difference < -—r? -y -
v. o
— f » ^^e change

Ldx.da. .da. . &c. J

z into s", e' into z'"', &c., and that afterwards we change z into Z,

z' into Z', 2* into Z", &c., and m into u'.
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If there is but one variable x, we shall have

CrfM? rdul

therefore

dt
^(- 1^\ \

9" =
1.2.3 n.dt"-'^

If there are two variables a: and x' ; we shall have

this equation differenced with respect to «', gives

but we have < —; > = s'. j -7- f 5 ^^^ ^^ i" this equation x is sub-

stituted in place of u, we have < — ? =2'.
^

;7- c ; therefore

S (Pu 1 _ i'^'^'idFsK
,
^dz) idu)

idZd:^^- -• I

—

irS ^^'\d'i;^'\di^'

* By substituting 2" for z, &c. we have made the coefficient , ,, , gn,n to ae-

pend on a coefficient of the second order, and the ilifFerentiations relative to t and t' will

not be difficult when «, «' are = to cipher.

du , du du''
, , , 4 du > <i

d^i^ 1 , ^^ '^"

-5—,= r. -7-., -.•8.
, . , =Z,d.{z'. < -TT J- =Z2/. •< -;—77 f + 2- —jT"* "X '

• by substituting s", s'"', for s, s', respectively, we obtain the expression which is given

in the text.
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If we suppose « and «' equal to nothing, in the second member of this

equation, and ifwe change 2 into Z", z into Z'"', and u into u ; we shall

obtain the value of
I

-T——J, on the same suppositions; hence we

obtain

1 .S.-i n.dr-\ 1 .2.3 ri.dt''^-'-

by proceeding in this manner the value of (/„, „.,„,„ &c., for any number

of variables whatever, may be obtained.

Although we have supposed that w, z, z, z'', &c., are functions of

X, x, a/', &c., without t, t', f, &c. ; we can however suppose, that they

contain these last variables : but then denoting these variables by

tA t', t'', &c., it is necessary to suppose /, t', t'', constant in the

differentiations, and after these operations to restore /, t', &c., in place

of^,, //, &c.

22. Let us apply these results to the elliptic motion of the planets

;

and for this purpose, let the equations (/") of No. 20, be resumed.

The equation 7it — 11— e. sin, u, or u =. nt + e. sin.«, being com-

pared with X :=. 9(/ + az) ; x will be changed into u, t into nt, and a

into e, z into sin u., and (p{t-\-az) into nt-\-e. sin m, consequently, the

formula (P) of the preceding number will become

^{u) = 4'(«0 + e. ^\nt). sm. "/+— . d. ^^^
'
^^^^ ^^T;^-

(4^V). sin. ^?zO
.

nW '
'^^

* If in the equation u = ni + e, sin. « it be required to develope -i^ (m) into a series

arranged according to the powers of e, then applying the preceding formula, besides the

changes indicated in the text, u will be changed into
\J'(!<).
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»)/'(«/) being equal to—l^--'. In order to expand this formula, it

ndt ^

is to be observed that c being the number of which the hyperbolical

logarithm is unity, we have

{nt.^—\ —nt.i/—\\i r nt. -/—i —nt.^'^i^i*

? ; COS. *nt=\ Z! > ;

2v/=T j (2 j'sin

i being any number whatever. If we expand the second members

of these equations, and then substitute, in place of c'^"*V— • jjjjjj ^f

c—rnt.^—i^
their values cos. rnt. + ^IITsin. mt.^Hl, and cos. rnt.

— ^ ~y Sin. rnt. »/ —i, r'being any number whatever ; we will obtain

the i powers of sin. nt and of cos. nt, evolved according to the sines and

cosines of the angles nt of its multiples ; this being premised, we
shall find

sin. nt + —. sin. ^«?+ ___, sin.'«/+ 7-r^ • sin. *nt + &c.

g
= sin. nt— ;; ("cos. ^nt— 1

)

1.2.2^

e*—
5 (sin. 3nt—3 sin. nt)

1.2.3.2^ ^ ^

ef 4 3 \
H ^ ^ . ^, (cos. 4«/—tcos. 2n/ + i. —1—

)

1.2.3.4.2'
^ ^ 1.2 y

"^
1.2.3^4.5.2^

'^^'"' ^"^"^ ^^"' ^"^*'
Ti"•

^'"' "^^

— &c.

* SeeLacroix, Traite Complete, Tome 1, page 76, 95, of the Introduction.



144. CELESTIAL MECHANICS,

Let P* represent this function ; if it be multiplied by ^{''("O ^^^

then if each of its terms be differenced, with respect to /, as often

as there are units in the power of e, by which it is multiplied, dl

being supposed constant ; and if then these differentials be divided

by the corresponding power of ndt, the formula (9) will become

4/M = 4/(nO + eF).

P representing the sum of these differentials thus divided.

* The series P is always the same where the equation m = n/
-f.

e. sin. nt obtains,

whatever be the form of the function indicated by 4' ; therefore when the form of -.^ is

given, the expression for ^/(m) will be obtained by performing the operations indicated in

the text.

When the value ofP, is multiplied by e. cos. nt, the form of the terms multiplied into the

even powers of e, will be cos. ;'. 7it. sin. i. nt, and the expansion of this product is effected by

the formula sin. a. cos. b = sin.
^ ^'"'

•, therefore the terms multiplied by

the even powers will be the sines. The form of the terms multiplied into the odd powers

of e, will COS. in. cos. snt the developement of which is effected by the formula

cos. a. cos. b = '

'
"*"—^'^ ~~

i
^ consequently the terms multiplied by the odd

powers of e will be the cosines. Ifany term ofthe form Ke^'. sin. snt. be differenced as often

as there are units in 2r, it is evident that when this terra is divided by ndt)-'; the result-

ing terms will be Ke^'. s'"'. sin. snt, for as the terms are alternately cos. snt, sin. snt,

when the number of differentiations is even the last term must be sin. snt, and as « is in-

troduced as a factor at each successive differentiation when the number of differentiations

is 2^, i^"" will be a factor of this last term, the first term is -f cos. int, and the signs of

the subsequent terms are minus and plus in pairs, .*. the signs of the successive differential

coefficients including the first, are plus minus, minus plus, plus minus ; i. e. + —

,

—
-J-, -f — , &c. ; hence it appears, that when r is an odd number, the sign of the

last term will be — , and when r is an even number, the last terra will be -f- . In a

term of the form of the Ke'"-*-'. cos. snt the number of differentiations being odd, the

last term must be of the form Ki''+^. s^''+^. sin. snt, the signs of the terms in this case are

alternately minus and plus in pairs, i. e. , -f +, , -f- -f-, and as the sign of

sin. snt, is the opposite of the sign of the penultimate terra, when r is even this agn is

fvidently —, and when r is odd this sign is -{-•
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It would be easy by this method to obtain the values of the angle u,

and of the sines and cosines of this angle, and of its multiples. If for

example, we suppose »J/(w) = sin. iu ; we shall obtain vj/'(wf) =:i cos. int.

The preceding value of P, must be multiplied by i. cos. int, and the

pi'oduct should be expanded into sines and cosines of the angle nt, and

of its multiples. The sines will be multiplied by the even powers of e,

and the cosines will be multiplied by the odd powers of e. Then any

term of the form Ke . sin. snt will be changed into ± Ke^''. s^^,

sin. snt, the sign + having place, if r is even, and the sign — obtain-

ing, if r is odd. In like manner any term of the form Ke "^
. cos. snt.

will be changed into T Ke "^^
. s^^'^^ . sin. snt, the sign — having

place if r is even, and the sign -f- obtaining, if r be odd. The sum of

all these terms will be the value of F, and we shall obtain

sin. iu = sin. int + eF.

If iJ/(m) be supposed equal to u*, ^'(nt) will be equal to unity, and

we will find

uzznt-\-e. sin. nt+ . 2 sin. 2nt A -,.("3*. sin. Snt—3 sin. nt)
1.2.2 ^ 1.2.3.2V

+ -—
-; -,.(4^.sin.4n/—4.2'.sin.2«/)

1.2.3.4.S'
^

+ —
-J (5*. sin. Snt—5.3 .

5.4
sin. 37it+ —V. sin. nt).

1.2

PART I. BOOK II. V

* If ^^'{a)= u, then -^(nt) = nt, and ^'(nt) =: —r- =1, the series P' becomes sin. nt
ndt

e , COS. (2«f— 1) e' (sin. 3nt—3 sin, nt)

1.2.2 ndt 1.2.3.2'' ' (ridt)'- 1.2.3.4.2'

4 3
(cos. lent—4 COS. 2nt+i. —

^

<^'.
,.^

'— + &c. which will be reduced to the expression in the

text, by performing the prescribed difFerentiations.
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This series is very converging for the planets, u being thus deter-

mined for any instant ; the corresponding values of r and v, will be

given by means of the equations (y) of N°. 20 ; but we can obtain these

last quantities directly in converging sei'ies, in the following manner :

Eor this purpose, it may be remarked, that by No. 20, we have r =
a(l

—

e cos. ii) ; and if in the formula ((/), we suppose ^(u) zz 1 —e.

COS. u, we shall have ^\ni) = e. sin. nt, and consequently

. , " • 2.1 e^ d' sin. ^nt
,

"*

I—e. cos. u-=zi—e. cos. nt-\-e-. sin. ^nt-r . }-

1.2 ndt 1.2.3*

d"-. sin. ^/2;

+ &c.
n\de

Therefore by the preceding analysis, we shall obtain

r c 6"
— = 1 + e. cos. nt cQ!i.2nt*
a 2 2

•———7,(3. COS. 3nt— S. COS. nt)

,.(4'. COS. 47it— 4.2". COS. 2nt)
l.'i.i).'2

5.4—
:—4.(5^ COS. Snt—5.3 . COS. 37li-{ .

1.2.3.4.2
^

,1-2

COS. nt)

* Since 4'(a) = 1

—

e. cos. u, -^{iii) = 1— e. cos. ;?;; by substituting for sin. ^w<, sin.

^nt &c. their values, the expression for 1—f. cos. ic becomes 1

—

e. cos. nt-\ • (1 —
it

, . e^
, {— sin. 3Kf + 3 siu. ?;i) e* (cos. 4«f—4cos. 2«* + 3)

eos. Int)^— . d. -^^ + -^^.d .-

^^-^^
±J

+ &C., now wlicn the differentiations indicated by the characteristics <f, rf*, &c. are per-

formed, the resulting terms only contain cos. nt, and its multiples, for those terms, in

which the differentiation is performed an odd number of times,' involve the sines of nt

and of its multiples, therefore the resulting terms are cosines, and where the cosines of

nl, and of its multiples are to be operated up6;i, the differentiation must be performed an

even number of times, ••• the resulting terms arc in this case also cosines. The reason why

in terms of the form Ke'^\ sin. snt the resulting quantity becomes A'c'"". s"'. sin. sr\t, is

the same as that assigned for a similar expression in the preceding page.
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g6

J.
(6*. COS. 6nt—6.4,*. cos. 4^t +

1.2.S.4.5.a-

—. 2*. COS. 2n0*
1.2

"^

Let us now consider the third of the equations (/" ) of No. 20 ; by

means of it we obtain

sin. ^v _ /i + e sin. ^ u

COS. ^ V 1— e' cos. ^ M
*

By substituting in this equation, in place of the sines and of the cosines,

their values expressed in imaginary exponentials, we shall have

c

c

and by supposing

«.•— 1
.

,
^ 1 —e) uV~i

, I

''

1+4/1—e*'

we shall hare

u2

r= , COS. i«)=
~

ZL
2V—

1

2

c^' -*_c 2 2 ' 2'
• Sin. 4"= ~—

, COS. iv = 2. ii , '.' substituting

these expressions for sin. —cos.— , in the expression sin. — , multiplying both numerator
2 2

V
COS.—r

V /

and denominator by c^ .and performing similar operations on ®'°- "2"
, we shall

have the expression in the text.

u
COS.-
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c
~i_^«V—i.J l—>^-c I ,,

1 i-x.c«-^- r
and consequently,

log. CI—A. c )— log. (1 — X. c" J

V —

1

from which may be obtained, by reducing the logarithms into se-

ries,!

c'-'^-'+l
1—AC ^ 1— '^c ^ c + 1

_ i_e+/i-e^ _ ^YUe. ^^^-g+J^+f), ... by substituting these values of l+>
1+^1—e^ ~ 1 + yi-e^

and 1—A, we obtain

t Log. c"'^^ - vV^ = log. c""^~'+ log. (1 - A.c~"'^^)- log. (1-A.

.«V-X)^„.^Z:] ^ log.(l-A.c-"-v^-' )_log. (1-A. c"-^^) ; log.(l-A.c-"^^)

=_A -^'_£. -2«V-_ xi_ r^«-^-_&e.-.log.(l_.).c«-^"*12 3 & V /

= — . c ^ + ^- <= + -^ • c + &c.; .-. log.(l—A).c —

log. (1—A).c =Y. (c -c )+-2-'^* "
'"^T-
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V = u + 2x. sin. u+ . sin. 2u-\ . sin. 3m + . sin. 4m + &c.
2 t 4t

by what goes before, we have u, sin. u, sin. 2m, &c. in a series arranged

according to the powers of e, and expanded into sines and cosines of the

angle nt and its multiples, therefore in order to obtain v expressed in

a similar series, it is only necessary to expand the successive powers

of / into a series ranged according to the powers of e.

The equation u — 2—— , will give by the formula (p) of the

preceding number,

JL__L + i:^ 4. ML+Jl _£L + i'(i+ 3Xi + 5) _£l . &, .

M'
~ 2' 2'4-2

"^
1.2 * 2' + * 1.2.3 •2^4-6 ^ « .,

and as we have,

u •=. 1+v 1—e*
i we shall have

This being premised, we shall find by continuing the approximation to

(c
"' "'— c "' "') +"&c., V dividing by v'—1, and substituting 2v^-l sin. <u. for

c — c ' ~
, we obtain the expression which is given in the text.

• The equation u = 2 ——, being compared with the expression x = ^{t-\-az) gives
u

z = F(x) =—, » = —e\t =2, and ,^(x) = i- ,
•• when ^x) = -j , M^) = -ht*

^'(0 = .2J+i' ^(') = "2 ' <=o°s«q"ently _. =_+ ^j^^+ _j^^. -^^ +

1.2.3 * 2'+6 "^

e* 1 ;^

From the equation «= 2 we obtain «*—2tt=— e*, .••—= 1 +v' 1—e* ^ -

hence x' = —r- = the expression given in the text. And ift=l, a= s-V^+ \-a)
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quantities of the order i^ inclusively,

e^). sm. 3nt+ <-r-T-. e* . e^J-. sin. 4nt,*
'

( 9b 480 y

(13 3 43 ,, . „ , UOS
"^

ll^'^ "64

lOQT 1223
H —i . e\ sin. 5nt -\

'— e^. sin. 6nt.^ 960 960

_|, 3 _Z_ C , = h ~3~H—^' (^s t''^ approximation is not carried beyond the

fifthpowers), A-=- ^1 + 2^-^ +-^ . ^ g 5 =-4"+—+T-
i_; .3 =-.(143.^ 2 5

)=—+¥•—
=^*=^-^^+*-i2i )=r6

* When u is expressed in the manner prescribed in the text, the five first terms are

those given in the preceding page; and as the approximation is carried to the sixth

powers of e, we must add the additional term which is

. (6K sin. Gnt— GAK sin. int 4.-^. 2^sin. 2ni);
1.2.3.4.5.6.2^ ^ ^ 1.2

'

If to these terms expressing the value oft*, be added the values of 2a. sin. w, 2a'. sin. 2k,

&c., reduced into a series ranged according to the powers of e, and developed into sines

and cosines of the angle nt and its multiples, we shall have

2A.sm.«= |e+ — +_^.sm.ni.+ |--+— +— J.sm.2««+ |—

+
"l^ }

• (3. sin. Snt- sin. ni)+ | -^-f- -^ } .(4^ sin. 4»/-2«. sin. 2nt)+^^ .

(5'.sin.5n« — 3.33.sin3re< + 2. sin. «<) + -r—rrr • (6*. sin.6ni+ -t.**. Sin. 4nt -f

5.2*. sin.2n0: -^.8in.2«= |_ +_+— j. sin.2«« + {-^+-8- }

(sin. Snt — siu. »!<)+-[ i^ + "lo J
" ^*' *""' *"'""* "°* ^"'^ "*"

96 * ^^'^ *'°" '^''' ""
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The angles v and nt are here reckoned from the perihelium, but if

we wish to count them from apheliuni, it is evident that to effect this,

it is only necessary to make e negative in the preceding expressions of

r and v. It will also be sufficient to augment in those expressions, the

angle nt, by the semiclrcumference, which renders the sines and co-

sines of the odd multiples of nt negative, consequently, as the results

of these two methods ought to be identical, it is necessary that in the

expressions of r and ofv, the sines and cosines of the odd multiples of

nt, should be multiplied by the odd powers of e, and that the sines and

cosines of the even multiples of the same angle, should be multiplied

by the even powers of this quantity. This is, in fact, confirmed d pos-

teriori by the calculus.

Let us snppose that in place of reckoning the angle v, from the

perihelium, we fix its origin at any point whatever ; it is evident

that this angle will be increased by a constant quantity, which we will

denote by 73-, and which will express the longitude of the perihelium.

•

3.3*. sin. 3nt 4. 4 sin. nt) + •— . (6'. sin. Qnt— iAK sin. 4«f -f 1.2K sin. 2n/)

;

2a* C e* e^ 1 f e* 3e' c

-^ . sin. 3m =
I -jj+^ \

sin. 3"« + |—+ -32" | • (s'^- *«'— S'"- 2»0 +
-—-. (5. sin. 5nt— 2.3. sin. 3nt -}- sin. nt) + ^rr . (6*. sin. 6nt— 3.4'. sin. 4nt + 3.2'.

«n. 2nt) ;
—— . sin. 4m = •} -—-+ -—

- \ . sin. ^nt + -—. (sin. 5nt— sin. 3nt\\- .*
[^ o^ iZ i lo 64

2a' e' e*
(6. sin. 6nt—2.4. sin. 4n<-f2. sin. 2n<) ;

. sin. 5u — —— . sin. 5nt -j . (sin. 6nt—
5 80 16

sin. 4nf). If the several factors of sin. nt, sin. ^nt, &c., be collected and arranged, they

will give the respective terms of the value of v, for instance, the factors vphich multiply

sin. nt, are, taking into account the value of h which is given in page 145).

e^ e^ e* e* e^ e^' e^ e' e' e^ e' 1
(2<r -+___+___.___

-^
_^.__+ __4.__|.s,n.„(.

gi 5e^ 1 e' e^ e^ e*= (2e — H—-— > . sin. nt; the factors of sin. 2nt are -—- 4 f-
—- -|- —^

-f-

-«-+ T- + IF + -5 r - -5-
'

&'=• See page 145.
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If instead of fixing the origin of /, at the moment of the passage

through the perihelium, we fix it at any instant whatever ; the angle

nt will be increased by a constant quantity, which we will denote by

t— Ts; and consequently the preceding expressions of— , and of v

will become

1 +ie*—(e— |- e ). cos. (ntA-i—^)—{^ ^— 1 e* ).r

~a ' '
''' ^ 8

cos. '2..(nt + £—xir)— &c.

V = nt-t i +(2e— -e'). sin. (nt-\-i-^)+ (— e'—— c*),

sin. 2(nt + t— -sr) + &c.
j

V is the true longitude of the planet, and nt + t is its mean longitude,

these two longitudes being referred to the plane of the orbit.

Let us now refer the motion of the planet, to a fixed plane, a little

inclined to that of the orbit. Let (p represent the mutual inclination

of these two planes, and 9 the longitude of the ascending node of the

orbit, reckoned on the fixed plane j let 6 be this longitude reckoned on

the fixed plane of the orbit, so that 6 is the projection of 6 ; also let v,

be the projection of v on the fixed plane. We shall have

tan. (f,—0) =cos. (p. tan. (u—§).

This equation gives v, in terms of u, and vice versa ; but we can

have these two angles, each in terms of the other, in very converging

series, by the following method. The series

X* x'
^v = ^M+A. sin. u -f -—-. sin. 2m +— . sin. 3«+ &c.

has been already deduced from the equation
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by making

tang. i» =V-—- • tang. \u.

^ 1 —e
^yTTe

l—e + 1

yl + e
into cos ip

;

we shall have

COS. a>—

1

*1
^ — TT- — — tan. -r- 9;T

COS. (p+l a ^ '

the equation between i^v and i^ti, will be changed into an equation be-

PART. I.—BOOK II. X

(7.(1 gi)
• By making e negative in the equation r = —i

, v will be equal to cipher,
1 -re. COS. V ^ '

when r = a.{l+e), i. e. at the aphelium, •/ it is from this point that the angle v is

reckoned.

Since the results must be identically the same, when v is reckoned from perihelium and

aphelium, and since the signs of the odd multiples are necessarily changed, in order that

these expressions may remain the same as before, the sign of the factors which multiply

these odd multiples, must be changed at the same time, i. e. these factors must be odd

powers of e.

t 1—2 sin. -— ip= cos. ip; 2 cos. -— <p— 1 = cos. <P,
.'. ^ —= _tang.

i 2 COS. ^ -1- 1

«1 s/l—e~ -/l+c —i/i—

e

—TT- ^, , ,:; r^=- , multiplying both numerator and denominator by
2 \/l + e v^l+e -f v^l—

e

^ •' ^

. . 2e e

vl+e+ vl

—

e, we obtain after all reductions ^ , ^ ,- -=
, ,

,/- ; =a;
2-r-'2i/\—e* l+vl

—

e^
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tween v,—9 and v—S, and the preceding series will give

v^— 8 = u— e — tan ^4'
<P' sin. 2(f— S) -hi- tan. *^(p. sin. 4(w — g)

—^. tan. '4<?. sin. 6.(w— e)+ &c.

If in the equation between hv and ^u, we change hv into r— S, ^m

into t'— 9, and V —— into ; we will obtain
' 1—

e

COS. (p

X = tan, Hi?}*

and

V— e — V,—9 + tan. %ip. sin. 2(y,—9) 4-^. tan. *4 ip. sin. 4(z',—9)

+ J-. tan. "i 0. sin. 6(t;,— 9) + &c.

It is evident from an inspection of the two preceding series, that

they may be converted one into the other, by changing the sign of

the tan. '^(p, and by changing the angles, i\—9, and r—£, the one into

the other. We will obtain z\—9, in a function of the sines and cosines

of the angle /I? and its multiples, by observing that by what goes be-

fore, we have,

V = 7it + I + eQ,

(Q being a function of the sine of the angle nt + e
—

-sr, and of its mul-

tiples) ; and that the formula (i) of No. 21, gives, whatever may be the

value of i,

'1

2(v €) being substituted for u, and observing that when —tang. — . u is substituted for a,

the even multiples of two are positive, and the odd multiples negative, we obtain the expres-

sion which is given in the text.

'1
sm. — 1

1

1 — cos. Ip 2 _ tan.— <p.
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sln,^(t;—.e)=sin. t.(7itf-i—^eQ)zz]l r-^r-+ TITTT" "^'
\

. sin. i.[nt+ t—£)

,5.^ iV-Q\ i'.e^.Q"
, 7

C 1.2.3 1.2.3.4.5 5

. COS. i.(nt+e— g).

Finally, 5 being the tangent of the latitude of the planet, above the

fixed plane, we have

5 — tan. (p. sin. (v—6) ;

and if r, represents the radius vector r projected on the iixed plane, we

shall have

r, = r.(l+s=)-^= r(l—l5*-f-|. 5*— &c.);t

by this means we are enabled to determine Vt r, and s in converging

series of sines, and cosines of the angle nt, and of its multiples.

23. Let us now consider the orbits which are very eccentric, such

as are those of the comets ; and for this purpose let the equations of

No. 20, be resumed, namely
fl.ri—e^)

1+e. COS. V
'

nt = u — e. sin. u

;

1. hv = V;tan. Ay =: V • tan. Aw.
1

—

e

X 2

* By the formulae of No. 21, if the function sin. i.{nt-\-i—6) receive the increment ieQ,,

the value of this function so increased, will be the successive differential coefficients of sin.

j.(nt+£—€), (which are ultimately its sines and cosines) multiplied into the successive

powers] of ieQ, and divided by the products 1.2.3. ..j- ; and these terms being concinnated,

give the expression in the text.

t *. cot. $= sin. (v

—

i), V «= tang. (p. sin. (u

—

i); y'=r cos. Iat.= —
^l+s'*

~

r.(l--i-«H |-«*-&c.).
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In the case of very excentric orbits, e differs very little from unity •

therefore let us suppose, 1— er:a, a. being very small. If we name D,

the perihelium distance of the comet ; we shall have Z)= a.(l

—

e)-=a.a
;

therefore the expression of r will become

(2—x).D D »

r— i
;::;

2. C0S.''it; «. COS. t o, ^, ,
« , oi > >^

COS. ^^v. < 1 -i tan.-^i;^

which gives, by reducing into a series,

r= —rr- i 1 ~- tan. %v+ < -^ > . tan. *^f— &c. \
COS.^^W(. 2~x ^ (2—a) ^

J

In order to have the ratio of v to the time t, we will observe that

the expression of the arc in terms of the tangent, gives

tt= 2. tan. ^u. (1—J. tan. %u+^. tan. % u—&c.) ;t

but we have

tan. 1m = V J—— • tail' k"" 5

therefore we shall have

uzzl.sl^^ tan. It;.

1
14(^)- tan.^i- t;+ i (^)'.tan.«4i'-&c.)

* «'=«* —2<»+ 1 :
vr_

i_j_2. COS. -iu—1—2«. COS. »iti+*

«.a.(2—«) J-(2—«)

2. COS.HH^l—2 COS. "if) 2. cos, 4u—«. cos.,*ir+«. sin.^^w

_ ^•'" "^ • dividing the numerator and denominator by 2— «, we ob-~
COS. ^^1.(2— «)+ «. sm. ^\u

' ^

tain the expression in the text.
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we have likewise

2 tan. Am
"*" "*-

l+tan.^i^"
" ^' ^^"* 2"-Ci— tan. '^w+tan. iw—&c.)

;

from which may be obtained

e. sin. M= 2(l—«)• v 5— • **"• i'^O ^ t^"* 'i*^ +

{^-^}ltan.>-&c.(

<z

These values of u and of e. sin. w, being substituted in the equation

nt =.u— e. sin. u, will determine, in a very converging series, the

time t, in a function of the anomaly v ; but previous to making this

substitution, it may be observed that by No. 20, n-=za. '^n* , and as

D~aa, we shall have

1 D 3

This being premised, we shall find

2—

^

.ti——a. >. a tan. *^w+ &c.^.

2. sin. iu

2 tan. J

u

COS. iM 2 sin. iu. cos. |u

l-f- tang. ^|u sin. ^\u sin. 'iu-j-cos. *|m
'

COS. '^\u

_'J~ D .. _ «T\/|M u— e. sin. u _ dI ^ 2</<»

(t*n.Wl-4{2£;} • tan.-.+l{£-}^ang.*|v-&c.)-2.(l-«.)^_Z.
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If the orbit be parabolical, « = 0, and consequently

D
r —

COS. ^Au
'

t= ^jz=^\/<2 . (tan. Iv+l. tan. %v).*

The time t, the distance D, and the sum |U, of the masses of the suu

and of the comet, are heterogeneous quantities, and in order to render

them comparable, they should be divided by the respective units of

their species. Let therefore the mean distance of the sun from the

earth represent the unity of the distance, so that D may be expressed

in parts of this distance. It may then be remarked, that if T be

called the time of a sidereal revolution of the earth, which we will sup-

pose to depart from the perihelium, we shall have in the equation

nt=:u—e. sin. u, uzzO, at the commencement of the revolution, and

u — 27r, at its completion, tt being the semicircumference of which the

the radius is unity ; therefore we shall have nT= ^Tr-, but we have

n=a~'^. v^f* =V ju, , because a = I ; therefore

/- Stt

The value of (/. is not exactly the same, in the case ofthe earth and ofthe

comet J
since, in the first case, it expresses the sum of the masses of the

tan. iv(l — . tan. ^\v-\- J V . tang, ^w—&c.) > , if the parts which destroy

i
each other in this expression be obliterated, and if a^ which occurs both in the numerator

and denominator, of the part which remains, be likewise obliterated, the resulting quantity

will be value of t given in the text.

• It appears from this value of t, that the times in which different comets moving in pa-

rabolick orbits, describe equal angels about the sun placed in the focus, are in the sesqui-

plicate ratio of the perihelium distance. See Newton, Prop. 37, Book 3, and also No, 27.
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sun and earth ; in place of which, in the second case, it expresses the sum
of the masses of the sun and comet ; but the masses ofthe earth, and of

the comet, being much less than that of the sun, they may be neglected,

and we may suppose that ^ is the same for all these bodies, and that it ex-

presses the mass ofthe sun. Therefore by substituting in place of \/^ its

value -— in the preceding expression of ^ ; we shall have

= -7=. (tan. \v^\. tan. %v),
TT.V 2

t =

This equation contains no quantities which are not comparable with

each other, it will easily determine t, whenever ^ will be known ; but in

order to determine y, by means of t, we must solve an equation of the

third degree which admits of but one real root. We may dispense with the

resolution, by making a table of the values of v, correspondino- to those

of t, in a parabola of which the perihelium distance is equal to unity, or

equal to the mean distance of the earth from the sun. This tabic will

give the time which corresponds to the anomaly v, in any parabola of

which Z) represents the perehelium distance, by multiplying by JD^,

the time which answers to the same anomaly, in the table. We shall

obtain the anomaly v, which answers to the time, by dividing t by Z)^>

and then seeking in the table, the anomaly which answers to the quo-

tient of this division.

Let us now suppose that the anomaly v, which corresponds to the time

t, in a very eccentric ellipse, is required. If quantities of the order a- be
neglected, and of 1

—

e be substituted, instead of a; the preceding ex-

When this equation is reduced to an original form there will be only one mutation of

sign ;
•.- there will be only one real and affirmative root ; when u and D are givefl, r and

t may be obtained immediately by the solution of a simple equation.
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pression of / in v, in the ellipse, will give

_ Z)i\/2 ("tan. 4^+^. tan. %v
t=: ^- |+(1— e). tan. \v.(^\-\. tan. *i)w—f tan. *!\v)\

We should seek, in the table of the motion of comets, the anomaly

which answers to the time t, in a parabola of which Z) represents the

perehelium distance ; let U represent this anomaly, TJ-\-x being the true

anomaly in the ellipse, corresponding to the same time, x being a very

small angle. If we substitute in the preceding equation TJ-^-x in place

of V, and then reduce the second member of this equation into a series

arranged according to the powers of a; ; we shall obtain by neglecting

the square of x, and the product of x into I

—

e.

^^ D'-s/i

•/>

r(tan.ii7+i.tan.^xt.)+^^^£^
]•

C+— . tan. iZ7.(l--tan. %U—t. tan. ^IT)}

2Di 2Dt^|.-*+4-"} (neglecting the square and higher powers

^/2

of «)= '^^

—

'— • ^ 1-j > , V the value oft becomes =

-:?^".(l+-|-)-*«"g-*''[l + (^- j)-tan. '^-(^-»).«.2.-«tang.»|v |

= 7^=— \ -tang.^B + -. tang. |^u+|. tang. ^v\- -—-. tau. '^«— -— . tang. '\v—
V ft. ( * *•'' 3

4« -2 ) _ \/2.i)l—2 . tang. > I
-^. {tang.i«+f tang.>+ (!—«). tang. >t.(4 + (^ijj-_^).

tang. °\v) —\. tang. *|. i>) ; 1

—

e being substituted for «.

• Substituting [/ + « for r ; this equation becomes

dI -
^ = -—: v/2 . (tang. i( i;+;r)+^. tan. ^i( U-\.x)+[\-e) tan. |( 17+ *).(i _i. tang. '^
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but by hypothesis, we have

/= -^. {tan. ^U+^. tan. %Zr};*

PART I.—BOOK 11. Y

,TJ^^ 1. 4,rr-i- ^^ ^^ ^? C tang. 1 1/+ tan. ^^ ,
f tan. ?;+ tang, -x ^ ^ '

{
U+x)—^. tan.

'( U+v))=-— ] u x+^ }' U 7 t
^f ^ I—tan.— . tang.- ^1—tang.— . tan.-

j

(1—e). tan. — +tan.- j J
?• tang. —4- tan.-

"^

l_tan.—. tan. — ( (^ i _ tan.— . tan.— J

ftan.-—
+tan.-|- ")

") 2)1^2. / 17,, x
, ^ .t 'U ,,, =U

l_tan.—.tan.|]) )

+S tan. 1^. tan. ^+ Stan. -^ . tan. ^) +(1 _c).tan. — (^
_ x tan.— — f

1 e U ![7 3jj» xx
H — . tan. —-. (1 — tan. — f tan. -— ), and since tan.— =: — , when x^, x^,

'U *U I ^f7\^ 1
&c. are rejected, and 1+2 tan. -™|-tan. -j^= (14- tan. '-^] = ttt, by sub-

COS.—

X x '[7 *t7\
stituting — for tan. — . (1 +2 tan,— \- tan. — j, we shall have the exprcs-

cos.—

sion given in the text.

* Therefore the two last terms of the second member of this equation are equal to cipher, con-

sequently — =——. tan. — f^_ 1 -f tan. -—
|-f- tan.-^J; v^ or sm. x =

2 COS.—

-

1—

c

17 / „ *17
. =t7 ^[7 *V\

—^— tan- -g- {—2- COS. -^+ 2 sm. — . cos. -^ + | sin. —^\ , (by substituting

17 1 e / U / *U ^U *U
for tan. -^its value); = ——(tan. — 1—2. cos.—-+2 cos. — 2 cos.—- +f
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therefore by substituting in place of the small arc s, its sine, we shall

obtain

sm. x =—. (1—e). tan. 1Z7.(4—3. cos. %U~6. cos. % U).

Thus, by constructing a table of the logarithms of the expression,

—. tan. 4Z7.(4—3. cos. %U—S. cos. '*l£7')
;

it will be sufficient to add to them the logarithm of 1

—

e, in order

to obtain that of sin. x ; consequently if this correction be made to

the anomaly U, computed for the parabola, we will have the cor-

responding anomaly in a very eccentric ellipse.

21. It remains for us to consider the motion in an hyperbolic orbit.

For this purpose, it may be observed that in the hyperbola, the serai-

axismajor a becomes negative, and the excentricity e surpasses unity.

If therefore in the equation (^) of No. 20, we make «=—a, and k=

/ , and then substitute in place of the sines and cosines, their
V 1

^

values in imaginary exponentials ; the first of these equations will

give

a^

(1-2. cos— + COS. -^)) = -^- tan. — (-4. cob.—+2 cos.— + f

/, ^ ''U *U\ l—e U /„ „ *U , '-U
(1-2 COS. -^ -t- COS. —j= -^-. tan.— . (f_ SjO cos. g - f • cos. —

+

f COS. —-1^ evidently the expression given in the text.

Vfc, \ Vfi •
'

u! u!
* nt=u—esin.M, (n in this ca8e= /—~—7=- ;'•• nt=——t= +e. sin. —;=r^;
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The second will become

r=a'.(i.e.(c«'+c-"')-l);'

finally, if we make a corresponding change in the sign of the radical

of the third equation, in order that v may increase with t, and conse-

quently with u' ; we shall have

Let us suppose that in these formulae, y! zz log. tan. (j^r+l^j) "^ being

the semicircumference of which the radius is equal to unity, and the

preceding logarithm being hyperbolic ; we shall have

WtJi. _
a »

= e. tang, w—log. tan. {^v + |w) -,%

t2

sin. ^—r >-^=- ' ^2^' * " +^' o
•

/ u' , —tt' \
* r/=a(l—e cos. w), becomes / = —a'(l—c) f ^ +'' j«

tt' «' -m'
' /" sin -^—

^

__— y I

""ivIT c-^ + o^

c —

1

c +1

*T«ng-(^ + ^;=c and—-—_=cot.(-+-)=c ; .'.

tan.

- - <= =tan.(_+ _) _ cot. (^ + yj='M^+jJjHj;^
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r=a'.\ 1
J-;(.COS. W J

tan. ^v zz \ -—j- . tan. ^w.

The ai'c. -^

—

- is the mean angulai- motion of the body m, during the

a'^

time t, supposed to move in a circle about M, at a distance equal to a.

This arc may easily be determined by reducing it into parts of the

radius ; the first of the preceding equations will give by trials, the

value of the angle w, corresponding to the time t ; the two other equa-

tions will then give the corresponding values of v and of v.

25. T expressing the sidereal revolution of a planet of which a is the

mean distance from the sun ; the first of the equations (/) of No. 20,

will give T = 2'7r; but by the same number we have —j^=« j there-

h' —u

tang, ar ; /. by substituting this expression for '^ ^ ; we obtain the value of

'• '^llL given in the text. /+""'= tan. (JL+ ^) +cot.f—+ ~ ) =2 sec-. ^
'§ V4'2/\4'2/a-

2

tan.

2C0S.—
.
sin.— ^— „ , ,. ,, '^^+^ ,,„'-^ = -7^= . cot. — . tang. -= ,

(ascot. -= 1), -7=f- '^n-o-

2 sin.—. cos. -5- ^ ^ ^
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fore we shall have

V /A

If the masses of the planets, relatively to that of the sun, be ne-

glected
;

jM. will express the mass of this star, and this quantity will be

the same for all the planets ; thus, for a second planet, of which a and

T" express the mean distances from the sun, and the time of the side-

real revolution ; we shall have in like manner
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enables us to determine, in a very simple manner, the ratios of the masses

ofthe planets which are accompanied by satellites, to the mass of the sun.

In fact, M representing this mass, if we neglect the mass m ofthe planet

relatively to that oiM -^ we shall have

~
s/m'

If we afterwards consider a satellite of any planet m' ; and if p re-

present the mass of this satellite, and h its mean distance from the

centre of m, and T, the time of its sidereal revolution, we shall have

therefore,

m'-\-p __ h^ f^YM -^ a^'\T: )
'

This equation gives the ratio of the sum of the masses of the planet

m' and of its satellite, to the mass M of the sun ; if therefore the

mass of the satellite be neglected in comparison with that of its primary,

or if we suppose that the ratio of these masses is known ; we will ob-

tain the value of the mass of the planet, to that of the sun. We will

give, in tlie theory of the planets, the values of the masses of the

planets about which satellites have been observed to revolve.
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CHAPTER IV.

Determination of the elements of Elliptic Motion.

26. After having treated of the general theory of elliptic motion, and

of the mode of computing it by converging series, in the two cases of*

nature, namely, in that of orbits very nearly circular, and in the case

of very eccentric orbits ; it now remains for us to determine the ele-

ments of of these orbits. If the circumstances of the primitive mo-

tions of the heavenly bodies were given, we could easily deduce the

elements from them. In fact, if we name V the velocity of m, in its

relative motion about M j we shall have

dt'
'

and the last of the equations (p) of No. 18, will give

In order to make ju. to disappear from this expression ; let U denote

the velocity which m would have, if it described about M, a circle of

which the radius is equal to the unity of distance. In this hypothesis,

we have r = a = 1, and consequently £/"*=/*
; therefore

V'=U\
. r ay

This equation will give the semiaxis major a, of the orbit, by means

of the primitive velocity of m, and of its primitive distance from M. a

is positive in the ellipse ; it is infinite in the parabola, and negative in
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the hyperbola ; therefore the orbit described by m, is an ellipse, a para-

bola, or an hyperbola, according as V is less, equal to or greater than

U.^ —
. It is remarkable that the direction of the primitive mo-

tion, does not at all influence the species of conic section.*

In order to determine the excentricity of the orbit, it may be ob-

served, that if i represent the angle which the direction of the relative

dv''
motion of m, makes with the radius vector r ; we have —r-j- = V^. cos.

*£. By substituting in place of V", its value u. \ C, we shall
L r a S

have

dr"- C 2 1 J ^ ^—-—- =u. i. \ . COS. £ ;T
df- t r a S

I 2 V-
* From the equation — = — , it appears that when V and r are given,

the axis major and therefore the periodic time are constantly the same. Hence since

U. Y — = the velocity in a circle at the same distance, it follows that in the ellipse

the velocity at any point is to that in a circle at the same distance in a less ratio than that

of \/'2
: I, in a parabola, it is in the ratio of 'V^ 2 : 1 ; and in the hyperbola it is in a

greater ratio than that of V^ : 1. See Princip. Math. Prop. 16. In the ellipse when the

velocity of projection diminishes, the distance increases, and when F vanishes, r becomes

equal to 2a, in this case the excentricity e becomes equal to unity. In the hyperbola,

the limit of the velocity, when r is infinite, is 17^ — = the velocity in a circle, at the

distance of a transverse semiaxis from focus.

It is also manifest that when the distance is equal to the semiaxis major, the velocity

is equal to that in a circle at the same distance, and that in general the velocity in an el-

lipse, is to the velocity in a circle at the same distance in the subduplicate ratio of the

distance from the other focus to the semiaxis ; for it is as V 2a

—

r : Va.

t -/ = the velocity resolved in the direction of the radius, .*. it is equal to V, mul-
dt

tiplied into the cosine of the angle which the radius vector makes with the curve or tan-

gent, t. e. it is equal to F. cos c.
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but by No. 19, we have

therefore we shall have

c 2 1 )
a (I—e' )=:>'''. sin. ^s. } C;

( r a )

by means of this equation, we can determine ae the excentricity of the

orbit.

From the polar equation of a conic section, namely

«.(!—£-)
/• ^ i i

—

1-f-e. COS. V
'

we obtain

a. (I

—

e')—

r

COS. v=—^
.

er
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dr^ , *er^ / 2 1 \
Substituting for ——r its value, we shall have 2«.r— -^— — m i ]r'. cos. -i=

«< a V r a /

ixa.{l — e"), .'.(2r I. ( 1 — cos. -s) = n(l — e") = the parameter ; hence it appears

that when the distance and axis major are given, the parameter varies as the square of the

sine of projection, since k * = "^^ , see page 4, a(l — e') = >-. ——- , •_•

the parameter depends on that part of the velocity which acts perpendicularly to the radius

vector, it is termed the paracentrick velocity, and it is evidently a maximum at the ex-

tremity of the focal ordinate.

(2 1 \ .

I, it follows that sin. "s varies in-

(2(1 r \
), but the sum of the two factors is given, being equal to 2«, •/ the

product is a maximum, and consequently the sine of projection is the least possible, when

the distance from the focus is equal to the seraiaxis major.
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We shall thus obtain the angle v, which the radius vector r constitutes

with the perihelion distance, consequently we have the position of the

perihelion. The equations (f) of No. 20, will make known the

angle ii, and by means of it, the instant of the passage through the

perihelion.

In order to determine the position of the orbit, with respect to a

fixed plane passing through the centre of M, supposed immoveable
;

let (p represent the inclination of the orbit on this plane, and S the angle

which the radius r constitutes with the line of the nodes ; moreover let

z be the primitive elevation of m, above the fixed plane, which

elevation we suppose to be known ; we shall have

r. sin. e. sin. (pzz z
;

so that the inclination (p of the orbit will be known, when we shall have

determined S. For this purpose, let \ represent the angle, which the

primitive direction of the relative motion of m, makes with the fixed

plane, which angle we suppose to be known ; if we consider the triangle

formed by this direction produced to meet the line of the nodes, by

this last line, and by the radius r ; I representing the side of the tri-

angle which is opposed to the angle Q, we shall have

r. sin. £

sin. (S+0

we have also -~- zz. sin. a ; therefore we shall have
V

, z. sin. £

tan. C=
r. sin. A

—

z. COS. £

• r. sin. e=fl perpendicular let fall from the extremity of r, on the line of the aodcs,

and z = this perpendicular multiplied into the sine of <p. The supplement of the angle

which the primitive direction makes with the line of the nodes = £ -|- f, .*. f :
>'.'. sin. £

:

sin. (S -fi);

. , r. sin. S ?-. tan. € ~ •/„:„, »
.•. /— —

:

, — = -: , . . (r. sin, A

—

z. co«. «;.

sin. £. cos. £-{-sin. S. cos. J sin, e-J*^''"' *• '-''^' ' sm. a

tan £ = z. sin. i.
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The elements of the orbit of the planet being determined by these

fornuilfB, in functions of the coordinates r and z, of the velocity of the

planet and of the direction of its motion ; the variations of these ele-

ments, corresponding to the variations which are supposed to take place

in its velocity and in its direction may be obtained ; it will be easy,

by the methods which will be given in the sequel, to infer the differential

variations of these elements, arising from the action of disturbing forces.

Let us resume the equation

F*= V\ \— ^
L r a

In the circle a=r, and consequently V = U.\ — ; from which it

appears, that the velocities of the planets in different circles are reci-

procally as the square roots of their radii.

In the parabola, a = oc, .-. y ~ Z/M — ; therefore the velocities

in different points of the orbit, are in this case reciprocally as the square

roots of the radii vectores, and the velocity in each point is to that which

the planet would have, if it described a circle whose radius was equal

to the radius vector r, as \/ 2 : 1.

An ellipse, of which the minor axis is indefinitely small, is changed

into a right line ; and in this case, V expresses the velocity of di, if it

descended in a right line towards M. Let us suppose that m sets out

from a state of repose, and that its primitive distance from M is r ; let

us moreover suppose, that having attained the distance r, it has ac-

quired the velocity V ; the preceding expression for the velocity, will

give the two following equations :

r a ( r a S

Z2
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from whicli we obtain

rr '

this is the expression of the relative velocity acquired by wa, in depart-

ing from the distance r, and in falling towards M, through the height

r— /, We can easily determine by means of this formula, from what

height a body m, which moves in a conic section, ought to fall towards

M, in order to acquire, in departing from the extremity of the radius

vector r, a relative velocity equal to that which it has at this extremity
;

for V expressing this last velocity, we have

i S ~ ^ }

but the square of the velocity acquired in falling through the height

r— r , IS ^ —
; by equating these two expressions, we

shall have

4a—

r

„ . , . , 2a—r ^r—^r"
* By equating these expressions we have = ;— , • •

(2a

—

r)r' = 2a.(r—r*); and consequently {4a

—

r) r = lar ;
.'. r' = , andr—>'=

Sar

ia-
, in the ellipse 4a

—

r is greater than twice 2a

—

r, .'. r—r' is less than -— ; in the—r
« o i^

parabola a being infinite, r—r'z:.—, in the hjfperbola r—)'= —— , and as in this case

^a-\-r is less than twice 2a -)- >•, r—r' is greater than ~-.

In order to determine the space through which a body must fall externally, so tliat it

may acquire the velocity which it has in a conic section, r'—r must be substituted lor

r—r*, and then we equate ——~ to , from which we obtain fiflr*—Sor =
rr ar
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In the circle «=r, and then r—T'-=i\r ; in the ellipse, we have

r—r'Z-\r; a being infinite in the parabola, we have r

—

r'-=.\r% and

in the hyperbola, in which a is negative, we have r—r'>^r.

•27. The equation

is remarkable, in that it determines the velocity independently of the

eccentricity of the orbit. It is contained in a more general equation,

which exists between the axis major of the orbit, the chord of the el-

liptic arc, the sum of its extreme radii vectores, and the time em-

ployed to describe this arc. In order to arrive at this last equation, we

will resume the equations of elliptic motion, which|have been given

in No. 20 ; /* being supposed for the sake of simplicity equal to unity.

These equations will consequently become

~
1-f-e. cos. V

'

r z=. a.{\—e, cos. U) ;

t •=. a^.(u—e. sin. u).

Let us suppose that r, v, and t correspond to the first extremity

of the elliptic arc, and that r', v', and f correspond to the other ex-

tremity ; we will have

,_ a.(l—e^)
~

1-f e. cos. t/
'

r'zz a.(l

—

e. cos. u') ;

f= a^. {ill—e. sin. m').

Let/'_/=Tj i^±ii=ej '^±^^^; r'+r=R,

2fli-

—

r'r, •/ ia an ellipse /' is = to the axis major, in a circle it 18= to tbe diameter,

it is infinite in the parabola ; and in the hyperbola r' becomes = —2a.
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subtracting the expression of /, from that of t', and observing at the

same time that

sin. u'— sin. u -=.2. sin. €. cos. 6'

;

we shall have

T n 2a"5. (€

—

e. sin. 6. cos S').

If we add together the two expressions of r and of r' in terms of u and

i/, and if we observe that

COS. ti -f cos. M = 2 COS. E. COS. S'

;

we shall have

R zz 2c.(l — e. COS. €. cos, f).

Now, let e represent the chord of the elliptic arc, we have

c''=:r''-{-r"'—2rr'. cos. (v—v')
;

but from the two equations

a.(l—e*) ., >.

r =—-^ — ; rzzaJl—e. cos. u\
1-^e. cos. V ^

we obtain

a. cos. w

—

e) . a.V I—e^'.sm.u
COS. I' zz —

^

: sm. vzz — •

r r

In like manner we have

a.Ccos. XL—e) . , a.\ 1—e*. sin. «'

cos. V — —=^
; sm. v — ——

;

r r

therefore we shall have

rr. cos. (w—t'')=o*.(e— cos. v).{e—cos. w')+a".(l—e*). sin. u. sin. tC'

and consequently

c*n:2a*.(l—e'^).(l—sin. «. sin. 11—cos. ?<. cos. iC^

+a*e*,(cos. u—cos. liy
;

>
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but we have

sin. u. sin. i/^-cos. u'. cos. m= 2 cos. *£— 1
;

COS. u—COS. m' = 2. sin. g. sin. 6'

;

therefore

c*zr4a*. sin. *e.(l--e^ cos.*?');*

consequently we will by this means obtain the three following equations,

R = 2«.(1

—

e. COS. e. COS. S')
;

T = 2a^. (£

—

e. sin. £. cos. C) ; -

e= 4>a\ sin. *e.(l—e*. cos. ^e').

» «'=£'+ £, «=€'—£; .'. sin. u' = sin. £'. cos.€+ sin. g. cos. €' ; sin. uzz%m.Z'. cos. C

—sin. S. COS. S' ;
.*. sin. v!— sin. «= 2. sin. S. cos. £', hence Tzr/'—<= ai. (u u e.

(sin. ii'— sin. u) = the expression in the text. Cos. u'= cos. £'. cos. £— sin. S. sin. £'

;

COS. i/=cos. €. COS. €'+ sin. S. sin. S', .'. cos. «+cos. u=i2. cos. S'. cos. £, and r'-\-r=R=L

(7.(2—e. (cos. m'+cos. a) := the expression given in the text, t

—

v' is evidently equal to

the angle contained between r and r'.

a.(I

—

e") . «.(1—e")—a.(l—e. cos. u) „
1-fc. cos.v= ; ..e. cos. "j=

; :, (by substituting for

, . ae.fcos. «

—

e)
.

fi.(cos. m—e)
r Its value) = ^^

; . . cos v=—)- : • sin. -v =
r r

n-.{\—2e. cos, it+e'. cos. ';<)—cos. ';f+2g. cos. i<^e') a^.{\—cos. -!«— (-'.(sin. -u)— ^ —
p;T j~

tt'.(l — e"). sin. '((
, , ,,= 5 ' consequently cos. |t)—v )=cos. v . cos. i^+ sin. v. sin. v'~

a'.(cos. ?'-e).(cos. !i'-e)+ (7^.(l-e") sin.u. sin.M*_i LI IZ^^
; r~+ r^=n"-.(2 _2e.(cos. ?< -f cob. «')-[-

r".(cos. "u+cos. -u')), .*. r* + r'-—2?-/. COS. {i—v') =c-.(2—2e.(cos. «+co6. u')+e-. (cos.'u

+cos."«')—2o^(e'—e.(cos. k+ cos. ;(')4.cos. u. cos. ;/)—2a". sin. u. sin. M'+2aW. sin. u.

sin. ii' = by reduction 2fl^(l — t?). (1—sin. «. sin. u') — cos. u. cos. u' -)- a'.e'. (cos. "k

-j- cos. "«')

—

2o.-.e°. cos. «. cos. ;/.

Cos. n. cos. !('+ sin. ii. sin. k' = cos. 2£= cos. £—sin. €^= 2. cos. °S—1

.

.-. & = 2a-(l—«'').( 1 + 1.— 2. cos. =S)+ n".e=.(4.. sin. =£. sin. '£'=40^(1—e'),(l—cos. 'S)

4-«a'.e°. sin. "«. sin. =£' =4a-.(l—e*). sin. -£+ 4a'.e^ sin. %— 4a^e^ sin. €"-. cos. V = 4c"'.

sin. €.(!—e". cos. -o').
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The first of these equations gives

e. COS. fe zr — 1

2a, COS. G

by substituting this value of e. cos. C', in the two others, we shall have

c zzi^a . tan. e. { cos. £— { ) {•
I \ '2a J S

These two equations do not involve the excentricity e ; and if in the

first we substitute in place of £, its value given by the second, we shall

obtain T in a function of c, R and a. It appears from this, that the

time T depends only on the axis major, the chord c, and the sum R
of the extreme radii vectores.

If we make

^ _ Qa—R-\-c
, _ 2a—R—c

^ ~ 2a ' ~
~

2a '

the last of the preceding equations will give

cos. ae = x^'+\/(i—^^).(T^'*)

;

Irom which may be obtained,

2 £ := arc. cos. z'—arc. cos. z ;*

c' . ,. /2n—Ry sin. *£ , c la—R , . ..
* = sin. o— I ) . -. , let =11, =: )", and as sin. -lozr

4n- \ 2a / COS. £ 4a- 2a

1—COS. -£, .'. 71. COS. '^b=cos. ^£—COS. *£

—

to^+jb". cos. % .'. COS. "*-!-("—'"'"— !)• *"*• "^

fn m'^—1) \^(7i—nr— 1)-

—

im'^——m', and solving this equation cos. °£ = ^ ±
j,

, and

as COS. 2?= 2 COS. £—1, we have cos. 2»=—n+nj'± V(n—m"— If— 4?)!*, .and substi-

tuting for n and m, we obtain
;
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arc. COS. z denotes here the arc, of which the cosine is z ; consequently

we have

sin. (arc. cos. z'^—sin. (arc. cos. s)
tan. ^=. ^^ ^-—>—^=

;

we have likewise z -\- z' =. ; therefore the expression of T will

become, (by observing, that if T is the duration of the sidereal revolu-

tion of the earth, of which the mean distance from the sun is taken

for unity, we have by No. 16, T — S'tt)
;

T=—— . (arc. cos.z—arc.cos.2:—sin. (arc.cos.2;')-f sin.(arc.cos.;s)). («)

As the same cosine may appertain to several arcs, this expression of

PART. I. BOOK II. A A

2a—RV^-c'- ^ d c* + {2a—Ry—2^.(2a—Rf 2c°-—2.(2a— /?)'
, i^i.^os 2g-

ia'
~~

\ (2a}* 4a-
•" /

'
"" '

the part of this radical of which the denominator (2a)''= s°.2'°

;

„ „ (2a— /?)--!- c=+2.c.(2a—iJ) ^ ,„ {2a—ff)'+c^—2.c.(2a—iJ) , .

for 2- = i——-!-—i ' and z" = -i - ,„ ,.
—^

; and the
(2a)- (2«)-

part of this radical of which the denominator is 4a-=

—

~-—:''= —(2a — RY— C-—
(2a

—

RY—c'+2c.(2a

—

R)—2c.(2a

—

R), the part without the radical is evidently equal

to 22/, .'.by substituting we shall find the cosine of 2% ^^ zz'{•V z-
z"^—z'^—=''+1,

which is evidently equal to the expression given in the text.

Let z,z' represent the cosines of two arcs, and the cosine of the difference of these arcs

will be = 22' 4- '/l—2''.(1—2*') =cos. 2£; .'. 2S = the difference of two arcs of which

the cosines are 2 and zi.

o- • , n («+*) • (a—h)
,

, _ («+A) {a—b
)

bm. a—sm. 6zz 2. cos. -—-— . sm. , cos. a 4- cos. 6 = 2. cos.—-— . cos. —-—
2 2 2 2

sin.
sin. a—sin. b 2 __ (n

—

b)

cos. a+cos. 6 la—b) °' 2
cos. -i

2

value of tan. S, which is given in the text.

= tang. — , from this formula may be inferred the
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T is ambiguous, and it is necessary carefully to distinguish the arcs

to which the cosines z and z' belong.

In the parabola, the seraiaxis major a is infinite, and we have

arc. COS. z—sni. (arc. cos. z) =: -—. I —~ ]' *

o \ a /

By making c negative, we obtain the value of the arc. cos. ^—sin. (arc.

COS. z) ; the formula (a) will therefore give for the time T, employed

to describe the arc subtended by the chord c.

The sign — having place, when the two extremities of the parabolic

* Arc. COS. z'—sin. arc. COS. :'=arc. sin. V'l

—

z"— V'l—^'^ —by expressing the

/i *'2^^

arc. in terms of the sine, v'l

—

z" -{.

~ + &c. — Vl—z'^

_ AW—iia—R)"+ 2c.{2a—R)—c')\ i_ {{iRa—R^+ 4.ac—2cR—c'' ))i

— when n is oo, ——-
-,— *

' (2.a.4a')

In the expression for arc. sin. VI—;:", the approximation is not continued beyond

the second term, because the subsequent terms disappear in the value of T, when a is

supposed to be infinite. The second term of the value of T vanishes when c passes through

the focus, and T is less when the angle fomied by r,r' is turned towards the perehelion,

than when the second term vanishes, it is manifest that the sign of the second term must

be in this case negative, and positive in every other case.

The second term of the second member of this equation vanishes when the extremi-

ties of the arc described, are bounded by the focal ordiaates, .'. the time of describing

the parabolic arc intercepted between vertex and focal ordinate varies in the sesquiplicate

ratio of the parameter. See Newton, Princip. Vol. 3, Lem. 9, 10. Indeed it appears

from the value of T, that the time of describing any parabolic arc, of which the chord

passes through the focus, varies in the sesquiplicate ratio of the chord.
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arc are situated on the same side of the axis of the parabola, or when

one ofthem being situated below, the angle formed by the two radii vec-

tores, is turned towards the perehelion, it is necessary to make use of the

sign -j- in every other case. T being equal to 365''^'", 25638, we have

— = 9""% 688754..

In the hyperbola, a is negative ; z and z become greater than unity
;

the arcs, arc. cos. z, and arc. cos. z' are imaginary, and their hyperbolic

logarithms are,

1 .

arc. cos. 2;= __ . log. (^z-\-s/z'—\ ;

1 /
arc. COS. s'= /—— . \og. {z' + \/ z'-— 1

;

consequently the formula {a) becomes by changing a into —a,

3 rp

T=^ .(v/^"—1 +v/;s^—1— log.(2r'+v/2'*—i)±log.(zf-\/5^IIi.

The formula (<z) determines the time, of rectilinear descent of a

body towards the focus, when it departs with a given velocity,

from a given distance ; it is sufficient for this purpose, to suppose

that the ellipse which it then describes, is infinitely compressed.

If, for example, we suppose that the body departs from a state of rest,

at the distance 2a from the focus, and that the time T, which it employs

to describe the distance c is sought ; in this case R = ^a-\-r ; rzr

'2a—c ; which gives z' =— 1; z= ; the formula (a) will conse-
CI'

quently give

T=: ]-!r— arc. cos. ( ) + V 7— c •

'/ir ( \ a J a' 3

aa2
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There* is, however an essential difference between the elliptic mo-

tion towards the focus, and tlie motion in an ellipse infinitely com-

pressed. In the first case, the body arrives at the focus, passes beyond

it, and elongates itself to the distance from which it commenced to

move ; in the second case the body having attained the focus, returns

to the point from which it set out. A tangential velocity at the aphe-

lion, ever so small, suffices to produce this difference, which does not

influence the time employed by the body in descending towards the

focus.

2S. As the circumstances of the primitive motions of the heavenly

bodies are not known from observation, the elements of their orbit

cannot be determined by the formulae of No. 26. In order to effect

this object, we should compare together their respective positions ob-

served at different epochs ; which presents considerable difficulties, as

these bodies are not observed from the centre of their motions. Indeed,

with respect to the planets, we can, by means of their oppositions and

conjunctions, obtain their longitude such as it would be observed from

the centre itself of the sun ; and this consideration, combined with the

small excentricity, and small inclination of their orbits to the ecliptic,

simplifies very much the determination of their elements. Besides,

„ „ , , . , 2a—4-a-fc—c , la—4n-J-2c c—2a
* iZ=2a-h'=4a—c, :.z'= ^ =—\,z=

,,
= —^

le u a : T T '^'"
I , \ ho-c a-^s/ c. \^ c

If a be inhnite 1=2. —r—. (5r—x-T- \/ ——= ^^—- = T —=r ;

arc. COS.

^./2. OT v/2

c—a . /lac—c-
. . 4 jlac—c"

^ arc. sin. == v/ > • • ^s x— arc. sin.— \/ , and arc.
a ^ a- "" V a*

/lac c'
sin. =^ T have the same sine, T varies in nn ellipse as the arc — sin. ; whicli

agrees with Newton's conclusion; Princip. Math. Lib, 1. Prop. 37- See Prony Mecha-

nique Analytique, Tom. 2. No, 914, and Euler's Mechanics, No. 272, 672.

If c=2a the time of falling to the centre will be equal to
a?T
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in the actual state of astronomy, the elements* of these orbits require

only very slight corrections ; and as the variations of the distances of

the planets from the earth are not at any time sufticiently great to

render them invisible to us, we can observe them perpetually, and by a

comparison of a great number of observations, correct the elements

of their orbits, and also the errors tliemselves to which the observations

are liable. This method cannot be applied in the case of the comets,

as they are only visible near their perehelion ; and if the observations

which are made on them during the time of their appearance, are ina-

dequate to the determination of their elements, we have not then any

means of following these stars in imagination, through the immensity of

space ; so that when the lapse of ages brings them back towards the sun,

it is impossible for us to recognise them ; it is therefore of the greatest

consequence to be able to determine by observations made during the

time of the appearance of a comet, the elements of its orbits; but

the rigorous solution of this problem surpasses the powers of analysis,

and we are obliged to recur to methods of approximation, in order to

obtain the first values of these elements, which we can afterwards

correct with all the precision which the observations admit of.

If we employ observations which are at a considerable distance from

each other, the eliminations would lead to impracticable computations

;

it is therefoie necessary to restrict ourselves to the consideration of near

observations ; and even with this restriction, the problem presents con-

siderable difficulties. It has appeared to me, after mature reflection,

that instead of employing directly the observations themselves, it would

be more advantageous to deduce from them data, which offer a simple

and exact result ; and I am satisfied that the geocentric latitude and

longitude of the comet, at a given moment, and their first and second

* In the present state of Astronomy, the motions of the planets may be considered as

very accurately known, and the object of these observations is to determine them with

still greater accuracy. And when the elements have been determined uuder the most

favourable circumstances, i. e. in those in which they have the greatest influence, they

should be afterwards corrected simultaneously, by the method of the equations of con-

dition.
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differences divided by corresponding powers of the element of the time,

are those which best satisfy this condition ; for by means of these data, we

can determine rigorously, and with facility, the elements, without having

recourse to any integration, and by the sole consideration of the differ-

ential equations of the orbit. Tiiis mode of considering the problem

permits us also to employ a great number of neighbouring observations,

and by this means, to embrace a considerable interval between the ex-

treme observations, which is very useful in diminishing the influence of

the errors, to which these observations are always liable, in consequence

of the neb:;losity which surrounds the comets. I proceed now to pre-

sent the formulas, by means of which the first differences of the longitude

and latitude may be deduced from any number of neighbouring observa-

tions ; I will afterwards determine the elements of the orbit of the

comet by means of these differences, finally, I will point out the

means which have appeared to me the simplest, for correcting these

elements, by three observations, made at a considerable distance from

each other.

29. Let at any given epoch, a. be the geocentric longitude of

a comet, and 6 its northern geocentric latitude, the southern

latitudes being supposed negative. If we denote by s, the num-

ber of days which have elapsed since this epoch ; the geocentric

longitude and latitude of the comet, after this interval, will be ex-

pressed in consequence of the formula (i) of No. 21, by the two fol-

lowing series,

The values of a,
( y ) , \ 'T'^) >

^^
'>

^'
( ^ ) '

^^' '"^^ ^^ ^^'

termined by means of several observed geocentric longitudes and la-

titudes.
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In order to obtain them in the simplest manner, let us consider the

infinite series which expresses the geocentric longitudes. The coef-

ficients of the powers of 5, in this series, may be determined by the

condition that it ought to represent each observed longitude, when

we substitute for s, the number of days which corresponds to it

;

we shall by tliis means obtain as many equations as there are observa-

tions ; and if the number of these last be n, we cannot determine by

their means, in the infinite series, but n quantities a, f —
j , &c.

However, it ought to be observed, that s being supposed very small, we

can neglect the terms* multiplied by s", s""*"*, &c., so that the infinite

series is reduced to the n first terms, which we are able to deter-

mine by the ?i observations. These determinations are only approxi-

mative, and their accuracy will depend on the smallness of the

terms which we have neglected ; they will be always more exact, in

proporron to the smallness of 5, and to the greater number of obser-

vations employed. Therefore the question is reduced to a problem in

the theory of interpolations, namely to find an entire and rational function

of 5, of such a nature, that when we substitute for s, the number of

days which correspond to each observation, this function is changed into

the observed longitude.

Let £, S', 6", represent the observed longitudes of the comet, and

* As the values of the differential coefficients in the series expanded according to the

formula of No. '2
1 , are independent of the value of the increments, these values will remain,

when the increment varies; and there are as many series of the form « -f
— ( -r) "4"

. f -— ) -[-<ic. as there are observations ; if i be very small, it may be proved that the

terms of the series after the n first diminish very rapidly, and consequently may be

neglected ; and as there will remain but n terms, if we have n observations we have as

many observations as unknown quantities ; if the number of observations be increased, a

greater number of coefficients can be determined, and if s become less, the value of the

terms which are rejected will be less.
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I, i', i'', the number of days which intervene between them and the

given epoch ; these numbers ought to be supposed negative, for the

observations anterior to tliis epoch. By making

t' e g' g t,'" t"

I— t I —i I
'—I

i'—l

z= Pt kc.

&c. ;

the function sought will be

g + (^s—i).K^(s—i).(^s—i').y-Q-h(s—i).(s—i').(s—i').P& + Sic.

;

for it is easy to be assured, that if we make successively, s=:i, szzi',

szzi", he. this function will be converted into €, €', 6 , &c.

Now, the comparison of the preceding function, with the fol-

lowing :

"-•(S)+^(^) + ^-

will give, by putting the coefficients of similar powers of s equal to

each other,

a=g—i. S^-\-i. i'J'Q—i.i '. i'. SK + &c.

;

i (J) =r<r^e-(i+/'+/"V^e+&c.-

the ulterior differences of a. will be useless to us. The coefficients of

* These equations evidently obtain from the principle of indeterminate coefficients, and

it ia manifest that the greater the number of observations the more accui-ately will they be

determined, and the less i', i", i"', &c. are, the more rapid will be the convergence of

the series.
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these expressions are alternately positive and negative ; the coefficient

of S't is, abstracting from the sign, the product of r into r, of the r

quantities i, i', i", i^''~^\ in the value of a ; it is the sum of the products of

the same quantities, r— 1, into r— 1, in the value of f -^ J
; finally it is

the sum of the products of the quantities, r — 2, into r—2, in the value

If y, y, y'\ Sec. represent the observed geocentric latitudes of the

;7" )
'
( zr^ ) ^c.j by chang-

ing in the preceding expressions for «, ("j-)>(~j"— )> ^c., the quantities

e, e', Q'\ &c. into y, y'y y\ he.

These expressions will be more exact, according as the number

of observations is increased, and as the intervals which separate

them, are less ; we could therefore* employ all the neighbouring obser-

vations of the selected epoch, provided that they were exact ; but the

errors to which they are always liable, would lead to an erroneous

result ; therefore in order to diminish the influence of these errors,

the interval between the extreme observations should be increased,

in proportion as a greater number of observations is employed. We are

able in this manner, with five observations, to embrace an interval of

thirty-five or forty degrees, which ought to lead to very approximate

values of the geocentric longitudes and latitudes, and of their first

and second diflPerences. If the epoch which we select, is such that

there exists an equal number of observations before and after it, so

that each longitude which follows, has a corresponding longitude which

precedes it by the same interval ; this condition will render the

PART I. BOOK ir. B B

* The number of observations will of itself produce an increase in the error, .'. in order

that the error may be distributed over a greater number of degrees, we must increase the

interval between the extreme observations.
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values of a. I t; ) , ( yi ) more accurate,* and it is easy to perceive

* When the obsenrations are assumed at different sides of the epoch which is selected

j', i"', i""', &c. are negative when i, i", i"", &e. are positive, and vice versa. In the

values of a, which are given above, the terms after the first, are negative and positive in pair*

and in the values of —;-, —r^. the coefficients of c?£, rf'S, &c. are less than when all the
as as-

observations are made at the same side of the selected epoch, .*. the convergence of the

terms will be more rapid, and the terms which are omitted are of less consequence.

Let the number of observations be odd, and =:2r+ l, and let i be the number of days

between each observation, and let the epoch from which we count be the instant of the

mean observation when «=?'''' , then we have

d»__ J_
Is ~ 2i

u — . ^ A^e^'--^)+ A=e('-3) \^ 1.2.3A.5 I
^

S

=-^^ -J A '£''-3)+ A '£"•-)

1.2.3.4.5.6.7^
^

(P«. a'€('-i> 1

di«
~ 2.?^ 2.3.4..r

A *.£('•-*)

^ - A^eC-S) f_± r^. A^e'-^'+Ac.
1.2.3.4..5.6.Z' 2.3.4..S.6.7.8«7

A is the characteristic of finite differences, so that a .EM = €<'+')—€('>.

If the number of observations be even, and equal to 3r, we should assume for the

epoch, the mean time between the first and last observation, and then we shall have

g(')+£(r-i)_ _L. a'csc-D+et'-s')

+ 2Z6¥-^*(^''-"+«<'-'')

A«.(C('--3)+e'-*

)

2.4.6.8.10.12

d» A C''"^' 1 •> ft, o\ ,
3

*
^fr. t a

-T-= -^ T-?^- ^-^^ '+TT-5-r7r^' a'.SC-'— &C.;
dt t 4.6.« 4.6.8.10.t
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that new observations assumed at equal intervals, and at opposite sides

of this epoch, will cause quantities to be added to those values,

which will be, with respect to their last terms, of the same order, as the

ratio of 5*. [ -TT
J

to «. This symmetric disposition obtains when all

the observations being equidistant, we fix the epoch in the middle ofthe

interval contained between them ; it is therefore advantageous to em-

ploy corresponding observations.

In general it will be always useful to fix the epoch towards the middle

of this interval ; because that the number of days which separates the ex-

treme observations, being less considerable, the approximations are

more convergent. The calculus will be likewise simplified by fixing

the epoch at the very instant of one of the observations ; for then the

values of a. and of 6 will be immediately given.

When, by the preceding process, we have determined, ( ~ J
,

f -j-^ ) '

( Z ) ' ( rf? ) ' ^^ ^^'^ deduce in this manner the first

and second differences of a. and 9, divided by the corresponding powers

of the element of the time. If the masses of the planets and of the

comets, are neglected in comparison with that of the sun assumed to re-

present the unity of the mass ; if, moreover, we assume for the unity

of distance, its mean distance from the earth ; the mean motion of the

earth round the sun, will be, by No. 23, the measure of the time/;

let, therefore x represent the number of seconds which the earth de-

BB 2

\.1.ds^ 4.4^ ^ ^ ' 4.6.8.21 ^ ^ '

4..6.8.10.1'i.j»
• '^ •^* ^ I °"-^

It is easy to prove these theorems from the theory of finite differences. See Lacroix,

Tom. 3.
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scribes in a day, in consequence of its mean sidereal motion ; the time
t corresponding to the number s of days, will be xs ; therefore we
shall have

\dt)- x' \Js)' \l?)~—{l?)'
Observations give in logarithms of the tables, log. Azr4,0394622 ; more-

over, log.A"=log. A + log. ^, R being the radius of the circle, re-

duced into seconds; from this it appears that log. a-= 2,2750444

;

therefore, if the values of ^
-^

j , and of (~\, be reduced into se-

conds ; the logarithms of ( y j
and of ( ~

J
will be obtained, by

subducting from the logarithms of these values, the logarithms,

4,0394622, and 2,2750444. We shall obtain in like manner, the

the logarithm of
{ 7^ ) » and of ( -77 1 ; by subtracting respectively

the same logarithms, from the logarithms of their values reduced into

seconds.

As the precision of the following results depends on the accuracy of

the values of ., (^), (^^:), 6,
(i^)

, and (^^') , and as

their formation is very simple, the observations ought to be selected and

multiplied in such a manner, as to obtain them with the greatest pos-

sible precision. We now proceed to the determination of the elements

of the orbit of the comet by means of these values, and in order to

generalize these results, we will consider the motion of a system of

bodies actuated by any forces whatever.

30. Let X, y, z, be the rectangular coordinates of the first body
;

x', y', z', those of the second body, and so on of the rest. Let us

conceive that the first body is sollicited parallel to the axis of a; of y,

and of z, by the forces X, Y, and Z, which forces we will suppose
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to tend to diminish these variables. Let us conceive, in like manner,

that the second body is sollicited parallel to the same axes, by the

forces X', Y', Z, and so of the rest. The motions of all these

bodies will be given by differential equations of the second order,

&c.

If the number of bodies is n, the number of these equations

will be 2>n, and their finite integrals will involve &n arbitrary quan-

tities, which will be the elements of the orbits of these different

bodies.*

In order to determine these elements by means of observations, we

should transform the coordinates of each body into others, of which the

origin will be at the observer. Therefore supposing a plane, of

which the position may remain always parallel to itself, to pass through

the eye of the observer, while the observer moves on a given

curve, let
f, f',

^' , represent the distances of the observer from the

different bodies, projected on this plane ; and «, a', a.", &c., the ap-

parent longitudes of these bodies, referred to the same plane, and

6, 6', %", their apparent latitudes. The variables x, y, z, will be given

in a function of
f,

a, 6, and of the coordinates of the observer. In like

manner, a/, y', z, will be given in functions of
f',

a', 6', and of the

coordinates of the observer, and so of the rest. Moreover, if we sup-

pose that the forces X, F, Z, X', Y', Z, &c., arise from the re-

ciprocal action of the bodies of the system, and from the action of

foreign bodies j they will be given in functions of
f,

p', {, &c. ; «, «,

* Each body furnishes three equations, and consequently tlie n bodies furnish 3« equa-

tions, and as in the integration of each differential equation of the second order, two ar-

bitrary quantities are introduced, the total number of arbitrary quantities must be 6«.
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01."y &c. ; 9, 0', %" , &c. ; and of known quantities ; consequently the

preceding differential equations will be between these new variables,

and their first and second differences ; now observations make known,

for a given time instant, the values of a,
( -^ ) » ( -^ ) , 6, { -7- ) .

I
—

j ; o''*
{ 7/7 ) ' ( ~j^ ) > ^c. ; therefore, the quantities which

remain unknown, are
f, f',

^' , &c., their first and second differences.

These unknown quantities are Zn in number, and as we have 3?* differen-

tial equations, we can determine them. There is also this advantage

connected with this method, that the first and second differences of j,

f',
^', &c. occur in these equations, in a linear form.

The quantities «, 6, j, «', 6', §', &c., and their first differentials di-

vided by dt, being known ; we shall have for any given instant, the

the values of x, y, z, a/, r/, z', Sec, and of their first differentials di-

vided by dt. These values being* substituted in the 3n integrals of

the preceding differential equations, and in the first differences of these

integrals will give 6?z equations, by means of which we can determine

the 6n arbitrary quantities of these integrals, or the elements of the

orbits of these different bodies.

31. Let us apply this method to the motion of the comets. For

this purpose it may be observed, that the principal force which ac-

tuates them, being the attraction of the sun, we may abstract from

the consideration of every other force. However, if the comet passes

sufficiently near to any large planet, to experience a sensible per-

turbation, the preceding method would still make known its velo-

city, and its distance from the earth ; but this case being of rare oc-

currence, we shall only consider, in the subsequent researches, the

action of the sun.

* The number of unknown quantities for each body is tliree, namely 5, --^, -r-f- ,

therefore there are 3« unknown quantities in the system of n bodies.
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Assuming the mass of the sun to repi'esent the unity of mass, and

its mean distance from the earth, the unity of distance, and moreover

placing the origin of the coordinates x, y, z, of a comet of which

the radius is r, at the sun; the differential equations (O) of No. 17,

will become, (the mass of the comet, in comparison with that of the

sun being neglected)

0= '^'^
• ^

Let us now suppose that the plane of x and of ?/, is the plane of

the ecliptic ; tliat the axis of or is the line drawn from the centre of the

sun to the first point of Aries, at a given epoch ; that the axis of z/ is the

line drawn from the centre of the sun to the first point of Cancer, at

the same epoch ; that the positive z' are on the same side with the north

pole of the ecliptic ; and finally, that a/ and y are the coordinates

of the earth, and R its radius vector ; this being premised,

Let the coordinates a; y, z, be transformed into others relative to

the observer ; and for this purpose let a. represent the geocentric

longitude of the comet, 9 its geocentric latitude, and
f

its distance

from the earth projected on the ecliptic ; we shall have

x-=.3!-\-^. COS. a,
; y=.y'-\-f. sin. a. ; zzz^. tan. 6.

If from the first of the equations (k), multiplied by sin. «, be sub-

tracted the second multiplied by cos. a, we shall have

n— o-„ ^°* '^V I
^- sin* <^—y- cos. a. „0= sin. «. -^ - COS. a.-^ + -^ *

^ ds _dx' di . d» , d^s . dV . rf«e
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Iience we deduce, by substituting for x and y their preceding values

c?V d°y' x' . sin. a

—

y' . cos. a.

sin. *. -^- COS. «.-^ +
y,

.

The earth being retained in its orbit, as the comet, by the attraction

of the sun, we have

df ^ R' '

dt' ' R'

consequently,

dV d^u' 1)'. cos. a

—

x'. sin. a

therefore, we shall have

0=:(^.cos.a-y.sm.«).J-^—^J-2.J-^5.J^j-f. ^^|.

Let A be the longitude of the earth, as seen from the sun j we shall

have

x'=R. COS. A
;
y'=R. sin. A;

therefore

y'. COS. a

—

x\ sin. x=zR. sin. (^—«) ;

the preceding equation will consequently become,

^ dp da . „ dx^ . „ d°-tc dy du'
sin. «. COS. «—2. —^. -T— . sm. -«— g. sin. «. cos. «. -.- e. sin. -«. -t-t- ; —j- = -3—

ri< dt
^ dr dr dt dt

de . , (l» . '^'y dW ,
d-p

+ -^. sm. «+£. COS. «. —r-
; . . -~ . COS. » — ,„ . COS. » + -rr- sin. «. cos. a^

</<
^^

_ dt dt- dt' ^ dt-

^ dp da „ . da' „ t^-« , ,. ,. , .

+ 2.
-f-,

—-. COS. -«— 5. Sin. «. cos. «. -jj- + 5. cos. "«--tt' ' "J'
subtracting this

(tf ct't dt'' Oft

equation from the value of -—- . sin. «, observing the quantities which destroy each

other, and also those which coalesce, we an*ive at the expression given in the text.
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S^O JZ. sin. (A—a) C 1 17 ^
d^x

}

Let us now investigate a second expression for \-4.\. For this pur-

pose multiplying the first of the equations (A:), by tan. 9, cos. a. ; the

second by tan. 6. sin. a ; and then subtracting the third equation, from

the sum of these two products ; we shall have

/, i. A ^ d''x , . d^y )
, . /, C -r. cos. « 4- y. sin. a, >

Ozitan. 9. \ cos. a.. ----+sin. «.^ ^ 4-tan. 9. ^
TA. (

IF r^'

This equation will become, by substituting for x, y, z, their values,

= tan.9.|)^+^^.cos.«+|^'+f(.sin..j_*

^ 5^^?
^^/i

cos. *9

PART I. BOOK II. C C

* -7?T-= —rr T—rr- cos. «—2. -p-. —7- . sin. «— ». cos. «. —— £. sin. «. —

—

</<- dt^ dt^ dt dt
^

dl" ^ dt-

d^u d-y' d'p . dp d» . da." d'cc

-de- =-lF+^' *'"• « + 2- -^.
-dt

cos.«-c.sm.«.— + ,. cos.«.—

. d"x d}y . d^x' d'y' . d\ rf«'
• • "Zr • COS. « + -—V . sm. « = -77- . COS. a A 7^. sin. a-l pj- — f. —TT-.

df- ^ dt" dt" ^ dt^ ^ dt' ^ dt"

X. COS. cc-\-2/. sin. » x'. COS. «+^'. sin. « g

, . rfs rff rf« d'z d-p
z — {.tan. « . .——= -f-. tane. «+». r-: ——-= -—4 . tan. « +^

dt dt ^ ^'^ COS. -«' rf<^ dt-
^

o d? d) 1 d-d p 2p df . , . . . . ^
"jT* -jT* 57+ -rr* 3 ^ H TT -rr^ • sin. i, this expression being subtract-
dt dt COS. ^« d<^ COS. 'i COS. '6 • dt"

ed from the preceding multiplied into tan. 6, gives =
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COS. *9 COS. ^6

but we have

therefore

. , i )—-C ^ ,„ i^ f • sin. 6. COS. 6

|; =_iJM + 2.®.tang.9 + ^^^i--_

jR. sin. 6. COS. 6. COS. (^-a) (1 1 > *

if this valae of -^ be subtracted from the first, and if we suppose

W ^. sin. 9. COS. fi. cos.(yf—»)+ j-ji . sin. (.4—«) t

tan. e. [
—7--

. COS. « J fi- . sin. «. -^ . cos. « + •^. sm. «. 1 4- -^

— . tan.«_ 2.—.— _^_ __._____.._. sm. 6- —. tan.^

^. tan. 6

p.=

* This value of~ is derived immediately from the preceding equations, by multiply-

ing the entire expression, by cos. "l. and dividing by— , and observing that tan. «= '—,

f If the two values of —, be multiplied by -^'—r > and if the second be then sub-
dt "^ •' dl dt
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The projected distance ^, of the comet from the earth, being always

positive ; this equation shews that the distance r of the comet from the

sun is greater or less than the distance R of the earth from the sun,

according as /u.' is positive or negative ; these two distances are equal,

if
i^'
= 0.

We can, by the sole inspection of the celestial globe, determine the

sign of/ ; and consequently, whether the comet is nearer or farther

than the earth from the sun. For this purpose, let us conceive a great

circle, which passes through two geocentric positions of the comet,

indefinitely near to each other. Let y represent the inclination of this

circle to the ecliptic, and ^, the longitude of its ascending node •, we
shall have

tan. y. sin. («

—

x)— tang. 9

;

fiom which may be obtained

rfO. sin. (a

—

x):=.doi.. sin. 6. cos. 6. cos. (a

—

a) ;

differentiating a second time, we shall have

c c 2

traded from the first, the quantity by which g is multiplied is the numerator of the value

of fi', and the quantity independent of 5, is its denominator.

If r be less than R,— ^ is positive, .". in this case ft' must be positive ; if r is

greater than R, then — — is negative, .', /*' must in this case be negative ; when
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+ <.-r, c • sm. 9. COS. 6:
(at

)

f/*9, being the value of c?^9, which it would have, if the apparent mo-

tion of the comet continued in the great circle. Consequently the

value of j!*' becomes, by substituting for d0, its value

dx. sin. S' cos. G. cos. (a—x) ^

sin. («—x)
'

^ sin. 0. cos. 6. sin. {A—x) j

The function
^^"'

; { is constantly positive : therefore the value
sin. 9. cos. G

•'
"^

^ .. . . . T W9) Sd'^J u .1-
01 ju.' is positive or negative, according as j-jjit— ) -ttt c has the same

or a contrary sign, to sin. (^4—x) ; A—x is equal to two right an-

gles, plus the distance of the sun from the ascending node of the

^ , , ,
di ... COS. («

—

a), tan, 6 di
.

* d*. COS. let—a), tan. y— j- , . . a«. —7—^—r = r- , . . rf«. cos.
^ ' COS. ^« ' sin. (a—x) cos.'«

(«—x). sin. 6. COS. 6 = dS. sin. («—x) ; hence

dH,. sin. («

—

a)+6?«. d6. cos. («—x)=:d'<». sin. 6. cos. «. cos. (a—A)+c?<t. (f^ cos. '«. cos.

(»— a)— d». di. sin. ^«- cos. («—a)—da,^. sin. t. cos. 6. sin. («

—

a), by substituting for

dx (1^0 • da,

sin. U— x) its value —r-. sin. 6. cos. 6. cos. (a

—

a), we obtain—^— . sm. 6. cos. 6. cos.

(«

—

x)+ d».di, (cos. («—x)=:d'«. sin. «. cos. «. cos. («

—

x)-\-d».de. cos. '^ cos. (»— a)—
da^

tUMe. siu. "6. cos. («—a) -— . sin. '6. cos. '«. cos. («—x) ; dividing both sides of this

sin. 6. cos. d
, , , . , . , . L • • •»»,..

equation by . cos. {«

—

a), we obtain the expression which is giTen m the text.

t By substituting for —— • —r-^. tang. « +(-;-)• sin. (. cos. i. its value given in the
(lb (it \(lt ' '

preceding equation, and for di its value, we obtain ^'=

r—
j-j-'J.

sin. («

—

a) divided by sin. 6. cos. 6. (sin. («—a), cos. (j4—«)-I-cos. (»— a),

sin. (A—a)) ; = (sin. i, cos. *. sin. («—X4.^—«)=sin. t. cos. «. sin. (.4— x).
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great circle ; hence it is easy to infer that
f^'

will be positive or nega-

tive, according' as in a third geocentric position of the comet, inclefi-

Jiitely near* to the two first, the comet deviates from this great circle

from the very side in which the sun exists, or from the opposite side.

Let us conceive, therefore, that a great circle of the sphere passes

through two geocentric positions of the comet, indefinitely near to each

other ; if in a third consecutive geocentric position indefinitely near

to the two first, the comet deviates from this great circle, from the

same side as the sun, or from the opposite side, it will be nearer or

farther than the earth from the sun, it will be equally distant, if it

continues to appear in this great circle ; thus the different inflexions

of its. apparent route will throw some light on the variations of its

distances from the sun.

In order to eliminate r from the equation (3), so that this equation

may only involve the unknown
f,

it is to be observed that we have r*=:

x''-\-i/*-\-z'', and by substituting in place of x, t/, z, their values in

terms of
f,

a. and « ; we shall have

r*=z'*+y*+2f. (a/, cos. «+y. sin. «)-| ^—rr'tf
cos. V

* A=^ 180+ a(= the sun's longitude, as seen from the earth) and .'. A—a = 180 +
a—A=180+ the distance of the sun from the ascending node of the great circle, .'. when

« is > A the sign of sin. (^A—a) is negative, and if —r~, -r-^ be also negative, the

comet in the third position must deviate from the great circle from the very direction in

which the sun appears as seen from the earth, if a be Z A, then sin. {A—a) is positive, .'. if

d^i d^6— - -fibe also positive, it is evident that the comet must be nearer than the earth to the sun,

and .'. that in the third position, the comet must deviate from the great circle, from the direc-

tion in which the sun appears from the earth ; on the contrary, if sin. (^-a) be negative, and

d't d'e ,. .

—jY -rf positive, in order that this may obtain, in this situation of the bodies, it is

necessary that in the third position the comet should deviate from the'great circle, from the

opposite side to that in which the sun appears, as seen from the earth. See Memoirs of

the Academy of Berlin, for the years 1772, and 1778.

t **=x'*+2§.j'.cos. « + 5*. cos. '« ; 7/' =y + 2ry. sin. «+ g^ sin."*; s'=5»
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but we liave a/zzR. cos. A
;
y'zzB. sin. A ; therefore

r' =—^—-- + 2R.(. cos, (A—c,)i-R'.
COS. -0 ^

By squaring the members of the equation (3), when arranged under

the following form,

we shall obtain, by substituting in place of r^, its value,

(h^+^^?- '^'- (^—n^y- (y-'-R'?+iy'=R'
; (4)

In this* equation, ^ is the only unknown quantity, and it ascends to the

seventh degree, because the term which is entirely known in the first

member being equal to 72*, the entire equation is divisible by
f.

Hav-

ing by this means determined
f,

we will obtain \-4.{ by means of the

equations ( 1
) and (2). By substituting, for example in the equation

(1), instead of —^ ^^ , its value -^, which is given by the equa-

tion (3) ; we shall have

Y4l= "/ $5??? + />^'. sin. (A-«) I.

The equation (4) is frequently susceptible of several real and positive

roots ; by making its second member to coalesce with the first, and

tlien dividing by
f,

its last term will be

tan.'fl. .-.ar^+^H^'^ •'^''-+j/" + 2e.(j'. cos. a+y. sin. a)+5^(l-ftan. '^)=['^^^.

Multiplying both sides of equation (3) by fi'. R'.r^, and we obtain ft'.R\^.r^ = R*~

R.i", :. r\lfi'.R'i-\.l)=R'; .'. substituting for r^ its value we obtain f~^ + 2i??.

COS. (A—u) + R^)r. ifc'Rr-.^+l)=R\

* Ti*^ occurs on both sides of this equation with the same sign, therefore it may be

omitted, and as the remaining quantity is divisible by g, it may be depressed to the seventh

degree.
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2. R'. COS. «9. (ix'.R^+3. COS. (A—<^)) ;*

Thus the equation in ^, being of the seventh degree, it will have at

least two roots which are real and positive, if /^'. iJ'+3. cos. (A—a)

is positive jt for by the nature of the problem, it must always have a

positive root, and it is evident from the nature of equations that when

this is the case the number of its positive roots cannot be odd. Each

real and positive value off, gives a different conick section for the orbit

of the comet ; therefore we will have as many curves which satisfy three

neighbouring observations, as ^ will have real and positive values, and

in order to determine the true orbit of the comet, we must have recourse

to a new observation.

32. The value of
f,

deduced from the equation (4) would be rigor-

ously exact, if «, ('^),(^), 6, (|),^^^ , were exactly

known ; but these are only approximate values. Indeed, we can by

the method already laid down approach to them nearer and nearer, by

employing a considerable number of observations, which has also the

advantage, of enabling us to consider intervals sufficiently great,

and thus to compensate by each other, the errors of observations.

But this method is liable to the analytic inconvenience ofemploying more

than three observations, in aprobleni in which three is sufficient. We can

obviate this inconvenience in the following manner, which at the same

* This equation when expanded becomes

^]i^.cos.(A—»)).R*-^R%{ft'°.R*f+2ftR''i+ l)=RS when ii-^ is obliterated, and this

expression is multiplied by cos. ''6, and divided by {, the absolute quantity is evidently equal

to (2i?. cos.
(
4—»). SR^+ ^fiR"). cos. H.

f This equation being of the seventh dimension, when the absolute quantity is positive

it must have one real negative root, -and from the nature of the problem it has one real

affirmative root, .'. as impossible roots enter questions by pairs, the number of those in

the proposed ' equation cannot exceed four ; consequently, in order that the sign of the

absolute quantity may be positive, the remaining real root must be pos itive.
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time that it only employs three observations, will render our solution

as accurate as we please.

, For this purpose let us suppose that a and 6 represent the geocen-

tric longitude and latitude of the intermediate observations ; by sub-

stituting in place of a-, y, z, their values a^+f . cos. «
; y+f • sin. « ;

and

J.
tang. 6; they will g'^^)^^?') ^^(^"'^ LdfY ^" functions of

f, «,

and e, of their first differences and of known quantities. By differen-

tiating these functions, we will obtain, -l --| oi -;^ f
and -{^Yy

in functions of
f,

«, 9, and of their first and second differences. We
can eliminate the second difference of

f,
by means of its value, and its

first difference, by means of the equation (2) of the preceding number.

By continuing to difference successively, the values of <-^>-,

J — t, and then by eliminating the differences of a. and 9, superior

to the second, and all the differences of
f,

we will obtain the values of

j^ll' ®' {SKIS} ' *^"' ^""^ premised, let «, a', a'", be the

three observed geocentric longitudes of the comet ; 6, 9', 9''', its three

corresponding geocentric latitudes ; let i be the number of days which

intervene between the first and second observation, and i', the number

which separates the second observation from the third j finally, let a be

the arc which the earth describes in a day by its mean sidereal motion j

by No. 29, we shall have
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By substituting in these series, tor < -T-f r > < -jji r > ^^- i^ j >

-7^ >-, &c., their values obtained by the preceding method; we

shall have four equations between the five unknown quantities
f,

{l}.{|-"}'{l!}'{S}- These equations wUlbe alwa,sn,ore

exact, according as we consider a greater number of terms in the preced-

^ .. , „ . • ff/»l (d"i^\ idH .

ing series. By this means we shall obtain, < j^f, iTTai'i^j ^

-3 T-y > , in functions of
f
and of known quantities ; and by substitut-

ing them in the equation (1) of the preceding number, it will only

involve the unknown quantity ^. In fine, this method which has

been detailed here, merely in order to shew how by means of three

observations only we can obtain continually approaching values of
f,

would require in practice, very troublesome computations, and it is

at the same time more exact and more simple, to consider a greater

number, by the method explained in No. 29.

33. When the values of ? and of 4 -r^ > shall have been determined,

we can obtain those of J-, t/, ^A^)>\-Jt) ^^^(~77) ^y "1^^"^ of the

equations x— R. cos. A-{-^. cos. a
; j/ =r 72. sin. A + ^. sin. a. ; z zr. ^.

tang. 6 ; and of their differentials divided by dt.

PART. I. BOOK II. U D
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(§)= ©• «'»• ^ + ^- ©• ^««- ^4+ (|)- «'"• -+e- ©• ^•'>^- -

;

(^)=(|).tan.H.O.

COS. ^e

The values of f-^] and of (-77) are given by the theory of the mo-

tion of the earth : in order to facilitate their computation, let E repre-

sent the eccentricity of the earth's orbit, and H the longitude of its

perihelion ; by the nature of the elliptic motion we have,

•dA\ ^^\—E^ „ l—E''fdA\_ Vl-E\
dti- R^ ' l+E,cos.{A—H)

These two equations give

ulR\ _ E. sin. (A—//)
.

let R' represent the radius vector of the earth corresponding to A,

the longitude of this planet, increased by a right angle ; we shall

have

R'=
'-^'

l—E. sin. (A—H) '

from which may be obtained

R'—l + i-
E. sin. (A—H)=-

M'

dA , .

* , being equal to the angular velocity of the earth, it is equal to the square root of the
dt

parameter divide by the square of the distance, .'. it is equal to —™— •
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consequently

(dR\_ R' + E'—l ^

\dtf- R'.k/x—E''

If we neglect the square of the excentricity of the terrestrial orbit,

which is very small, we shall have

the preceding values of i—jj) ^^^\^) ^^^^^ consequently become

(§)=(^'-''- ™^- ^-Tr-+ (*)• ""' "-<• (^)- ''"• "•

(f)= (^'-l).si„. A + SStA+ ©, sin, .+, (§). COS..;

R, R' and ^ being gi/en immediately by the tables of the sun, the com-

putation of the six quantities x, y, z, (^j)' (~^)' ^^^ \^)^^^^ be easy,

when
f,

and f;^) will be known. The elements of the orbit of the

comet can be deduced from them, in the following manner.

D D 2

dt dt {\-\-L.cos. A—Hf (1

—

L-f ^ ^
' •

(\—E%E. sin. (A—H) ^ E. sin. {A—H) _ 1—£'

{\-irE.coi.{A—Hf VT^E" ' ~ l+E.cos. {A+90—H)

=(1—£').(!

—

E. sin. (^—//))-'= (when the square of E is ne-1—jE. sin. (^-//)

glected) l+£. sin. (A—H), :. R'—\(=E. sin. (A—H)) isequal(^) , when £>

dected.
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The indefinitely small sector, which the projection of the radius

vector of the comet on the plane of the ecliptic, describes during the

element of time dt, is -—^^-^-— ; and it is manifest that this sector is

positive or negative according as the motion of the comet is direct or

retrograde} thus, the sign of the quantity x. x-jA—2/'(^f)>
^^'''

indicate the direction of the motion of the comet.

In order to determine the position of the orbit, let us name <p, its

inclination to the ecliptic, and / the longitude of the node, which

will be the ascending one, if the motion of the comet be direct

;

we shall have «

z =. y. cos. /. tan (p— x. sin. /. tan. f.

This equation, combined with its differential, gives

tan. /—

-

•" (^)-~-(^)

'

* s = tan. <p. multiplied into the distance of z from the line of the nodes, and if ti)e

axi» of X be a line drawn to the first point of Aries, this last distance =^. cos. /

—

x. sin. I.

dz—dy- cos. /. tan. (p—dx.&m. I. tan. ip ; •/

dz
y- dt
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1

tan. p= "^^ ^«^^

^^'Hfy^m
must be always positive and less than a right angle ; this condition

determines the sign of sin. 7"; but the tangent of /, and the sign of

its sine being determined, the angle I is entirely determined. This

angle is equal to the longitude of the ascending node of the orbit,

provided that the motion is direct, but if the motion is retrograde, we

must add to it two right angles, in order to obtain the longitude of

this node. It will be simpler to consider only the direct motions, by

making ip the inclination of the orbits to vary, from zero to two right

angles ; for it is manifest, that then the retrograde motions corres-

pond to an inclination greater than a right angle. In this case, tan. <p

is of the same sign as a-. ( -77 )
—

JJ' ( "37 ) > which determines sin. /,

and consequently the angle 7, which expresses always the longitude of

the ascending node.

a and ea representing the semiaxis major, and excentricity of the

orbit, we have, by N°'. IS and 19, f*
being supposed =1,

I dz rfy \

By substituting we obtain ^ —
sin./.(..^_^.^)

dy , dx . ^ du dii _, \
y-^- cos- '—y'~^- *"*' ^—y- -^- cos./+x. -^. sm. /). tan. ?.j

(dy dx\ . ^
'•
-df-y-df )'''' ^

t dy dx\ . ^

= / du dx \ T '="'^ f-
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a~ r \dt J \dt ] \~di ) '

The first of these equations determines the semiaxis major of the

orbit, and the second determines its excentricity. The sign of the

timctioncr.
( y, J

-\-y- \Zjf) +**{"^) '"^kes known whether tlie

comet has ah-eady passed through its perihelion ; for if this function is

negative, it approaches towards it ; in the contrary case, it has already

passed this point.

Let T represent the interval of time comprised between the epoch

which we have selected, and the passage of the comet through the pe-

rehelion ; the two first of the equations (f) of No. 20, will give, by

observing that /^ being supposed equal to unity, we have n= a~^,

r— 0.(1

—

e. COS. ii) ; Tzza^.(u—e. cos. u).

The first of these equations gives the angle u, and the second makes

known the time T. This time added or subtracted from the epoch,

according as the comet approaches or departs from the perihelion,

will give the instant of its passage through this point. The values of

a; and of i/, determine the angle which the projection of the radius

vector r makes with the axis of x, and as we know the angle / made

by this axis, with the line of the nodes, we shall have the angle which

this last line constitutes with the projection of ?• ; from which may be

obtained, by means of the inclination (p of the orbit, the angle which

the line of the nodes makes with the radius /•. But the angle u being

known, we shall have by means of the third of tlie equations (J"), of No.

20, the angle v, which this radius forms, with the line of the apsides

;

therefore we will have the angle comprised between the two lines, of the

apsides and the nodes, and, consequently, the position of the peri-



PART I.—BOOK II 207

lielion. All the elements of the orbit will be thus determined.

34. These elements are given, by what precedes, in functions of c

( -£ ) , and of known quantities ; and as ( -4.) is given in
f
, by No.

31 ; the elements of the orbit vvill be functions of
f,

and of known

quantities. If one of them was given, we would have a new equation,

by means of which we could determine j ; this equation will have a

common divisor with the equation (4) of No. 31; and seeking this

divisor by the ordinary method we will arrive at an equation of the

first degree in ^, we shall have besides, an equation of condition be-

tween the data of the observations, and this equation will be that which

should have place, in order that the given element might belong to the

orbit of the comet.

Let us now Jpply this consideration to nature. For this purpose,

we may observe that the orbits of the comets are very elongated el-

lipses, which are sensibly confounded with a parabola, in that part of

their orbit in which these stars are visible ; therefore we may suppose

without sensible error, that a = oo, and — = ; consequently the

expression for—of the preceding No. will give,

^- T de

If we afterwards substitute, instead of{^)>(-hj)f^] their va-

lues, which are found in the same No. ; we shall have, after all reduc-

tions, and by neglecting the square of R'— 1,

-a)V(^:)v{(i)—^my
t cos. *G y
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^dx\ C ,^ • r ^ N COS. (^—a) 7 1 2

by substituting in this equation, instead of ( -^^
) its value

which has been found in No. 3 1 ; and then by making

+ f tan... (g?) +.. .a,.. .. si„. (..-.)-., {^,).{§M'
^

^ cos.^0 )

|(g)+p-.si.,.(^-.)
^ .^

* By making this substitution, the equation (.5) becomes

^
( -©

"^/ V — ^^~+;.c'.sin. (.J—«)y(iJ'— l).cos.(^ — a)— sin.-i;^!^^)

COS. *(i J dt

+.<.(S){,.._„.s..C.-,,+^i^}+i-f

It is evident from an inspection of this expression, that B is equal to the quantity by

^vhich 5^ is multiplied, and that C is equal to the corresponding factor of {.

*) ) . tan. (.
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_ /'da\ C .„, . . , . . COS. [A—at) )

R

we shall have

and consequently

r\|5.f^+C.e + -i^r=l;

this equation is only of the sixth degree, and in* this respect it is

simpler than the equation (4) of No. 31 ; but it is peculiar to the pa-

rabola, on the contrary, the equation (4) is applicable to every species

of conic section.

35. We may perceive by the preceding analysis, that the determi-

nation of the parabolic orbits of comets, leads to more equationst

than unknown quantities, we can, by different combinations of these

equations, form as many different methods of calculating these orbits.

Let us investigate those from which we ought to expect the greatest

precision in the results, or which participate the least in the errors

of observations.

It is principally on the values of the second differences
\-f^)

and

i-fjij, that these errors have a sensible influence ; in fact, it is neces-

sary, in order to determine them, to take the finite differences of the

geocentric longitudes and latitudes of the comet, observed during a

PART I. BOOK II. E E

* This equation is of the sixth degree for {* and r^ occurs in it, and if we substitute for

r^ its value, in terms of j ; f will be the liighest dimension of 5 which occurs in it.

t The reason why there are more equations than unknown quantities in this case, is

because the axis major is supposed to be infinite.
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very short interval of time ; but these differences being less than the

first differences, the errors of observation are a greater aliquot part of

them ; besides, the formulae of No. 29, wliich determine, by the com-

parison of observations, the values of «, 9, \7>)'(;t,)'Vj7i)» ^^^
\7jp') '

determine with greater precision the four first of these quantities,

than the two last ; it is therefore advantageous to rely as little as pos-

sible on the second differences of a. and of 9 ; and as we cannot reject

them all at once, the method which only employs the greatest ought to

lead to the most exact results; this being premised.

Let the equations which have been found in the N"'. 31 and 34, be

lesumed

>_ ?
»

^*= 7^-^ + 222f. cos. (^-^)+72* ;
cos. *9

(d^'\_ R- sin. (^—g) (J_ 1 5 /rf^«\

^dtf- ^~7^Y~V/i^""^i _^;^5 (L)

\dt) ^ r(U\
"' \dt/

, C(^) ^^ /^")\sin.^.cos.O

\7ff)—— aP- •<
,„ , + 2. {-j-J. tan. 64- ^^ jr——

—

, -r, sin. 6. cos. 6, cos. (A — a) (I 1 >

^dtJ

»=(S)"+e*.{|)Vi©--+!j)r
t COS. '9 )

(dp\ ( „ V , .. N sin. (A—a) >

^p. j(/i'— 1). COS. {A-») 5^ ^^
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COS. (J—a) ? . 1 2
+2e.(^).[(i?'-l).sin.(^-.)+^

"•"ie*

rd'h
If we wish to reject (tjs)* 'f is only necessary to consider the first,

the second, and the fourth of these equations ; eliminating
(-J\ , from

the last, by means of the second, we will obtain an equation which

freed from fractions will contain a term multiplied by r*.
f'',

and other

terms affected with even and odd powers of ^ and of r. If all the

terms affected with the even powers of r, be reduced|into one member,

and likewise all the terms affected with the odd powers of r ;* the

term multiplied by r*. f*
will produce one multiplied by r"'.

f* ; there-

fore by substituting instead of r*, its value given by the first of the

equations (L), we shall have a final equation of the sixteenth degree

in
f.

But instead of forming this equation, in order afterwards to

resolve it, it will be simpler to satisfy by trials, the three preceding-

equations.

If we wish to reject ( / ; we must consider the first, the third

and the fourth of the equations (L). These three equations would

also lead us to a final equation of the sixteenth degree in
f, which

can be easily satisfied by trials.

The two preceding methods appear to me the most exact which

can be employed in the determination of the parabolic orbits of the

comets ; it is even indispensably requisite to recur to them, if the mo-

tion of the comet in longitude or in latitude is insensible, or too small

for the errors of the observations not to alter sensibly its second differ-

ence ; in this case we should reject that one of the equations (L),

which contains this difference. But although in these methods, we

G£ 2

• By squaring each member, we get rid of the odd powers of r, and the value of any

even power will be obtained by means of the first of the equations (L ).



212 CELESTIAL MECHANICS,

only employ three of the preceding equations
;
yet the fourth is useful, in

order to determine amongst all the real and positive values of ^ , which

satisfy the system of the three other equations, that which ought to be

admitted.

36. The elements of the orbit of a comet, determined by what

precedes, would be exact, if the values of a, 6, and of their first and

second differences, were rigorously correct ; because we have taken into

account in a very simple manner, the excentricity of the earth's orbit,

by means of the radius vector R' of the earth, corresponding to its true

anomaly, increased by a right angle ; we are only permitted to neglect

the square of this excentricity, as being too small a fraction for its

omission to influence sensibly the results. But 6, a, and their differences,

are always liable to some inaccuracy, as well on account of the errors of

observation, as because these differences are collected from the obser-

vations in an approximate manner. It is therefore necessary to correct

these elements by means of three observations at considerable intervals

from each other, which may be effected in an indefinite number of

ways ; for if we know very nearly two quantities relative to the motion

of a comet, such as the radii vectores corresponding to the two ob-

servations, or the position of the node, and the inclination of its orbit,

by computing the observations, at first with these quantities, and then

with other quantities which differ very little from them ; the law of

the differences between these results, will easily make known the cor-

rections which those quantities ought to undergo. But among the

binary combinations of quantities relative to the motion of the comets,

there is one of which the calculation is the simplest, and which on

this account deserves to be preferred ; and in a problem so compli-

cated, it is a matter of importance, to spare the computer every

superfluous operation. The two elements which have appeared to

me to afford this advantage, are the perihelion distance, and the

instant of the passage of the comet through this point ; for they not

only may be readily deduced from the values off and of(^-r.)i but it also
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is very easy to correct them by observations, without being obliged,

at each variation which they are made to undergo, to determine the

other corresponding elements of tlie orbit.

Let us resume the equation which has been found in No. 19,

a.n—e^')=2r—~l-
r\dr'

dV

a.{\—e*) is the semiparameter of the conic sections of which a is the

semiaxis major, and ea the excentricity ; in the parabola, where a is

infinite, and ea equal to unity, a.(l—e*) is equal to twice the peri-

helion distance ; let Z) equal this distance, the preceding equation

becomes, relatively to this curve,

-=^-4-m-
is equal to '^ ,'

; by substituting in place of r*, its value
dt ^ dt

+ 2/?f . COS. {A—a)+i2*, and instead of ] -^ ^ and of j -t- [ ,

COS. *9

their values found in No. 33, we shall have

rdr p C C dttl . ( d^

dt =^•lls^eli^-«^«•li•-(^-.)•
V/T^. ,\ ,A ^ sin. M—a) 7+ ?• ^(^—1)- cos. (/f—«) ^-^ -\^

+ f.i2. &?. sin. (^—«)+iJ.(i2'— 1).

rdr

-iff. sin. (^- «)
{ (^)- (J*) } + iJ-C^); and by substituting R'-\ for (^)

,
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Let P represent this quantity ; if it is negative the radius vector r

goes on diminishing, and consequently the comet* tends towards its

perihelion ; but it moves from it, if P is positive. We have then

tiie angular distance i; of the comet from the perihelion will be de-

termined by the polar equation of the parabola

cos. i» = -^;

finally, the time employed to describe the angle v will be obtained, by

the table of the motion of comets. This time added or subtracted

from that of the epoch, according as P is negative or positive, will give

themoment of the passage through the perihelion.

37. These different results being collected together, will give

the following method, for determining the parabolick orbits of co_

mats.

A general method for determining the Orbits of the Comets.

This method will be divided into tdvo parts-; iii the first, we will

give the means of obtaining very nearly the perihelion distance of the

comet, and the instant of its passage through the perihelion ; in the

second, we will determine exactly all the elements of the orbit, these

quantities being supposed to be very nearly known.

and _L for f4) we shall have^ = -1- j /|)
+,.i!^.g) I + cos. (A-,).

R' \dt/ dt cos.^i \\dtJ COS. 6 \dt/

}
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An approximate determination of the perihelion distance of a Comet,

and of the instant of its passage through perihelion. i

Let three, four, or five, &c. observations of the comet be selected

as nearly as possible* equi-distant from each other ; with four observa-

tions we can embrace an interval of 30°
; with five observations, an

interval of 36°, or 40°, and so on of the rest ; but it is necessary

always that the interval comprised between the observations should

be more considerable, as they are more numerous, in order to dimi-

nish the influence of their errors ; this being premised.

Let €, €', C^', &c. be the successive geocentrick longitudes of the

comet
; y, y', y'', the corresponding latitudes, these latitudes being

supposed positive or negative, according as they are north or south.

Let the difference S'—E be divided by the number of days which se-

parates the first from the second observation ; in like manner, the

difference C^'— S' be divided by the number of days which sepa-

rates the second from the third observation ; we will also divide

the difference C'''"—S ', by the number of days which separates the

third from the fourth observation, and so of the rest. Let J£, J6', i^'\

be these quotients ; let the difference <?£'

—

SS, be divided by the

number of days which separates the first observation from the third
;

in like manner let the difference $Q^^ — K', be divided by the

number of days which separates the second observation from the

* The precision which might be expected from an increased number of observations

would not (as M. Laplace has since ascertained) compensate for the errors to which the

observations are liable, and also for the greater length of the calculus ; he therefore pro-

poses in the 15th Book, to employ only three observations, and by fixing the epoch at the

intermediate observation, to render the extreme observations at such inconsiderable dis-

tances from each other, that for the interval which separates them, the preceding data

may be supposed very nearly the same ; an additional advantage in having the intervals

short is, that the differences superior to the second are inconsiderable, and may therefore

be negkcted.
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fourth ; and J'S'—<JS*, by tlie number of days which separates the third

observation from the fifth ; and so of the rest. Let ^*S, <J*6', S'^", re-

present these quotients.

Dividing the difference J^'S'

—

S'S, by the number of days which

separates the first observation from the fourth ; and in like manner

iJ*?'''

—

S'^', by the number of days which intervenes between the second

and fifth observation, and so of the rest. Let PQ, PQ', &c. represent

these quotients. Let these operations be continued till we arrive at

^~*.€, 91 being the number of observations employed.

This being performed, let an observation which is a mean, or very

nearly so between the instants of the extreme observations be selected,

and let i, i', i", i"', &c. represent the number of days by which it pre-

cedes each observation, i, i', i", being supposed to be negative for the

observations which are anterior to this epoch ; the longitude of the

comet, after a small number z of days reckoned from the epoch, will be

expressed by the following formula :

e—/.<^e+/.i'.^e_i.i'.?^^5e+&c.

+z*.(<?*e—(i+ i'+i"). S^^-\-i.i'-\-i.i".-\-U"-\-i'.i"+i'.i").d*^—kc.).

J he coefficients of —J^S, +<?*£, —S^^, &c. in the part which is in-

dependent of z, are, 1". the number « ; ;2'\ the product of the two

numbers i an 1 i' ; 3'". the product of the three numbers /, i', i", &c.

The coefficients of —S""^, +^'e, —<J^€, &c. in the part multiplied by

z are, 1". the sum of the two numbers i and i; 2'". the sum of the

binary products of the three numbers i, i', i" ; 3". the sum of the

products of the four numbers i, i', /', i"', &c. taken three by three.

The coefficients of

—

PQ, -^(J^e, —SK, &c. in the part multiplied by

z^, are 1". the sum of tie three numbers i, i', i" ; 2'". the sum of the

products of the fbai numbers i, i', i", i"', taken two by two ;
3'"^ the
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sum of the products of the five numbers, i, i', i'\ i ', i"\ &c. taken three

by three.

In place of forming these products, it would be as simple to develope

the function

z + (^z—i).s^+{z—i).{z—i'). <^e+(z—«').(3—«0-(2—'"')• ^'^ + &c.

the powers of z superior to the second, which the preceding formulas

would give, being rejected.

If we perform similar operations on the observed geocentrick lati-

tudes of the comet ; its geocentrick latitude after the number z of

days, reckoned from the epoch, will be expressed by the formula ( p),

by changing £ into y ; and let {q) represent what this formula becomes

after this change ; this being premised, a. will be the part independent

of z, in the formula (p) ; 9 will be the part independent of z, in the

formula (y).

If the coefficient of ;: be reduced to seconds, in the formula (j?),

and if the logarithm 4,0394622 be subducted from the tabular loga-

rithm of this number of seconds ; it will give the logarithm of a number

which we will denote by a.

And if the coefficient of z^ in the same formula be reduced to se-

conds, and if the logarithm l,974011i4< be then subtracted from this

number of seconds, it will give the logarithm of a number, which we

will denote by b.

The coefficients of z and of z'' being in like manner reduced to

seconds in the formula {q), and then the logarithms 4,0394622, and

1,9740144 being subtracted from the logarithms of tliese numbers re-

spectively, will give the logarithms of two numbers, which we will

denote by h and /.

The accuracy of this method depends on the precision of the values

of a, b, h, I ; and as their formation is very simple, we should select

and multiply the observations, so as to obtain them with all the preci-

sion which the observations admit of. It is easy to perceive that these

PART I. BOOK II. FF
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values are the quantities (^), (^A \^J
^^^ l^A which for greater

simplicity we have expressed by the preceding letters.

If the number of observations be odd, we can fix the epoch at the

instant of the mean observation ; this enables us to dispense with the

computation of the parts independent of ;:, in tlie two preceding for-

mulae ; for it is evident that these values are then respectively equal

to the longitude and latitude of the mean observation.

The values of a, a, b, 6, h and /, being thus determined ; the longi-

tude of the sun at the instant which we select for the epoch, must

next be determined j let this longitude be equal to E, R being the cor-

responding distance of the sun from the earth, and R' the distance

which answers to E increased by a right angle, the following equations

will be obtained,

^* -—^ii-.rr. cos. (£—a)+i?*; (1)

y-

cos. ^G

R. sin. (E—x) (1 17 bx

'^fl
"11^ TVS ^2a' ^^^

C , „ . ^ .
«*• sin- 6. cos. 6

y= _.r. \h. tan. 6 +^+ ^^

B. sin. e. cos. 6
, T. N W 1

, . cos. [E a). <-f^ 1
ih ^ LR^ r^

K . fi-^ 1' ^ C sin. (£—«) , „, ,>,*
0=3/^+«\.r^+

Ji/.
tan. e+

-^^j-^l
+2y. ^ ^^^

L-^R'-l).

COS. (E—=c)) (4)

• All tlie observations made in the interval between the extreme observations may be

made use of in determining « a, i, «, ', and / ; for if each observaiion'be expressed in a

linear function of these data, there will be more equations than unknown quantities
;
the first

final equation will be obtained if each equation be multiplied by the coefficient the first un-

known quantity, the second final equation will be obtained by a similar process, and so

on ; and the data will be given by a resolution of these equations with a precision which will

be greater, as moie observations are made use of. This advantage is peculiar to this mcr

thcd. (See Connaissance ties Temps, Annee 1824.)
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a rr-D, in • r t? \, COS. (£— a) 12—2ff^.((/2'— 1). sin. (£—«)H ^ V-^^ +—

.

In order to deduce from these equations, the values of the unknown

quantities x, y, and r ; we must consider, in the first place, whether,

abstracting from the sign, b is greater or less than /. In the first case,

we employ the equations (l), (2) and (4). We make a first supposi-

tion for a;, by supposing it, for example, equal to unity ; and from this

we conclude, by means of the equations (IJ and (2), the values of r

»nd of ^. We substitute then, these values in the equation (4), and

if the remainder vanishes, it shews that the value of x has been rightly

assumed ; but if this remainder be negative, the value of x must be

increased, and it must be diminished, if this remainder be positive.

By this means, we shall obtain by a small number of trials, the values

of X, y, and r. But as these unknown quantities are susceptible of

several real and positive values, it is necessary to select that value

which satisfies exactly or very nearly the equation (3).

F F 2

Since the publication of this book M. Laplace has ascertained that the best means of

diminishing the influence which the errors of observation have on their results, consists

in combining the equations (2) and (3), by multiplying the first by a', and the second

by A', and then adding the products together, by means of which the following equation

will be_obtained,

_asin. (£—a)—^. sin. ^. cos. fl. cos. (£

—

a).R /_! 1_ -\

X. A^. tang, i + ^ al. + \. h. l-\-\. a°h. sin. 6. cos. 6 i

This equation combined with the equations (1), (4), will give the values of x, y, r. By

making a first hypothesis for x, the equations (a) will give the corresponding values of r.

and then the equation (5) will givey. Now if the value of x has been properly assumed,

these values, when substituted in the equation (4) ought to satisfy it ; if this equation is not

satisfied, a second value of x should be taken, and so on. Hence the perehelion distance

D, and the instant of the passage through the perehelion, may be determined,
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In the second case, i. e., if we have / > 6, we must employ the

equations (1), (3), and (4), and then the equation (2) will serve to

veri y the values deduced from these equations.

Having by this means obtained the values of .r, y, and r j let P
be assumed

= ^'/^ + ''• *"• *^°' n

—

^^' ^^^' ^-^—*^

+^. f
'"'

'^f

~''^— (^'—0. cos. (E—cc) l—R.ajr. sin. (E—a)

+ E.(R'—1).

The perihelion distance D of the comet will be determined by the

equation

the cosine of its anomaly v will be given by the equation

COS. ^.V :=—
}

and from this we infer, by the table of the motion of the comets, the

time employed to describe the angle v. In order to obtain the in-

stant of the passage through the perihelion, this time sh.ould be added

to the epoch, if P is negative, and subtracted from it, if P is positive,

because, in the first case, the comet approaches the perihelion, and in

the second case, it moves from it.

Having thus determined very nearly the perihelion distance of the

comet, and the instant of its passage through the perihelion, we can

correct them by the following method, which has the advantage of

being independent of an approximative knowledge of the other ele-

ments of the orbit.
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An exact determination of the elements of the orbit, when ive knoxv

very nearly the 'perihelion distance of the Comet, and the instant

of its passage through the 'perihelion.

In the first place, three observations of the comet, at a considerable

distance from each other, should be selected, and then from the peri-

helion distance of the comet, and from the instant of its passage

through the perihelion, as data which are determined by what pre-

cedes, we compute three anomalies of the comet, and the radii

vectores which correspond to the instants of the three observations.

Let V, xf , x/', represent these anomalies, (those which precede the passage

through the perihelion being supposed negative) j moreover, let

r, r', r", represent the corresponding radii vectores of the comet

;

f'

—

V, x/'—V, will be the angles contained between r and r', and be-

tween r, and r^' ; let U be the first of these angles, and U the se«

cond.

Likewise let a, a', a.", represent the three observed geocentrick longi-

tudes of tlie comet, referred to a fixed equinox ; 0, 6', fi', its three geocen-

trick latitudes, the southern latitudes being supposed to be negative ; let

e, S', %", be its three corresponding heliocentrick longitudes j and sr,

zs', -m", its three heliocentrick latitudes, finally, let E, E', E\ be the

three corresponding longitudes of the sun ; and i?, il', jB' , its three

distances from the centre of the earth.

Let us suppose that the letter S indicates the centre of the sun ;
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T that of the earth ; C the centre of the comet, and C, its projection

on the plane of the ecHptic. Tlic angle STC\ is the difference of

the geocentrick longitudes of the sun and of the comet ; by adding

the logarithm of the cosine of this angle, to the logarithm of the co-

.sine of the geocentrick latitude of the comet,* we will obtain the lo-

garithm of the cosine of the angle STC; therefore in the trian^^le STC

there will be given the side 52' or R ; the side SC or ?; and the angle

STC; we can thus by trigonometry obtain the angle CST. The

heliocentrick latitude of the comet will then be obtained by means of

the equation

sin. S. sin. C^r .

sm. ro-n -.
—„^p . T

sin. CTS

The angle TSC is the side of a right angled spherical triangle, of

which the hypothenuse is the angle TSC, and of which one of the

sides is the angle zj ; from which we can easily obtain the angle TSC',

and consequently, the heliocentrick longitude S of the comet.

In like manner, z/, Q', zr", ^" ; and the values of §, ^,^", will deter-

mine whether the motion of the comet is direct or retrograde.

If we conceive the two arcs of latitude w, w', to meet in the pole of

the ecliptic, they will make an angle equal to C—S ; and in the spherical

triangle formed by this angle, and by the sides -—-—w, and -^ — w'.

* If £ be the longitude of the sun, STC'=:x—E, and in the right angled spherical tri-

angle, of which one side is the measure of «

—

E, and the other side about the right

angle the measure of «, the hypothenuse will be equal to the measure of the angle at the

earth between the sun and comet i. e. equal to S TC, .'.by Napier's rules we have cos.

(«—£). cos. «=cos. STC.

t Sin. CST : CTS : distance of comet from earth : r'.: sin. w : sin. I, .'. sin. «7 =
sin. i. sin. CST

sin. CTS
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7r being the semiciicumference, the side opposite to the angle €'—g,

will be the angle at the sun, contained between the radii vectores r and

r'. It may be easily determined, by spherical trigonometry, or by the

following formula :

sin. *iF. rz COS. *i-. (zj-f-T;/)—COS. *^ (%' E). cos. zr. COS. -a/,*

in which V represents this angle ; so that if we name A, the angle of

which the square of the sine is cos. ^tV.(S—£). cos. -sr. cos. -s/, and which

can be readily derived from the tables, we shall obtain

sin. 'ir=COS. (iTir+iar'+ J). COS. (i^+|n-'

—

A).

Naming in like manner V the angle constituted by the two radii vec-

tores r and ?', we will have

sin. 'iP = cos. (iur+i7i/+^0- COS. (^^ + ^t;/— ^'),

A' being what A becomes, when T3-' and C are changed into is" and ^".

Now, if the perihelion distance of the comet, and the moment of its

passage through the perihelion were accurately determined, and if the

* This expression may be easily derived from the known formulae of spherical trigono-

metry, for if we assume B = (S'—S) ; C=— ro ; C'= —— a' ; we shall have, cos. B

* cos. V—cos. C. cos. C , _ 1 _1— COS. B— 2 sin. «--. B
sm. C. sin. C 2

_ sin. C. sin. C—cos. F+cos. C. cos. C _ cos. f C— C) — cos V~
sin C sin. C sin. C. sin. C"

'

.-. 2 sin. ^i B. sin C. sin. C =cos. (C—C)— cos. F =2 sin.'f F—? sin. ^^ (C—C),

and since sin. "\B = 1 — cos."^B; and sin. -^ {C— C) = sin. 'A (C+C) — sin. C.

sin. C, we shall have (2—2 cos. '^. 7?). sin. C. sin. C'= 2 sin. ^ F—2 sin. 'J (C+ C)+ 2.

sin. C. sin. C". .'. sin. =iF= sin. i (C+ C')—cos. ^iR sin. C. sin. C; which will give the

expression in the text when their values are substituted for B, C, C.
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observations were rigorous, we would have

V=U; F'=U
i

but as this can never be the case, we will suppose

m= U—V; m'= U'—V.

(It is to be observed here, that the computation of the triangle STC,

gives for theangle CST two different* values. Most frequently, the

nature of the cometary motion will make known which of them ought

to be employed, especially if these two valufes are very different ; for

then one of them will place the comet farther than the other from the

earth, and it will be easy to determine, by the apparent motion of the

comet at the instant of observation, which ought to be selected. But

any uncertainty which remains on this account may be removed, by

taking care to select that value which renders Fand V very little

different from U and Z7'.)

Then we will make a second hypothesis, in which the instant of the

transit through the perihelion remaining the same as before the

perihelion distance varies by a small quantity; .e g. by a live hun-

dreth part of its value, and then we seek in this hypothesis the values

of U— V, and of U'—V ; let then

n = Cf— V; n' zz U—V.
Finally, we make a third supposition in which, the distance of the

perihelicm remaining the same as in the first hypothesis, we make to

vary by half of a day, more or less, the instant of the passage through

the perihelion. And then let the values of U— V, and of U'— V be

investigated on this new hypothesis. Let in this case

p- U—V; f'- U'—V.

This being premised, if u represents the number by which the sup-

• The values of C5r, are CST, and 180—2 STC—C'S 7'.
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posed variation in the perihelion distance should be multiplied, in order

to obtain the true distance, and t the number by which the supposed

variation in the instant of the passage through the perihelion should be

multiplied, in order to obtain the true instant ; we shall have the two

following equations,

{m— n). u-\-(7n—p). tz=i7n;

(m'— ?/). tt-\- {m'—p'). t = m!
;

by means of which equations we obtain the values of wand of?, and

consequently the corrected flistance of the perihelion, and true instant of

the passage of the comet through the perihelion.

The preceding corrections suppose that the elements determined by

the first approximation, are sufficiently accurate to enable us to treat

their errors as indefinitely small. Both if the second approximation

does not appear to be sufficient, we must recur to a third, by ope-

rating on the elements already corrected, as we have done on their

first values ; it is solely necessary in addition to secure that they un-

dergo small variations. It will also suffice to compute by these cor-

rected elements the values of U— V, and of Z7'—P j by represent-

ing them by iVf and N, and substituting them in place oi m and m', in

the second members of the two preceding equations ; we shall have by

this means two new equations which will give the values of u and of

t, relative to the corrections of these new elements.*

Having by this method obtained the accurate distance of the peri-

PART. I. BOOK II. G G

If in place of computing 17, U' , V, V, on the three hypothesis mentioned in the text,

they were computed on the five following hypotheses, 1st, with the elements found in the

first approximation ; 2dly, by making the perihelion distance to vary by a very small quan-

tity ; 3dly, by making it to vary by twice the same quantity ; 4thly, the same perihelion

distance as in the first hypothesis being preserved, by mab'ng the instant of the passage
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helion, and the true instant of the passage of the comet through the

perihelion ; the other elements of the orbit may be inferred in the fol-

lowing manner.

Let J be the longitude of the node which will be the ascending one,

if the motion of the comet be direct, and (p the inclination of the

orbit ; we shall obtain by a comparison of the first and last ob-

servation,

.
tan. ST. sin. Q'^—tan. zj''. sin. g ^^

''^~
tan. nr. cos. S''— tan. z/^ cos. Q

'

tan. sr'''

tan. <p:
sin. i^'—J)

As we can thus compare two by two, the three observations, it

through the pereheUon to vary by a very small quantity ; 5thly, by making the same in-

stant to vary by twice this quantity. Let m, m' , m", m'", m"", be the values of U— V i

n, n', n", n"', «"", the values of V—V ; in order to determine in this case the value of

n, and t, the two following equations should be formed

(4„/_3m—m")a+ {rn"—%n'+ «)«-+ (4'm"'—3»n—»«"")•«

^(m""—'2,m<"—m)t-=2m ;
(4n'—3n—«").!(+ )«"—2n'+ «).«=

+ (4.B'"—3«—»""). <+(«""2n"'+ M).<^=2?J.

The values of u and of t which satisfy those equations, are much more precise than the

preceding. Although this precision is for the most part unnecessary, it is however indis-

pensably necessary to form these equations, when the terms depending on the second

differences will be of the same order as those which depend on the first differences, as for

instance, when the radius vector is very nearly at right angles to the visual ray from the

earth to the comet; in which case the angle SCT is very nearly equal to a right angle ;

on the other hand, if SCT was = 45°, the two values of SCT would be very nearly

equal.

* Let /be the inclination of the orbit to the plane of the ecliptic, and we shall have

rad. sin. (S —j)— cot. /. tan. ^ = rad. sin. (€"—j)= cot. /. tang. sr". therefore
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will be more exact to select those which give to the preceding fractions,

the greatest numerators and the greatest denominators.

Tan. j may appertain to the two angles j and j -\- it, j being the

smallest of the positive angles to which its value belongs ; in order to

determine which of these two angles we ought to select, it may be

observed that <f
is positive and less than a right angle ; and that thus

"

sin. {^"—J) must have the same sign as tan. -us". This condition de-

termines the angle j, and this angle will give the position of the as-

cending node, if the motion of the comet is direct ; but if its motion

be retrograde, we should add two right angles to the angle J, in order

to have the position of this node.

The hypothenuse of the spherical triangle of which ^"—j and is^'

are the sides, is the distance of the comet, from its ascending node in

the third observation ; and the difference between r" and this hypo-

thenuse is the interval between the node and the perihelion, reckoned

on the orbit.

If we wish to give to the cometary theory all the precision which

the observations admit of, it ought to be established on a comparison of

all the best observations, which can be effected in the following manner

:

denoting by one, two strokes, &c. the letters m, n, p, relative to the

second observation, to the third, &c. compared all with the first ob-

servation, we shall form the following equations,

(w2— n). u-\-(jti— p). t — m J

(jii'—n'). u-\-(ni'—p). t=m'

;

(m'—n"). u+(m'—p"). t=m" ;

&c.

G G 2

, S.cos. ;—COS. £. Sin. 7 sin. €". cos. j—cos.S". sm. » , ..... ,— — -^—
r,

; • • dividing by cos.
tar, ^ tan -^r" ° '

Sin.

tan. w
~

tan. ^" J-

,
sin. €— cos. €. tan. ; sin. £" — cos. €". tan. » , , . ,

we have — = 7. ~ , neuce we derive the expres-
tan. «r tan. s" "^

sion for tan. 7, which is given in the text.
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If then tliese equations be combined in the most advantageous manner,

'n order to determine ic and t, we will have the corrections of the

perihelion distance, and of the instant of the transit through the peri-

helion deduced from all the observations compared together. From these

values, we can deduce the values of £, 6', C*, &c. z:, =/, zs'\ &c., and

we shall have

._ tan. nr.fsin. S'+sin. 6''''-(-&c.)—sin. £.(tan. -zs-'-j-tan. ^/''-f&c.) ^,

'•^~"
tan. 7s-.(cos. g'-j-cos. ^"-{-ikc.)—cos. E.(tan. i=-'+tan. sj''''-j-&c.)

'

tan. •nr'-f-tan. z/'-\-Si.c.

'^~
sin. (g' -j)+sin. (^"—J)-\-&c.'

38. There is a case, of rare occurrence indeed, in which the orbit

of a comet can be determined in a rigorous and simple manner

;

namely, when the comet has been observed in the two nodes. The

right line which joins these two observed positions, passes then through

the centre of the sun, and coincides with the line of the nodes. The

length of this line can be determined by the time which intervenes

between the two observations ; T representing this time reduced to

decimals of a day, and c denoting the right line in question, we shall

have, by N". 27,

Now let € be the heliocentrick longitude of the comet, at the in-

stant of the first observation ; and r its radius vector, ^ its distance

from the earth, and « its geocentrick longitude. Also let R be the

radius of the orbit of the earth, and E the corresponding longitude of

the sun at the same instant ; we shall have

* Bj' composition of ratios we obtain these values of tan.7, tan. <p, wliich are more ac-

curate than the preceding.
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r. sin. S:=
f,

sin. «— R. sin. JS
;

r. COS. ?=
f.

COS. X— R. COS. jB.

TT-j-S will be the hsliocentrick longitude of the comet, at the instant

of the second observation ; and if we denote by one stroke the quantities

r, a,
f,
R and E, relative to the same instant, we shall have

r'. sin. g = R'. sin E'— ^'. sin. a,'.

r'. COS. € = i?'. COS. E'—
f'.

cos. «'.

These four equations give

^ p. sin. a

—

R. sin. £ p'. sin, a!.—R'. sin. jE'
tan. G^r -^ z;r

•

f
. cos. a R. cos. ^

f'.
COS. a' id'. COS. £' '

hence we obtain

, _ RR'. sin. (E—E')—R.^. sin, (a- E)
^ ~

f . sin. (a'—as)—id. sin. {a!—E)

We have aftei'vvards

(r-|-/^). sin. gzrf. sin. «—f'. sin. a!—R. sin. £-| K. sin. ^'.

(r+r'). COS. e=f. COS. a— f'. cos. a'—i2. COS. E-\-R. cos. JS'.

By squaring these two equations, and adding them together, we shall

obtain, (c being substituted in place of r-\-r')

ezuR^—QRR'. COS. <iE'—E) + R"-

+%.(/?'. cos.Xoc—E')—R. COS. (cc—E))

+2^'.(R. COS. («.'—E)—R'. COS. (^—iJ'))

-j-^»
2ff'.

COS. (a «)+f!\

If in this equation, we substitute instead of
f'

its preceding values

given in terms of ^ , we shall have an equation in ^ of the fourth degree,

which can be resolved by the known methods ; but it will be simpler to

suppose
f
equal to some given value, to infer from it the value of

f',

then to substitute these values in the preceding equation, and see
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whether they satisfy it. A few trials will serve to determine with ac-

curacy,
f
and

f'.

By means of these quantities we can obtain €, r and r'. And v re-

presenting the angle which the radius r makes with the perihelion

distance denoted by Z) ; -n — v will be the angle formed by this

same distance, and by the radius r, thus we will obtain by No. 23,

D
., _ -D

consequently*

cos. ^^ V '
sin. *4

2 1
'>'

-r^ ^f^
ian.^vzz— ; D =

Therefore we shall have v the anomaly of the comet at the instant of

the first observation, and its perihelion distance D, hence it is easy to

infer the position of the perihelion, and the instant of the passage of

the comet through this point. Thus, of the five elements of the orbit

of the comet, four are known, nauiely, the pei'ihelion distance, the

position of the perihelion, the instant of the transit of the comet

through this point, and the position of the node. It only remains to

find out the inclination of the orbit ; but for this purpose it will be

necessary to recur to a third observation, which will also be useful in

indicating amongst the different real and positive roots of the equation

in
f,

that of which we ought to make use.

38. The hypothesis of the parabolick motion of the comets, is not

rigorously true, it is even very improbable, considering the infinite num-

ber of cases which give an elliptic or a hyperbolic motion, relatively to

those which determine a parabolic motion. Besides, a comet which moves

r sin. -A u
Dividing r and its value by r'and its value respectively, we have -t= —"—n—

,

—
-, and also we nave \- —r— —-— = -^rr •D r ' r' rr D
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in either a parabolic or an hyperbolick orbit, would be only visible once
;

therefore we may with great appearance of probability suppose, that the

comets which describe these curves, if any such ever existed, have long-

since disappeared, so that at the present day, we only observe those,

which moving in orbits returning into themselves, are perpetually

brought back, after greater or less intervals, into the regions of space,

near to the sun. We can by the following method, determine nearly

within an interval of some years, the duration of their revolutions, when

we shall have made a great number of very accurate observations before

and after the passage through the perihelion.

For this purpose, let us suppose that we had four or a greater

number of accurate observations, which may embrace all the visible

part of the orbit, and that we have determined by the preceding

method, the parabola, which satisfies very nearly these observations.

Let V, v', i/^, if', &c., be the corresponding anomalies, r, /•', -Z^, r"',

&c., the corresponding radii vectores. Let also

i/—v=U; i/'—v=U'; 'i/''—v=U"; &c.

this being agreed upon, we compute by the preceding method, with

the parabola already found, the values of U, U, U'\ &c., V, V,
V\ &c.; let

m=U—F; m'=U'—V'; m"=iU"—V"; m'"=U"'—V'"; &c.

Afterwards, suppose the perihelion distance in this parabola, to vary

by a very small quantity ; and let in this hypothesis,

n=U—V; n'zzU'—V; n"zzU"—V"; n'"zzU"'—V'" ; &c.

We then make a third hypothesis, in which the same distance of the

perihelion being preserved, as in the first, the instant of the passage

through the perihelion is varied by a very small quantity ; let then

p= U—V; p'=zU'—V'
; p"=U"—V''; f'=U'"—V'"; &c.

Finally, we will compute with the perihelion distance, and the instant
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of the passage of the comet through the perihelion of the first hy-

pothesis, the angle v, and the radius vector r, on the hypothesis that

the orbit is elliptic, and that the difference 1 — e between its excen-

tricity, and unity, is equal to a very small quantity, for example,

to a 50th part. In order to obtain the value of the angle v on this

hypothesis, it will suffice, by No. 23, to add to the anomaly v, com-

puted in the parabola of the first hypothesis, a small angle of which

the sine is

-j^^. (1 — e). tang. \v. (i—3. cos. *^t;—6. cos. "^^v).*

By substituting then in the equation

r-=z iT-.il— ^ . tan.^lyC;

in place of v, this anomaly thus computed in the ellipse ; we will

obtain the corresponding radius vector. In a similar manner we can

compute, v', r', %>", r", 'o", r'", &c. ; by means of which we can obtain

the values of U, V, U", U'\ &c., and by No. 37, those of V, V, V\
&c. Let in this case

q=zU—V; q'=U'—V'', q'zzU'— V"; q"' = U"—V"; &c.

Lastly, let u denote the number by which we must multiply the

supposed variation in the distance of the perihelion, in order to obtain

the true distance ; and t the number by which the supposed variation

in the instant of the transit through the perihelion must be multiplied,

in order to obtain the true instant ; and s the number by which the

* When the orbit is supposed elliptic, we must have at least four observations ; and

then if the arc obsei-ved be considerable, and particularly if it is greater than 90°, the

ellipticity will be very sensible, and the periodic time may be determined with tolerable pre-

cision, if the four observations be made with all the precision of modern observations. If

the square of a be neglected, the expression for r will be —^-57— II— ^-— . tan. i I

which becomes the expression in the text when 1

—

e is eubstituted for a.
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supposed value of 1

—

e must be multiplied, in order to obtain the ac-

curate value, we will thus form the following equations,

(m—n). u-\-(7)i—p). t-\-(m—q). s=m
(in—n'). u-\-{in'—p'^. t-{-(iii'—q'). s:zzni

(^m"—n"). u+(m"—p"). t-\-{vi"—q''). s=m"

(ot'"—n'"). u-^(ni"—p"). t-\-(rn"'—q"'), s=m"'

;

&c.

The values of m, t, s, may be determined by means of these equations,

from which we can infer the true distance of the perihelion, the

true instant of the transit of the comet through the perihelion, and

the true value of 1

—

e. Let D be the perihelion distance, and a

the semiaxis major of the orbit ; we shall have a =: —
; the time of

the comets sidereal revolution will be expressed by a number of

sidereal years, equal to a~, or to { ) ", the mean distance of the

sun from the earth being taken for unity. Afterwards by N°. 37, we

shall get the inclination of the orbit, and the position of the node.

Whatever be the precision of the observations, they will always leave

some uncertainty as to the duration of the comets revolution. The

most exact method to determine it, consists in comparing the observa-

tions of a comet, in two consecutive revolutions; but this means is not

practicable, except when the lapse of time brings the comet back to-

wards its perihelion.*

PART I.—BOOK II. H H
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CHAPTER V,

General methods for determining, by successive approximations, tlie

motions of the lieavenli] bodies.

40. In the first approximation of the motions of the heavenly bodies,

we have only considered the principal forces which actuate them, and

from thence the laws of the elliptic motion have been deduced. We
will consider, in the following investigations, the forces which disturb

this motion. In consequence of the action of these forces, it is only

requisite to add small terms to the differential equations of the elliptic

motion, of which we have previously detei'mined the finite integrals : it

is necessary now to determine, by successive approximations, the inte-

grals of the same equations, increased by the terms which arise from

the action of the disturbing forces. For this object, we here subjoin

a general method, which is applicable whatever be the number and the

degree of the differential equations, of which it is proposed to find the

perpetually approaching integrals.

Let us suppose thai we have between the n variables y, i/', y", &c.

and the variable /, of which the element dt may be considered as con-

stant, the n differerential equations

&c.

P, Q, F, Q', &c. being functions of t, y, y', &c. ; and of their dif-

ferences continued to the order i— 1 inclusively, and a being a very
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small constant coefficient, which, in the theory of the celestial motions,

is of the order of the disturbing forces. Let us in the next place sup-

pose that we have obtained the finite integrals of these equations, when

Q, Q, &c. vanish ; by differencing each, i— 1 times in succession,

they will constitute with their differentials, in equations by means of

which we can determine by elimination, the arbitrary quantities c, c', c",

Sic. in functions of t, i/, y, y", &:c. and of their differentials to the

order?— 1. Therefore, if T, V, V", &c. represent these functions, we

shall have*

c=V; c = V'; c"=V" ; &c.

These equations are the in integrals of the order i—1, which the dif-

ferential equations ought to have, and which their finite integrals fur-

nish by the elimination of the differences of these variables.

Now, by differentiating the preceding integrals of the order i— 1, we

shall have

0-dV; O-dV; = dV" ; he.

but it is evident that these last equations being differentials of the order

i, without involving arbitrary quantities ; they can be no other than

the sums of the equations

H H 2

• In every differential equation of tlie order i, the number oiJirst integrals is equal to

f, these integrals are of the order i—1, and therefore they only contain the i— 1 differen-

tial coefficients — > —— ——4; and if these could be eliminated we would have
dt dt~ d'~h

the 1'* integral, or the primitive equation, which corresponds to the proposed differential

equation ; consequently, if we have n differential equations, the number of first integrals, or

of integrals of the order i—1, must be in, from which if the differential coefficisnts of the

variables y, y, y", &c. could be eliminated we would obtain the n finite integrals of the

proposed equations.
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multiplied respectively by suitable factors, in order that these sums may

be exact differences ; therefore representing the factors which ought

to multiply these equations respectively in order to form the equation

dV = 0, by Fdt, F'dt, &c., and in like manner, representing by Hdt,

H'dt, Sec. the factors which ought respectively to multiply the same

equations, in order to constitute the equation O^dF' ; and so of the

rest, we shall have

dV-F.dt.
I
^ + -P

( + -P"'-^^- 1
"^' + -P'

(
+ ^^'

'

dV = HAL 1^^ + P^+//'.rf/. j^' + P'( 4- &c.
5

F, F', he. Hf H', &c. are functions of t, y, y', y", &c. and of their

differences to the order i— 1 : it is easy to determine them, when V,

d'y
V, &c. are known ; for F is evidently the coefficient of —^ , in the

d'y'

differential of F; jF" is the coefficient of-^ , in the same differential,

and so on of the rest. In like manner, H, H', &c. are the coefficients

of -^ , ^, &c. in the differential of V ; consequently, as the
tit Ut

functions of V, V, &c. are supposed to be known, by differencing

d'~^ 11 d'~^ v'

them solely with respect to -^^ , -r^ , &c. we will obtain the

factors by which the differential equations

should be multiplied in order to obtain the exact differences ; this being-

premised, let us resume the differential equations

= -g- + P^.,Q, ; = -^ + F^«.Q; &c.
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The first being multiplied by Fdt, the second by F'dt, and so of the

rest, and then added together, will give

- dV'+cc.dt.(FQ+F'Q+ &c.)
;

in like manner will have,

=z dr'+o^,dt.(HQ+H'Q+ &c.) ;

&c.

hence we obtain by integrating,

c — a^.fdt.{FQ-\-FQ+kc.)-V;

c'—oc.fdt(HQ+H'Q+kc.) = V

;

&c. ;

we will have by this means i?i differential equations which will be of the

same form as when Q, Q', &c. are equal to nothing, with this sole dif-

ference, that the arbitrary quantities, c, d, d', ho., must be changed into

c_a./^?/.(J'Q+FQ'+&c.)j c—o,.fdt.{HQ.-\-H'Q+ &c.) } &c.

Now if, on the hypothesis of Q, Q', &c. equal to zero, we eliminate

from the m integrals of the order i— 1, the differences of the variables

y, y, &c. ; we shall have the n finite integrals of the proposed equa-

tions ; consequently, the integrals of the same equations, when Q, Q',

&o. do not vanish, will be had, by changing in tlie first integrals c, d,

&c. into •

c—^.fdt.{FQ + F'Q+ he); c—c..fdL(HQ + H'Qi- &c.)

4(1. If the differentials

dt.(iFQ+FQ:-\- &c.), dt.{HQ-\-H'Q[-\- &c.) &c.

were exact, we could obtain by the preceding method the finite integrals

of the proposed differential equations ; but this does not obtain except

in some particular cases, of which the most extensive and the most in-

teresting, is that in which these equations are linear. Let us, there-



233 CELESTIAL MECHANICS,

fore, suppose that P, P', &c. are linear functions of y, y', &c. and of

their differences to the order i— J, without any term independent of

these variables, and at first let us consider the case, iu which Q, Q, &c.

vanish. The differential equations being linear, their successive inte-

grals will be also linear, so that c— V, d — V, being the in integrals

of the order i— 1, of the differential linear equations

V, V, &c. may be considered as linear functions of ?/, y, he. and of

their differences, to the order i— 1. In order to demonstrate this, let

us suppose, that in the expressions of r/, y, &c. the constant arbitrary

quantity c is equal to a determinate quantity, added to an indeterminate

Sc ; the constant quantity c', is equal to a determinate quantity added

to the indeterminate, Sc, &c. ; these expressions being reduced into

series, arranged with respect to the powers and products of Sc, Sd, &c.,

we will have by the formula of No. 21,

&c.

Y, Y, { -J- ) , &c. being functions of t, without arbitrary quan-

tities. By substituting these values in the proposed differential

equations, it is manifest that Sc, Sc, &c. being indeterminate, the

coefficients of the first powers of each of them, must vanish in those

different equations ; but these equations being linear, we shall have
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evidently the terms affected with tlie first powers of Sc, Sc', &c., by sub-

stituting
(
-7—

)
oC-\- { —p- !.<?(/+ &c. in place of 3/, &c. [ —p- j

.

^c \- { —rj-
J

. Sc'-^ &c. in place of y', Sec. These expressions of

T/, y', &c. satisfy separately the proposed differential equations ; and as

they contain the in arbitrary quantities Sc, Sc\ &c. they are their com-

plete integrals. Therefore it follows that the arbitrary quantities exist

in a linear form, in the expressions of /y, y', &c. and consequently also,

in their differentials ; hence it is easy to infer that the variables

y, y, &c. and their differences may be supposed to exist in a linear

form, in the successive integrals of the proposed differential equations.

It follows from what has been stated that F, F', &c. being the co-

efficients of ~jj- ,

'

, &c. in the differential of V, H, H' &c. being

the coefficients of the same differences, in the differential of V ; and so

of the rest ; these quantities are functions of the sole variable t. There-

fore, if we suppose Q, Q, Sec. to be functions of t only, the differ-

ences dL{FCl-\-F'Q-\- &c.) ; dt.{HQ+H'Q;+ &c.) ; will be exact.

From the above results a simple means of obtaining the integrals of

any number n of linear differential equations of the order i, and which

involve any terms a.Q, a.Q, &c. which^ are functions of the sole va-

riable t ; when we know how to integrate the same equations, in the

case in which these terms vanish ; for then, if we difference their n

finite integrals, i— 1 times in succession, we shall have in equations

which will give by elimination, the values of the in arbitrary quantities

c, d, &c., in functions of t, y, y', &c., and of the differences of these

variable quantities to the order i— 1. We will thus form, the in equa-

tions, cz= V, (/ — V, &c. ; this being premised, F, F', &c. will be

the coefficients of '

, X , &c., in V; H, H\ &c., will be the

coeffieients of the same differences in V, and so of the rest ; thereibre.
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we will obtain the finite integrals of the linear differential equations,

= -^ +P-^..Q ; 0=^ + P'+a.Q ; &c.,

by changing in the finite integrals of these equations deprived of their

last terms a,Q, aQ', See, the arbitrary quantities c, </, &c., into c—x.

fdt.CFQi-F'Q'+kc), c'—x.fdt.{HQ+H'Q!-\-kc.); &c.

Let us, for example, consider the linear differential equation

= -^ + a^rj+o^.Q.

The finite integral of the equation = ,^ A- a^y is

c d *

y z=. —. sin, at-\- — . cos. at ;^ a a

c and & being arbitrary quantities. By differentiating this integral we

obtain

dv ,

- zzc. cos. at— c. sm. at.
dt

If this differential be combined with the integral itself, we can form tw»

integrals of the first order,

dy
c = ay. sin. at + -ij-' cos. at-,

dy • ,
c — ay. cos. at ^. sm. at ;

thus we shall have in this case,

F=cos. a^j H= — sin. a^;

therefore, the complete integral of the proposed will be
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C . . ,
C a. siu. at /, „ ,^y= —. sin. at -\ . cos. at— •

. fQ. at. cos. at +^ a a a

a.. COS. at rr\ jt
. J Q..dt. sin. at.

a

It is easy to perceive that if Q is composed of terms of the form

Sin
^. * (ffi/ + i), each of these terms will produce in the value of

y^ the corresponding term

a.K sin. .

wr—a cos.^

PART. I. BOOK II. 1

1

* If Q be of the form sin. (nz^+s) then we shall have —fQ..dt, cos.ai=—^sm.[mt^i).

dt. COS. at, which by partial integration becomes

— . sin. (mt+t). sin. at . /'cos.(mi4£). sin. ai.dt.(= . cos. (mt-\-t). cos. at
a ^ • ' a a/^

v i /

^.ysin. (wi+e). COS. a^o';./ =— . sin. ()7it+i). sin.at ^.J'cos.(mt.^)sih.at.dt.)

(= — . cos.{mt-\-i), cos. at — .ysin.{m*-l.e). cos. at.dt. ) =

——
. sin. )int-\-t). sm. a< . /cos. {jn^-fO- S'"- ot.dt;

now if the factors of sin. at, and of cos. at, be collected respectively, we shall obtain

1—

^

. /sin. (mt-\-i). cos. ai.rfi = sin. (mi+e). sin.*a<.a.(a--+ a-'.TO^+a-*'.JM*4-a:)

— cos. (jKi-f-e). sin. at cos. a<. «.(a—'.w -(-a~^.OT^+a—'.m'-j- &c.)

and if the term /. sin. (m^+s). sin. at.dt, be expanded into a series by a similar process

we shall have

— '— . /. sin. (mt-\-i). sin. at.dt = sin. (mt+ i). cos. 'a^«.

(a-'+a-*.m2+o-«.TO*+&c.)+ cos. (mt+i). sin. af. cos. af.a. (a-'m-ffl.-=.m'+o-''.OT'4&c.)
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sin.
If wz is equal to a, the term K. oqJ (''^^•{0 will produce in i/, 1st,

the term r* * («^+0> which being comprized in the two
4a COS. ^ ' ' or

terms —. sin. at-\ . cos. at, may be neglected ; 2dly, the term

a 7^f COS± . . \at-\-t), the sign + obtaining, if the term of the expression
^Cl sill*

of Q is a sine, and the sign — having place,* if this term is a cosine.

It appears from what has been stated above, how the arc t is produced

without the signs of sine or cosine, in the values of 2/, y, &c. by the

"/ adding these two expressions, and observing that a-°-[-a-*.m'-|-a-^.w*-f &c. =

we shall arrive at the expression given in the text.

* The parts under the sign of integration in this case are respectively /. sm.
(
at+t).

COS. at.dt,/. sin. (a« + e). sin. at.dt) —f. sin. at. cos. at. cos. i.dt -\- f. cos. ^at.dt. sin. 1,

f. sm, ''at. cos. i.dt +_/. sin. at. cos. at sin. i.dt, and these expressions are = \f. sin. 2,at.

cos. i.dt + ^f. cos. 2at, sin. udt -|-^ /sin. i.dt, and—^f. cos. 2at. cos. i.dt-\-^/. cos. i.dt

\-\f. sin. 2.at. sin. i.dt, and by integrating these expressions become —— . cos. 2at. cos. c

J . sin. 2at. sin. i + A. sin. e. t, — ——. sin. 9.at. cos. s+* cos. ut. ;— . cos. 2.at.'^ 4a ''4a 4a

sin. t, and if the three first terms be multiplied by '—'— , and the three last by
a

a. cos. at ^ . . ,

they become respectively

+ -^. sin. at. cos.2a<. cos. 1 —; . sin. 2a*. sin. at. sin. 1 —-. sin. at. sin. t.t— —-r.
' 4a* 40*^ 2a 4a'

sin. 2a^ cos. at. cos. i A . cos. at. cos. i.t — -—,. cos. at. cos. 2ai. sin. t =
^ 2a 'ia'

4. JL . sin. at. (cos. 2a^ cos. e— sin. 2at. sin. e) _ -^ . cos. at. (sin. 2af. cos 1 +
' 4a" 40'

COS. 2o^ sin. A + ~ . (cos. a«. cos. «— sin. at. sin. t) = —^. sin. a^ cos." (2a< + t) —

cos.af. sin. (2at + 1)) =^^- s'". (ai+i)+-^ cos.(af+e).
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successive integrations, although the differential equations do not con-

tain it under this form. It is evident that this will be the case as

often as the functions FQ, F Of, &c. HQ, H'Q\ &c. contain con-

stant terms.

42. If the diflFerences rfA(2^Q+ &c.), dt.(HQ-\- &c., are not exact,

the preceding analysis will not give their rigorous integrals; but it

suggests a simple means of obtaining integrals more and more approach-

ing, when a is very small, and when the values of i/, y' , &c. on the

hypothesis of a. being equal to cypher, are known. By differentiating

these values, i— 1 times in succession, we will obtain the following

differential equations of the order i— 1,

cz^V; c'-V; &c.

d'li d'li'

The colficients of —-jjj- ,
—~

> i" the differentials of V, V, &c.

being the values of F, F, &c. H, H', &c. ; we will substitute them

in the differential functions

dt.iFQ+FQfi- &c.); dt.(HQ-{-H'Q+8cc.)*

Afterwards, we must substitute, in place of y, y', &c,, their first ap-

proximate values ; which will give their differences in functions of t,

and of the arbitrary quantities c, d, &c. Let T.dt, T'dt, &c., be

I I 2

* Let y = (p.(<, c, c', c", &c.) be the value of ;/, when «=0, which being substituted in

place of^, in the function dt.{FQ+F'Q.'), dt.(HQ+H'Q.')+ &c. these functions will de-

pend on t, and c„ c/, c,", &c. •.• i/= <p.(t„ c—af Tdt, d—af T'dt, &c.), and if this value

ofy be also substituted in dt.(FQ.-\-F'Q-\-S:c.), dt.{HQ + H'Q'-\-&c.), they will become

= T,.dt, T;dt, &c.; hence _y=ip.(t,c— ».fT^t. d— u./TJ.dt, &c.)

The successive powers of « must necessarily occur in these approaching values of y.

This method corresponds to the method of continued substitutions adopted by Newton.
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these functions. If in the first approximate values of y, y'. Sec, we

change the arbitrary quantities c, c', &c. respectively into c— a.J'Tdt;

d—x.fTdt, &c. we will have the second approximate values of those

variables.

These second values being substituted again, in the differential

functions

dt.{FQ+ &c.) ; dL(HQ+ &c.) ; &c.

it is manifest that these functions are then what Fdt, F'dt, become,

when the arbitrary quantities c, c\ &', &c. are changed into c—a„JTdt\

c'—x.fTdt, &c. Therefore, let F, F', &c. be what T, T. &c. be-

come in consequence of these changes ; we shall have the third ap-

proximate values of y, y', &c. ; by changing in the first, c, c', &c.

respectively into c—oi..fT(i. c'— a..fT'.dt ; &c.

In like manner, T,„ T,',, &c. representing what T,, T,', &c. become

when c,, c/, &c. are changed into c

—

01..J TfH, c—xfT'dt, &c. : we

shall have the fourth approximate values of y, y', &c. by changing in

the first approaching values of these variables, c, c', into c—a.J'T„.dt,

c—(x.JT'j.dt, &c. ; and so on of the rest.

We shall see in the sequel, that the determination of the celestial

motions depends almost always on differential equations of the form

Q being an entire and rational function of ?/, and of the sines and

cosines of angles increasing proportionably to the time represented

by t. The following is the easiest means of integrating this equa-

* Let Q = y. COS. 2<, and we have 0= -rf+ a'-y-\-»y- cos- 2/ ; let a=0, and we shall

have =—— + n'^-y ; of which the integral is — . sin. at -^ — . cos. at, which value
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tion. We suppose, in the first place, a. equal to nothiug, and by the

preceding number we will obtain a first value of y.

This value being substituted in Q, it will by this means become an

entire and rational function of the sines and cosines of angles pro-

portional to the time t. Afterward by integrating the differential

equation we will obtain a second value of j/, approximate as far as quan-

tities of the order a, inclusively.

This value being substituted in Q, ; will give, by integrating the

differential equation, a third approximate value of y, and so on of the

rest.

This manner of integrating by approximation, the differential equa-

tions of the celestial motions, although the simplest of all, is however

liable to the inconvenience of giving in the expressions of the variables

y, y, '&€., the arcs of circles without the signs of the sine and cosine,

even in the case in which these arcs do not exist in the accurate values

of these variables ; in fact, we may conceive, that if these values involve

the sines and cosines of angles of the order at, these sines and co.

sines ought to be exhibited in the form of a series, in the approximate

values which are found by the preceding method ; because these last

values are arranged according to the powers of a. This expansion into

a series of the sines and cosines of angles of the order at, ceases to

be exact, when in the progress of time, the arc at becomes consider-

able ; consequently the approximate values of y, y', &c., cannot be

extended to an indefinite time. As it is* of consequence to have values

tPy
being substituted for y in ay. cos. 2t, the differential equation -— -f- a^y •\- »y. cos. 2t,

can be integrated by the method pointed out in the preceding page.

* It would seem at first sight only necessary to substitute for the arc t and its powers

,, . J , :i , ,- ^ , . . . sin. <' 3. sin. <=
. „

their developements deducea] from the series t ^ sm. t •\- 1 -f- &c.

but it is to be considered, that when t exceeds a quadrant the series ceases to be exact,

•/ this series cannot be substituted for any arc ivhatever.
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which embrace the past as well as future ages ; the reversion of the

arcs of a circle, which the approximate values contain, to the functions

which would produce them by their expansion into a series, is a very

delicate problem, and of great interest in analysis. The following is a

very simple and general method of resolving it.

43. Let us consider the differential equation of the order i,

a. being a very small quantity, and P and Q being algebraic functions

ofj/, —^ _^ , and of the sines and cosines of angles increasing

proportionably to t. Let us suppose that we have the complete integral

of this differential equation, in the case of a = 0, and that the vahie of

3/, determined by this integral, does not involve the arc t, without

the signs sine and cosine ; let us afterwards suppose, that this equation

being integrated by the preceding method of approximation, when a.

does not vanish, gives

y - X -\- t. Y -\- t\ Z -\- t\ S -\- &c.

X, Y, Z, &c., being periodic functions of /, which involve the i ar-

bitrary quantities c, &, d' , &c. ; and the powers of t, in this expression

of 7/, extending to infinity by the successive approximations. It is

manifest that the coefficients of these powers will always decrease with

greater rapidity, as a. is smaller. In the theory of the motions of the

heavenly bodies, a. expresses the order of the disturbing forces rela-

tively to the principal forces which actuate them.

If the preceding value of j/, be substituted in the function -^p

—

Y P

-\- »Q; it will assume the following form, k + k't-\-¥f'+ Sec. ; k, hf,

k', being periodic functions of t; but by hypothesis the value of y
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satisfies the differential equation

o=-^ + P + '<i'

therefore we ought to have identically

= /<: + A-"? + F^+ &c.

If k, k', k", &c., do not vanish, this equation will give by the re-

version of series, the arc t, in a function of the sines and cosines of

angles proportionable to t ; therefore « being supposed to be indefi-

nitely small, we would have t equal to a finite function of the sines

and cosines of similar angles, which is impossible ; consequently, the

functions k, V, &c., are identically equal to cypher.

Now, if the arc t is only elevated to the first power under the sign sine

and cosine, as is the case in the theory of the celestial motions,* this

arc will not be produced by the successive differences of y ; therefore

d'y
by substituting the preceding value of y, in the function —~ + P +

a.Q the function K + K't-\- &c., into which it is transformed, will not

contain the arc t, without the sines sin., and cos., but as far as it is

already contained in y ; thus, by changing in the expression of y, the

arc ^, without the periodic signs; into t— fl, 6 being a constant

quantity, the function k + k't-^ &c., will be changed into k-\-k'.(t— 9)

+ &c. ; and because this last function is identically equal to nothing,

in consequence of the identical equations 'k zz 0, k' zz 0, &c. j it

follows that the expressiont

j/ = X + (^— 9). F+(^— 0)*. Z+ &c.,

* If a term of the form sia.(af") occurred in the value of ^, then in the successive dif-

ferences of y, powers of the arc t will be produced.

f The values of Y, Z, &c. in this second value of 1/ are different from the quantities re-

presented by Y, Z, &c. in the first value of y.
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satisfies also the differential equation

Although this second value of y seems to involve i -\- \ arbitrary

quantities, namely the i arbitrary quantities c, c', c\ &c., and the

arbitrary 6 ; however, it can only contain the number i of arbitrary

quantities which are really distinct. It is therefore necessary, that

by suitable transformation in the constant quantities c, d , d', &c., the

arbitrary quantity fi should disappear from this second expression of y,

and that, consequently, it should coincide with the first. This consi-

deration furnishes us with means of making the arcs of circle which

exist without the periodic signs to disappear.

The second expression of y, may be made to assume the following

form:

y = A' + (^—6). R.

As we have supposed that S disappears from y, we will have ( -^
)

= 0, and consequently

dX . ,. .. fdRR- + ('-•)• (f)--

This equation being differenced successively, will give

If ^.{*, i,t — 6) be expanded by the formula of No. 21, it will becume ^.(t, 9)

^^' '
. (t—i) ^ \ ^ . (t— ef + &c. = (as <(>.(t, e,)=zX) the expression

in the text.

See an example of this method m Chapter 7, Article 53.
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&c.

hence it is easy to infer by eliminating R, and its differentials, from

the preceding expression of J/, that

X is a function of t, and of the constant quantities c, d, d', &c. ; and

as these constants are functions of 9,'X is a function of t and of 9, which

we can represent by (p.{t, S). The expression of y is, by the formula

(0 of N°. 21, the expansion of the function (f.{t, Q + t—d), according

to the powers of t—d ; therefore we have J/ zz (p.(t, t) ; it follows from

this that the value of^ will be had by changing 9 into t, in A'. The

proposed problem is by this means reduced to the determination of X, in

a function of /, and of 9, and consequently to the determination of c, d,

d', &c., in functions of 9.

For this purpose, let the equation

^ + X+(^—9). F+(f—9)*. Z+(/—9)'- 8+ &c.

be resumed. The constant quantity 9 being supposed to disappear from

this value of y, we have the identical equation

By applying to this equation the same reasoning as in the case of the

equation 0=A. + A''^+ ¥t'' + &c., it will appear that the coefficients of

the successive powers of {t—9), must of themselves be equal to zero.

The functions X, Y, Z, &c., do not involve 9, except as far as it is

PART I. BOOK II. K K
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contained in c, d, &c. ; so that in order to constitute the partial dif-

ferences I -37- ) > ( —j^ j , I —jT-
j , &c., it is sufficient merely to make

c, d, &c., vary in these functions, which gives

(dX\_(dX\ ^,(dX\dd_ (dX\ dd'

\d^ )~ \dc )' d^^Kddj' M "^ \dd')'~dr'^
^^'

'

\d^ )~ \dc )'d^^ \dd )' d^^ \ dd'J ' d^
"^ ^^' '

&c.

Now it may happen that some of the arbitrary quantities c, d, d',

&c., multiply the arc t in the periodic functions X, Y, Z, &c. ; the dif-

ferentiation of these functions relatively to 0, or which comes to the same

thing, relatively to these arbitrary quantities, will develope this arc, and

make it issue from without the signs of the periodic functions ; the

diflFerences (jfl-j'f-^j'f"^)' '^^•> '^'^ ^'^^'^ ^^ °^ ^^ following

form

:

i:

in which X\ X", F', Y\ Z, Z", &c., are periodic functions of U

and moreover involve the arbitrary quantities c, d, d', &c., and their

first differences divided by d^, which differences do not occur in these

functions, except under a linear form ; we shall therefore, have



PART I.—BOOK II. 251

&c.

This value being substituted in the equation (a), will give ^

+ (i^9). (F + 6 Y' + X"—<2Z)

+ (t—^)\ {Z' + ^Z'+Y"—SS)+ &c.

hence we deduce, by putting the coefficients of the powers of /—9,

separately equal to nothing,

= X'+ 6. X"—Y-y

= r'+ 0. Y"+x"—^z-y
O = Z' + 0.Z''-{-Y"—3S;

&c.

The first of these equations, being differenced i— 1 times in succession,

with respect to t, will give a corresponding number of equations be-

tween the arbitrary quantities c, c, d', &c., and their first differences

divided by dt ; the resulting equations being afterwards integrated, with

respect to 0, will give these constant quantities in functions of 0. The

sole inspection of the first of the preceding equations will almost always

suffice to determine the differential equations in c, c', d'. Sec, by

comparing separately the coefficients of the sines and of the cosines

which it contains ; because it is manifest that the values of c, d , 8cc.

being independent of ^, the differential equations which determine them

ought to be equally independent of this quantity. The simplicity which

this consideration produces in the computation, is one of the principal ad-

vantages of this method. Most frequently these equations can only

be integrated by successive approximation, which may introduce the

arc 9, without the periodic signs, in the values of c, d, &c., even when

this arc does not occur in the rigorous integrals ; but we can make it

to disappear by the method which we have laid down.

KK 2
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It may happen that the first of the preceding equations, and its i—

1

diflPerentials in /, do not give a number i of distinct equations, between

the quantities c, c', c", &c., and their differences. In this case, we

should recur to the second and subsequent equations.

When the values of c, d, d', &c., shall have been determined in

functions of 9 ; we can substitute them in X, and by changing after-

wards 9 into t, we will have the value of y, in which no function of

the arcs of a circle occur, which are not affected by periodic signs,

when this is possible. If this value still preserves them, it will be a

proof that they existed in the exact integrals.

44. Let us now consider any number n of differential equations

P, Q, F, Q', &c., being functions of y, y', &c., and of their dif-

ferentials, continued to the order i—1, and of the sines and cosines of

angles increasing proportionably to the variable t, of which the dif-

ference is supposed to be constant. Let us suppose that the approxi-

mate integrals of these equations are

y-X-\-t.Y-\- t\Z + t'S + &c.

;

y'=X,-\- 1. Y,+ t\Z,-\- t'S,+ &c.

;

X, Y, Z, &c., X,, Y,, Z,, &c., being periodic functions of t, and

containing the in arbitrary quantities c, d, d', &c., we will have, as in

the preceding number,

= X'+^.X"— Y;

= Y' + e. Y" + X'^^Z;
= Z'+t Z" -h Y" — 35

;

&c.

The value ofy will in like manner give equations of the following

form :
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= X: + 0. X/+ Y,',

= y;+ 9. 17+ X/—2Z,;

&c.

The values oi y", y''', &c., will furnish similar equations. By means

of these different equations we can determine the values of c, c\ d', &c.,

in functions of 9, those equations being selected, which are the sim-

plest and most approximative : by substituting these values in X, X,,

&c,, and afterwards changing 9 into t, we will have the values of 3/, y,

&c., not containing the arcs of a circle without the periodic signs,

when this is possible.

45. Let us resume the method which has been explained in N". 40.

It follows from it, that if in place of supposing the parameters c, d , d',

&c., constant, we make them to vary, so that we may have

dc = ^ cidt. (FQ + FQa- &c.) ;

dc = — aclt. {HO.+H'Q+ &c.)

,

&c.

we will have always the in integrals of the order {— 1, namely

c = V; d = V'j d'z=V''; kc.

as in the case of a equal to zero ; hence it follows, that not only the

finite integrals, but also all the equations in which only differences of an

order inferior to i, enter, preserve the same form in the case of « equal

to nothing, and of a being any finite value whatever ; because these equa-

tions can result solely from a comparison of the preceding integrals of the

order i— 1. Consequently, we can equally, in these two cases, difference

i—1 times in succession the finite integrals, without making c, c, &c.,

to vary ; and as we are at liberty to make all, vary at once, there

results an equation of condition between the parameters c, d, &c., and

their differences.

In the two cases namely, of « equal to nothing, and of* being any quan-

tity whatever, the values o^y,y', r/' , &c., and of their differences to the
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order i—1 inclusively, are the same functions of t, and of the para-

meters c', d', &c. J
let, therefore, Y be any function of the variables,

Vi y't y"y &c., and of their differentials inferior to the order i— 1,

and let us name T, the function of t, into which it is changed, when

we substitute in place of those variables and of their differences,

their values in t. We can difference the equation Y-=.T, by con-

sidering the parameters c, d, d\ he, as constant ; we can even

assume the partial difference of F, relatively to one only, or to

several of the variables y, y, &c., provided that we only make to vary

that part of T, which varies with them. In all these differentiations

the parameters c, d, d', &c., may be always regarded as constant

;

because, by substituting for y, y', &c., and their differences, their va-

lues in /, we will have equations identically nothing, in the two cases

of « equal to nothing, of a, having any finite value whatever.

When the differential equations are of the order i— ], it is no longer

permitted, in differentiating them, to treat the parameters c, c', d\ &c.,

as if they were constant. In order to difference those equations, let

us consider the equation <p=0, <p being a differential function of the

order i—1, and which contains the parameters c, c', d', &c. : let Si^ be

the difference of this function taken on the supposition that c, c', &c.,

as well as the differences dy*~^, d'~^y', &c., are constant. Let aS" be the

d'li
coefficient of ^_^ in the entire difference of 9 ; let iS" be the coeffi-

d'xi'

cient of-^^i, in this same difference, and so of the rest. The equa-

tion ?i=0, being differenced, will give

by substituting in place of -^^ , its value —rf/.(P + a.Q) ; in place
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of -T-^, its value —dt.(F+»Q), &c. ; we shall have

0= .,+ (§).*+ (^).*'+&c.

—dt.(SP+S'F+ &c.)^oc.dt.(SQ+S'Q'+ kc.)
; (0

The parameters c, d, c", &c., are constant on the hypothesis that x

vanishes ; thus we have

Oz= h— dt. (^SPJrS'F-^ kc.)

If we substitute in this equation, in place of c, c', c', &c., their values

V, V, V", &c., we will have a differential equation of the order i— 1,

without arbitraries, which is impossible unless the terms of this equa-

tion are identically equal to cypher. Therefore the function

Sg> — dt.(SP + S'F-i- &c.)

becomes identically equal to nothing, in consequence of the equations

c = V, c'z=. V, &c. ; and as the same equations also obtain when the

parameters c, c', c\ &c., are variable, it is manifest, that in this case

also, the preceding function is identically equal to nothing, the equation

(f) will consequently become

" = (§)•* -(^) •*'+*«•

— ».dt.CSQ + S'Q-\- &c.) : (^)

It appears from this, that in order to difference the equation ^ = 0,

it is sufficient to make the parameters c, c', </', &c., and the differences

d'~^y, d'~^y', &c., to vary in <p, and after the differentiations to substitute

d'y d'y'—«Q, —oiQ, &c., in place of the quantities —^ , —nr* ^c.

Let \)/ ^=-0, be a finite equation between y, y\ &c., and the variable

t; if we denote by S^, ^ij/, &c., the successive differences of ^, taken
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on the supposition that c, c', &c., are constant ; by what goes before

we shall have, even in the case in which c, c', &c., are variable, the

following equations

:

^=0; S4> — 0; d^=:0 rf^'4. = 0;

therefore, by changing successively in the equation (x), the function

ip into 4-, i^, </*vJ/, Sec, we shall have

Thus the equations »|/rr 0, ^' =: 0, &c., being supposed to be the n

finite integrals of the differential equations,

we will have the in equations by means of which the parameters c, c, d',

&c., may be determined without the necessity of forming for this pur-

pose the equations c — V, dzzV, &c., but when the integrals will be

under this last form, the determination of c, c', &c., will be more simple-

45. This method of making the parameters to vary is of the greatest

use in analysis, and in its applications. In order to shew a new ap-

plication of it, let us consider the differential equation
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P being a function of t, y, of its differences to the order i— 1,

and of the quantities q, q'. Sec, which are functions of t. Let us

suppose that we have the finite integral of this equation on the hy-

pothesis that q, q, &c., are constant, and let (p-=.0 represent this

integral, which will contain the i arbitrary quantities c, d, &c., let

ip, ^(p, S^(p, he, denote the successive differences of (p, taken on the

supposition that q, q' , &c., and also the parameters c, d , &c., are

constant. If all these quantities are supposed to vaiy, the differ-

ence of (p will be

therefore, by making

(^(p will be yet the first difference of <p when c, c' &c., q, q', &c., are

variable. If in like manner we make,

=] ,

^
f. dc+ ]

—-JLLdd+ &c.
L etc ) i dd S

i^(p, S^(p S*(p, will be also the second, third, ?'"th differences

of ip, when c, d, &c., q, q, &c. are supposed to be variable.

Now, in the case of c, d, &c., q, q, &c., being constant, the dif-

ferential equation

dP ^ ^'

PART I. BOOK ir. L L
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is the result of the elimination of the parameters, c, c', &c., by means of

the equations

(p = 0; S(i> =0; S'' ip z=0; S'lp = 0;

thus, as these last equations obtain even when q, g', &c., are supposed to

be variable, the equation <pr:0, satisfies also, in this case the proposed

differential equation, provided that the parameters c, c', &c., are de-

termined by means of the preceding i differential equations ; and as

their integration gives i constant arbitrary quantities, the function <p will

contain these arbitrary quantities, and the equation (? =z 0, will be the

complete integral of the proposed.

This method of making the constant arbitrary quantities to vary can

be employed with advantage, when the quantities q, q', &c. vary with

wreat slowness, because this consideration generally renders the inte-

gration by approximation, of the differential equations which determine

the parameters c, c/, d'^ &c., much easier.
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CHAPTER VL

The second approximation of the celestial motions, or the theory of

their perturbations.

46. Let us now apply the preceding methods to the perturbations of

the motions of the heavenly bodies, in order to infer from them the

simplest expressions of tlieir periodic and secular inequalities. For

this purpose, let the differential equations (1), (2) and (S), of No. 9,

be resumed, which determine the relative motion of m about M. Let

,
{xa/+ yy'+zz')

. ,,
(xx"-k-yy" + zz') . x

X being by the number cited, equal to

mm' mrri'

if^^-xy ^[y'—yy ^{^—zyy ^ ^{^'^xf^iy-'-yy ^{_:i'^zr)

+&C.

;

Moreover, if vpe suppose M+mzz/j. ; and r = \/x'' + y* + z'' ; r'
~

v/a/*+y»-f-2r'* ; &c., we will have

dPz
^

j<A.s 5 dR
j

L L 2
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The sum of these three equations multiplied respectively by dx, dy, dz,

gives by their integration,

0=^^^i^±^-^ +
-f-

+ 2/d«; (Q)

the differential d72 being solely relative to the coordinates x, y, z,- of

the body m, and a being a constant arbitrary quantity, which when

R vanishes, becomes by N°'. 18 and 19, the semiaxis major of the el-

lipse described by jn about M.
The equations (P) multiplied respectively by s, y, z, and added to

the integral (Q), will give*

Now, we may conceive that the disturbing masses m', mf', &c., are

multiplied by a coefficient a, ; and then the value of r will be a function

of the time t and of a. If this function be expanded with respect to

the powers of a ; and if « be made =: 1, after this expansion, it will

be ranged according to the powers and products of the disturbing

masses. Let the characteristic S, placed before a quantity, de-

note the differential of this quantity, taken with respect to a.,

and divided by da. When the value of Sr shall have been de-

termined in a series arranged according to the powers of a, we will

have the radius r, by multiplying this series by da., then integrat-

ing it with respect to a, and adding to this integral a function of t,

independent of a, which function is evidently the value of r when the

perturbating forces vanish, and when consequently the curve described

is a conic section. The determination of r is therefore reduced to the

forming and integrating the differential equation which determines <Jr.

(Pr^ _ rf^(j'+ y'+ r') _ d^x (Py d'z dx^+ di/'+ dz-

* ^ dP - ^
dt'

-'
df + ^' "5<^ + ''•"^+ iiF
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For this purpose, let us resume the differential equation (R), and

let us make for greater simplicity,

idRf idR} ^clR)

differentiating it with respect to a., we will have

0=^+J^+'2f^AR + lrR'; (S)

naming dv the indefinitely small arc intercepted between the two radii

vectores r and r+dr ; the element of the curve described by m about

M, will be »/dr* +r^dv'^ ; therefore we will have c?^* + d^* -f dz'' =
df" ^r^dv^ ; and the equation (Q) will become

0=l!^-^ _ -^ +^ + 2./di?.
di* r ^ a ^ -^

eliminating — , from this equation, by means of the equation (R),

we shall have*

dt^ ~ dt' ' r

hence we deduce by differentiating with respect to «,

— =z _ ^-r \-r.SR'— R'.Sr.
df df r^ ^

By substituting in this equation, in place of -^^^^-3— its value deduced

Substituting for — its value giren by the equation (R), we obtain

+£—^-^+7- -2'^'^^-'^'-^ +2/diE = 0; which by obli-

terating quantities which destroy each other becomes the expression in the text ; and it*

differential with respect to a is obtained by dividing by fi, and then differentiating.
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from the equation (S), we will have

d.^ =
^^:^^

; (T)

We can obtain, by means of the equations (S) and (T), the values of

Sr and of iv as accurately as we please ; but it ought to be observed,

that dv being the angle intercepted between the radii r and r-\-dr, the

integral v of these angles does not exist in one and the same plane. In

order to deduce from it value of the angle described about M, by the pro-

jection of the radius vector R on the fixed plane, let v, represent this last

angle, and let s denote the tangent of the latitude of ?w above this plane ;

r.(H-s*)"^ will be the expression of the projected radius vector, and

the square of the element of the curve described by m, will be

r^dv* , , r'ds* .

1+5* ^ ' (1+5*)*

but the square of this element is r^dv^ \-dr'' ; therefore we will obtain,

by putting these two expressions equal to each other.

dv"dv— .

yi+5*
Thus dv^ can be determined by means of dv when s will be known.

d.r'ir _ dr.h- ^ rMr d'.r.'ir _ d°r.'Sr 2drJir r.d'Sr
,

3/i.rh-

~ir~~dt ' IT" ~df-~~~a? ' df'
**

dt-
'

T^~

Sd-r.^r , 6dr.dh- 3r d'dr ,»,„. » „, .^r.dv.d.h

r.d^.'ir-ir.d'r Sd^'r.Sr 6 d.rMr Sr.d^^r ,, ,„ .„, „ „,

»

-Ti + -d^+ —dF- + -IT- +6/S.d/2+ 3r.SiJ'+ 3R'.^r + r.m

_R'S • . r-dv.dh<_2r.d^.Sr dKr.Sr Sd.rJir

_ d.(drXr+2r.d^r]-^-dt'.(3 Q.dR+ ^r.^R'+ R'.dr)~
df

ds
f s being equal to the tangent of latitude, is equal to the differential of the la-

1 +j

titude, and
. ,

« T-r^+ "r;—J • dv,*+dr^= r'.rfv'+rfr'.
1+1 1+* 1+*
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If the fixed plane is assumed to be the plane of the ordit of ?w at a

ds
given epoch, s and —j— will be manifestly of the order of the perturbat-

ing forces ; therefore, by neglecting the square and the products of these

forces, we shall have v = v,. In the theory of the planets and comets,

these squares and products may be neglected, with the exception of

certain terms of this order, which particular circumstances render sen-

sible, and which can be easily determined by means of the equations

(S) and (T). These last equations assume a simpler form when we

only take into account the first power of the perturbating forces. In

fact, we can then consider Sv and Sr as the parts of r and v arising

fi:om these forces ; and SR, S.rR', are what R and rR', become,

when we substitute in place of the coordinates of these bodies their

values relative to the elliptic motion :* they can be denoted by these

last quantities, subject to this condition. Consequently, the equation

S becomes,

= ^+i^+2./di?+rE'.

The fixed plane of x and of 1/ being supposed to be that of the

orbit of m, at a given epoch, z will be of the order of perturbating

forces, and because the square of these forces is neglected, the quan-

tity ^' ) -77 ( may likewise be neglected. Moreover, the radius r only

• In the equation
(
R) when coordinates relative to the elliptic motion are substituted

in place of the coordinates of the body, the three first terms vanish ; consequently if in

place of r in the equation (R) be substituted, a radius / (which is relative to the elliptic

motion) plus au indefinitely small quantity Sr* which i^ the effect of the disturbing forces,

then the equation (R) becomes ^^.^^^^^
~r^+i? + "T + ^/d^ + rR' =

J.. JllL —JL J. JL4. ^'--^K ,
1"-^'"'

. 2/d7I + rR', in this case the three first

tenns are =. to cypher, and the three last are what (S) is reduced to ; when dR and

rR' are substituted for J.dfl and 'i.rR'.
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differs from its projected value by quantities of the order z* . The
angle which this radius makes with the axis of x, differs only from

its projection by quantities of the same order ; therefore this angle

may be supposed equal to v, and we have, excepting quantities of the

same order,

X zz r. COS. v; y =. r. sin. v
\

hence we deduce*

\tv^-m--\
dR]

dr\

and consequently, r.R'zzr. );t7 ( • It is easy to be assured by differ-

entiation, that if we neglect the square of the perturbating force, the

preceding differential equation will give, in consequence of the two

first equations (P)

^ x.fydt. 1 2./di2+r. ^^ j
^
- y-f^dt. ^'i./diJ+r.

^^| ^
t

\x(ly—ydxi

I di S

^ dR dR dx dR dr dR . dR ,.,.,...* —r—~r''~j~-\ T— • —7— = COS. u. —;—Usin. «. -T— multiplying both sides
dr dx dr ' dy dy dx ^ dy fJS

by r, and substit itinj; x for r. cos. v, and y for r sin. v, we shall have the value oCrR'.

f Add to the first of the equations (P) multiplied into r.h, the equation (S) multiplied

into —X, and we shall have

5 f'^^' . f^' ,
/^^\\ x.d'^.rlr uxr-ir . ^.^

° =
'--'''-(^+7^+te)) 5P ^ ^:^-fdR-x.rR',

in like manner if the second of the equations (P) be multiplied by r-dr, and then added to

the equation (S) multiplied' into —y we shall have

now if these equations be respectively integrated, and then the integral of the first multi-
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In the second member of this equation the coordinates may refer to

the elliptic motion, which gives j
'' ^ f constant, and equal by

N°. 19, to >/p,.rt(l

—

e'' ), ae being the excentricity of the orbit of »i-

If we substitute in the expression of rir, in place of a: and of i/, their

values r. cos. v, and r. sin. v, and instead of— , , the quanti-

ty v/|W«.(l—e*) ; and if finally we observe that by N°. 20, we have

p. = w*.a' ; we will obtain

Sr =

{'dR-i

i—a. sin. v.fndt. r. cos. v.\'2,. fdR-{-r.
)
;t7

(

i «. cos. v.fndt. r. sin. v. \'2- j dR-\-r.\'—j-, ^

the equation (T) gives by integrating and neglecting the square of the

perturbating forces
;

PART. I. BOOK II. M M

plied into y. be added to the second multiplied into —x, we shall obtain obliterating the

quantities which destroy each other

rl>r.y.^ + yfrlr. (^)_^ -2yfdt..AR-yf..rR

_ r^r...4 - xfr.lr. ('^) + f^t^ ^ix fdt.yd.R^xf y.r.R,
at

-^ \dx/ at

.', neglecting quantities of the same order as the square of the disturbing force, we have

r.Jr.X±ZfJL = X. /ydt.(2dR + rR')— y.fx.dt.{2dR -f rR'), which becomes the

expression in the text, when r. (-r) is substituted for r.R' ; and by substituting for x

xdy—ydx
a.nAy their respective values r. cos. v, r sin. v, this equation is divisible by r; now

^^

. 3 an 1-

=V(«.a.(l_e;)
; and Vfc = n.a' : consequently y^^' -'na'Vr^^

~

1

Vf<,a.(\—e'-
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or.dJr+drJr 3a ^^ ,, ,„ ,
2a „ ., URl

,v=-^ .

-^7l^F~ ' (Y)*

By means of this equation the perturbations of the motions of w in lon-

gitude can be easily determined, when those of the radius vector shall

have been determined.

It now remains to determine the perturbations of the motion in la-

titude. For this purpose, we shall resume the third of the equations

(P), and by integrating it as we have integrated the equation (S), and

making z zz ris, we shall have

„ . . ^dRl . „ . cdRn
a. cos. V. fndt. r. sm. vA-^- X— a. sm. v.J nat. r. cos. i'. J-r- C

Sszz 7 — ? K^J
jtA.V i—e'

Ss is the latitude of m above the plane of the primitive orbit : if we

dr.'Sr +2rd.^r
, /./. ,,o „ , >d , „ /(^^\

* 3i)=

—

+ffdt-.^dR+ 2r. (-p)=
V'^.a.(l—r) V'^'-/

the expression in the text ; iZ'Sr is omitted as being' of the order of the squares of the

disturbing forces.

+ Multiplying the third of the equations (P) by x, and subtracting it from the first

multiplied by z, and then integrating, we shall obtain neglecting quantities of the order of

the square of the distiu-bing forces

dx dz , ,
/dR\

z. — X. —r- =r — I xAt. \—T-]t
dt dt V ''2'

in like manner subtracting the second of the equations (P) multiplied into z from the

third multiplied into y, we shall obtain by integrating.

dz dy .
,,
fdR\

and multiplying the first of these equations by y, and the second by x, we obtain by

adding them together
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would wish to refer the motion of m, on a plane a Httle incHned to this

orbit ; by naming s its latitude, when it is supposed to exist on this

plane, s-\- Ss will be very nearly the latitude of m above the proposed

plane.

47. The formula (X), (Y) and (Z), have the advantage of exhibit-

ing the perturbations under a finite form ; which is very useful in the

theory of the comets, in which these perturbations can only be deter-

mined by quadratures. But in consequence of the little excentricity

and inclination of the respective orbits of the planets, we are permitted

to expand their perturbations, in converging series of the sines and

cosines of angles increasing proportionably to the time, and to form ta-

bles of them which may serve for an indefinite time. Then, instead

of the preceding expressions of Sr and Ss, it is more convenient to

make use of differential equations which determine these variables. By

arranging these equations with respect to the powers and to the

products of the excentricities and inclinations of the orbits, we can

always reduce the determination of the values of Sr and Ss, to tiie inte-

gration of equations of the form

the integration of this species of differential equation has been given in

N". 42. But we can immediately give this very simple form, to the

preceding differential equations, by the following method.

Resuming the equation (R) of the preceding number, and in order

to abridge making,

M M 2

-(-^-'•l)=V..*(f)-./-.(f).

and by substituting for ——-

—

— its value V^f«.a.(l—e-), and for x and y their values

r, COS. V, r. sin. v, we obtain the expression which is given in the text.
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it thus becomes,

In the case of elliptic motion, in which Q = 0, r* is by the N°. 22,

a function of e. cos. (?it+c—zr}, ae being the excentricity of the orbit,

and nt + i— sr being the mean anomaly of the planet m. Let e. cos.

(nt -\- £— s!-') = u; and let us suppose that ?'*= <p{u) ; we shall have

r,
^*"

I X »0= —rr- + n tl.*
dt ^

In the case of the disturbed motion we can also suppose r* = <i)(u) ;

, but 7( will be no longer equal to e. cos. (nt+i—sr) ; it will therefore be

given by the preceding differential equation increased by a term de-

pending on the disturbing forces. In order to determine this term,

it ought to be observed, that if we make u=^(r^), we shall have

^ + "'" = ^- +'•('') +^- +'.('-)+»-4.(r-).t

4/'.(r*) being the differential of 4/.(?-') divided by d.^r'') and V-{r^)

being the differential of ^'.(r^), divided by d.r''. The equation (R')

gives - '

^ equal to a function of r, plus a function depending on the

disturbing force. If we multiply this equation by 2rc?r, and then in-

*
—J— = — e.n. sin. (nt + t— ar) ; ——- = — en', cos. [nt-^i—ar), therefore

—
-p + n^u^— en-, cos. [nt -j- s— w)-]- e.n^. cos. {nt+ 1—tt)= ;

ing for dr^ its value 'Zrdr, we obtain the expression for —p- + ti'.w, which is given m

the text.
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r^dr*
tegrate it ; we shall have — • equal to a function of r, plus a func-

tion depending on the disturbing force. By substituting these values of

d''r , « r^dr* . . .. r d''u . . ,

, and 01 - , - , in the preceding expression ot , -j- «*mj the

function of r independent of the disturbing force will disappear of itself,

because the terms are identically equal to nothing, when this force va-

'

d^ti
nishes, therefore we shall obtain the value of —jpr + w*m, by substitut-

d^v T^dy^
ing in its expression, in place of —ttt ^"<i of —-7-;— , the parts of

their expressions which depend on the disturbing force. But, if we

only consider these parts, the equation (i?') and its integral, give
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(l>''\(u) being equal to '^^ ^
, in like manner as ?'.(w) is equal to

' ' ^— . This being premised, if we make

7( ZZ e. COS. (?lt-\-i—sr)-^iu,

the differential equation in u will become

=^ + "'•'"-^^- fQ-^u. ,'.(„) +^ .t

and if we neglect the square of the disturbing force, u may be supposed

to be equal to e. cos. («/+ 1—zb-), in the terms depending on Q.

The value of— found in N°. 22, gives, by carrying the precision to

quantities of the order e* inclusively,

r = a, (1+e*—M.(l—|e«) — a*—|w^) j

hence we deduce

r^ =z a*.(I + 2e*—2m.(J—le*)—M*—M^) = ?..(z0.t

If this value of <^{u) be substituted in the differential equation in hi,

f Substituting in place of u its value, the part which involves the cosine will be equal

to notliing, as is evident from the preceding page ; the other part is what is given in

the text.

X — = (as powers of e higher than the third are rejected) 1 +^e^—(e—-|s'). cos. (?i/+

2m-
s—in) —\^. COS. 2(nt^t—sr) —^e'. COS. 3(wi+s—w); cos. 2{«f+£

—

<a)=—^ 1, cos.

3(nf-f-c—a-) = COS. 2{nt-\-i—a), cos. (nt+i— to) — sin. 2(nf+E—a-), sin. (nt+i—jj-) =
2k' u 2m^ 2« ^ti' 3m r . e^ u--+—-7' =— -7-= .•.-=l + -^-(e-ie')--4e>
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and if we then restore in place of Q, its value Q.J'd.R + r.j -j- > , and

e. COS. (nt-\-i—ra-), instead of tc, we shll have, as far as quantities of

the order e',

= —z H n.Su
dt ^

g-. (1 + \^—e. cos. {nt-\- i—Ts)—\ e^ cos. (2?j^+2£—2w)).

|(2./di?+r.g]^-
(X')

. J ndt.\_^vs\. {nt-\-i—ss'). [1 + e. cos. (wf + t—w)].
a*

2./die+r.)f(].

When Jm shall have been determinined, by means of this differential

equation ; <Jr will be obtained by differentiating the expression of r,

with respect to the characteristic <5^, which gives

Sr —— aJ'M.(l+|e*+2e. cos. («^+£- 3r)+|e^ cos. (2wH- Si—2w)).

This value of Sr will give the value of Sv by means of the formula (Y)

of the preceding number.

(?^_,)_|..(!^_i;)=,+,.«._(,_^.).„_.._-..),

^ = (1 +6^— (l_|e^);f)2+2(l +e'—m(1—|e2). («-+i«')+(«'+i«')'. as m involves

e, powers of m higher than the third may be neglected, .', —^ = 1 +26*— 2(a(l

—

\^')

—2u^+u'—^u^+2.m'—f2.m'.

Qrdr 1 1

= — —J- . (1 + }e^—u—|u' -(-«''), because powers of u higher than the second are re-

jected, masmuch as they would involve powers of e higher than the third, when their
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It now remains to determine Ss ; but if the formuliE (X) and (Z) of

the preceding number be compared together, it will appear that ir is

changed into Ss, by changing in its expression 2.J^dR + r. j-j- > into

1 -J- > ; hence it follows, that in order to obtain Ss, it is sufficient to

effect this change in the differential equation of Su, and afterwards to

substitute the value of Su given by this equation, and which we will

denote by Su', in the expression of Sr. Thus, we shall have,

= -^ +n^M

—J-. (l+^e*

—

e. cos. (nt-\-(—w)—|e*. cos. (J2.nt-{-2i—So-)). [ ^ \

dR\
dz)

2e . , .... , .. .. fdR\'e f<iK\ \
'-^. Jndt. (sin. {nt-\-i—Tij-).(l-fe. cos, {nt-\-i—^))'( j~) ) '> (Z)

values are substituted in place of u, hence substituting for u and i^ their values, namely,

..cos.(»^+^.),-f..cos.2(„^+.-w)+ i-. ^=(2/diJ+r.(f)).(-^

A + -i-^ —-^ —e.cos. (n<+£—sr)— -^. COS. (2«<+2£—2w)); <?".(«)=£?. ^^ =

— 2a'(l+ 3u); and —, r= —tt • (1 + Je^—3«)) the other terms are omitted be-

cause powers of e higher than the third would occur when we substitute for du and ?'.{a)

,..i>),= ^.(l+3„).(l_3.)

=. (omitting terms which would by their multiplication produce powers of e higher

than the third) -—j-; du =. — e. ndl. sin. (nl + £—•=>•), <p'.(u) = — 2a^(l + e, cos.

(nt+i—w)), hence substituting for ?/'.(«),——— , and du. <f>'-(u), their values just given

we obtain the last term of the equation (X').

Jr = —a.(Ml— |e'+ 2"+f. u% §"' = f-
cos. 2(n<+ t—r7)+ f r, .•. dr=z— ahi.(l+^.

e^+2e. cos. (ni-fe4-c7)+|. cos. (iiw/+2{—2w).
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is = — «<yM'.(l+|e*+2e.cos. (nt+i—w)+^e^. cos. (2nt-{-2i—^7ir)).

The system of equations (X'), (Y'), (Z'), will give, in a very simple

manner, the troubled motion of m, if we only consider the first power

of the perturbating force. The consideration of the terms due to this

power being very nearly sufficient in the theory of the planet ; we now

proceed to deduce from them formulfe which may be conveniently ap-

plied in determining the motion of these bodies.

48. For this purpose, it is necesssary to expand the function R into a

series. If we only consider the action o£m on m, we have, by N°. 46,

m
-I.

This function is entirely independent of the position of the plane of

X and of i/, for as the radical \/(a/

—

^^-{-(y'—yy + (^z'—s)*, ex-

presses the distance of m from vi\ it is independent of it, consequently

the function ^*+z/*+i*-f-*'*+i/'*+-2'*

—

^^^'—%/

—

'^zz' is equally in-

dependent of it j but the squares ;i*-t- J/* -1-2*, and a/^-j-i/'^ +z"', of the

radii vectores do not all depend on this position, therefore the quantity

xx'-i-t/t/'-\-zz', does not depend on it, and consequently the function R
is independent of it. Let us suppose that in this function



274 CELESTIAL MECHANICS,

fore we can suppose that

II, and m/ being small quantities. As the angles v and -d differ little from

the mean longitudes n/+£, and nV+t'; we may suppose that

V, and y/ being very small quantities. Hence it appears that if R be

arranged into a series proceeding according to the powers and products

of M , f,, z, u,', v', and z' ; this series will be very converging.

Let

-75-. cos. (n't—nt+ I— —(a'

—

2ad . cos. (n7—«/+ i—C) + a'*)
'

:^i.^;o)_|_^(i)^ COS. («'/—«/+£'—0+^'^'- COS. 2.(n'/—//?+/-^t)

+^'''. COS. 3.(?j7—«/+£'—0+ &c.

;

this series may be made to assume the following form, namely, \. E.^'".

COS. t.{vlt—nt-\-^—{). the characteristic 2 of finite integrals being rela-

tive to the number i, which ought to extend to all entire numbers

from 1-=.—X to ? =: 00 ; the value i =. 0, being also comprised in this

infinite number of values ; but then it ought to be observed, that in this

case A-~'^-=.A-^. This form has not only the advantage of enabling us

to express, in a very simple manner, the preceding series, but also the

product of this series, by the sine or the cosine of any angle ft-\--w\

for it is easy to see that this product is equal to

4.S. 4«.
^J^";_

{i.{i^—nH f'- +M^y
* Let !o = n'—tit -\- t'—I, andy/ -\- a = p, we shall have cos. i.{n'—ni+i'— i). cos.

{J^ + ^)) — *^°*' ""• ^•'s- P' ""^ •^"S- (— '«')= COS. I'tu)
;

sin. —ju)=r — sin. itu) ; (

—

i. sin.

(— iw)=t. sin. iw, ',• if i denote the positive values of i, we shall have cos. iw. cos. p z:

2 COS. i'w. cos.p •=. COS. (p+i'tii) + cos. {j>— iw) ; cos. iixi. sin. p 1= 2 cos. i'w. sin.p = sin.

(p+»'w)+sin. (p—i'to) ; i. sin. iw, cos. p=2t'. sin. i'ui.cos. /)=j'. sin. (^+»'i«)— «*. sin. (p

—

i'vi) ; i. sin. (fj«. sln.p=2i. sin. i'tu. sin. p=— V . cos. (p+i'iu) .(-i. cos. {p
—iixi) ; in the se-

cond member of these equations, the first term is changed into the second when i has a

negative value, •.* if i is indifferently positive or negative, the second member is con-

tained in the first ; hence we have cos. jw. cos. />=i. cos. (iio+p). &c. See note page 290.
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This property will also enable us to express in a very commodious manner

the perturbations of the motions of the planets. Let, in like manner

(a* — lad. COS. {rJt—nt-\- i—C) +0'*)"*

—\. E. B^. COS. t.{ril-^t->r t'—t)
;

B^~'' being equal to JB<'\ This being premised, we shall have by the

theorems of N°. 21,

Tnf

i? = —. 2. A^'\ COS. i.(n't—nt+

1

—t)*

,
m' ^ fdA^'^ \ ., , , ,+— . «,. S.flr. ( —T— 1 . cos.i.(n7

—

nt-\-i—t)

, m' . ^ , ( dA-'^ \ . , , , ^+— . w,.E.a . ( —y-f \ . COS. t.(nt—7tt+ i—t)

—. (vl—U/).S.?. A^'\ sin. t.(n't-~^t+t—t)

m' fd''.A^'^\+ —-. M,*.S.a*. I —fT~ ) • cos, i.(n't—7it-\-c'—t)

nn2

* Substituting for r, r', v, v', their values, the constant part of the value o K w

, m'.aa'. COS. (n't—nt-i-t'—t)+zz^ m'
become ^ I

'—
(o'^+2')l (a2_2(za', COS. (nV—«!!+£'—i) -j- n"

-i- (z'_s)2)i

which becomes (by reducing, and observing that terms higher than of the order of the square

of the disturbing forces are neglected) =:m'.(aa'. cos.((jj'<—nt-\-i' 8)+«2'. (a'—

^

5a'—V)

i+
"^^'-^^'

(a*—2aa'. cos. [n't—nt 4. i'_e
)+ a'*)^

t^
(„=—2aa'. cos. {n't—nt+ 1'

—

i)
-J- a" ) 2

'

- Hi. 2.^W. cos, i.{n't-nt+ ^'-^) 4. i^i^fl - i'"'-"'"- <^oti!l'^"^+ ''-')

+ —-. (a'—s)^2. i5W. cos. i.(n7—H«+i'—s)

;

now if a, a', n/-f s, ?i'/4-«'> be supposed to be increased by u', «/, v^, vj respectively, the

value of R will be given by (he formula of N". 21, in the manner expressed in the text.
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+ -g-' («'/<• 2««'-
[^ ^f^'J

• COS. j.(n7—«/+.'— .;

+— . u:\-Z.al\ { -^^ j . COS. i.{rJt—nt-\-i'—{)

^. (t'/—O' "/• S««'«" ( -J~ ) • (sin. ?. («'/—«/+ f'—t)

—. {v'—t/). u/. "ZAa'. I -j-j-
J

. sin.«.(n7—«?+t'—

. {yl—vy-. Y..i\A^'\ COS. ».(m7— «f+ £'—0

rri.zz Sm'.az" , . ,
, ,

.

+ -^3 5^^f— • COS. («/—«f+£'—

+ m'.-fc^. X.B'". COS. i.(n't—nt+t—0

+ &c.

If in this expression of i?, the values relative to the elliptic motion,

are substituted in place of u^, u', v^, w ', z and z', which values are

functions of the sines and cosines of the angles tit+i, n't-{-i', and of

their multiples ; k will be expressed by an infinite series of cosines of

the form vi'k. cos. (i'n't—int+A),* i and i' being entire numbers.

It is evident that the action of the bodies m", m"', &c., on m, will

produce in R, terms analogous to those which result from the action

of m', and that we shall obtain them, by changing in the preceding

expression of R, all that which is relative to m', into the same quanti-

ties relative to m", m'", &c.

Let any term m'k. cos, {iln'l— int + A") of the expression for i?,

be considered. If the orbits were circular, and existed in the same

* The form of this function is always that of a cosine, for the values of ii', u[, are ex-

pressed by series of the cosines of nf+i, n'Z+t', and of their multiples, which are multi-

plied into a function of the form 2. cos. u{n't—nt-\-i'— i), the value of v— r/ is expressed

by a series involving sin. (ntJfi) ; sin. (»'<-{- 1') ; and their multiples, and this is multiplied

into a function of the form S. sin. >.(»'t—nt-f-i'—•).
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plane, we would have i— i, therefore i' cannot surpass i, or be sur-

passed by it, but by means of the sines and cosines of the expressions

ofu^, v^, z, uf, vf, z which by combining with the sines and cosines

of the angle n't— fit+i'—i, and of its multiples, would produce sines

and cosines of angles in which i' is different from i.

If we consider the excentricities and inclinations of the orbits, as

very small quantities of the first order, it results from the formulas of

N"- 22, that in the expressions of u^, r , z or rs, s being the tangent

of the latitude of 7?i, the coefficient of the sine or of the cosine of an

angle, such as J.(nt-\ e), is expressed by a series, of which the first

term is of the order /, the second term of the order J'+ 2, the third

of the order* / + 4 ; and so of the rest. The same obtains for the

coefficient of the sine and cosine of the angle ^'(nV+Z), in the ex-

pressions of w/, u/. z'. It follows from this, that «and j' being supposed

positive, and i' greater than i : the coefficient k in the term of m'k. cos.

(i'vlt—int+A), is of the order if—i, and that in the series which ex-

presses it, the first term is of the order i'—i, the second term is of the

order i'—«+2, and so of the rest, so that this series is very converging.

If i be greater than i', the terms of the series will be successively of the

orders i— i', i— i' + 2, &c.

It is evident from inspection of the series in pages 150, 152, that when all the coeffici-

ents of the function cos./(n<-|-i) are collected together, they will constitute a series of the

form e/±e/+* ±e-f+*±eJ'-*-^, &c., hence multiplying cos-y:(nt-|-i) into cos. i.{n't—7ii-\-^—
i)

the product will be of the form of

cos. i.(n't—nt+ t'—s) +f.(n't+ 1))
. ^ ,

t= by makingy -J- i = i'

cos. {i'n't—ini -}- A)
_

;

which is to be multiplied into the series e^, f^+^, tf+*,&c., =(asy=i'— «'=
),

<""',

«"-'+«, &c.
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Let zr denote the longitude of the perihelion of the orbit of m, and 6

the longitude ofits node ; and in like manner let zr' denote the longi-

tude of the perihelion of the orbit of m, and 9' that of its node ; these

longitudes being reckoned on a plane very little inclined to that of its

orbit. It follows from the formulge of N°. 22, that in the expressions

of u„ v„ and z, the angle iit-\-B is always accompanied by—w, or by—9

;

and that in the expressions of u', t\, and z', the angle n't+ 1 is always

accompanied by —w', or by —9', hence it follows that the term vnlk.

cos. {i'lit—int+A) is of the following form

7nfk. cos. (i'7i't—mt+i'e'—u—gur^g'u'—g''^—f^'),

g, g', g', ^", being entire numbers, positive or negative, and such

that we have

O^i'-i^g—g'-g'^^g".

This also follows from considering, that the value of i?, and its dif-

ferent terms are independent of the position of the right line, from

which we reckon the longitudes. Moreover, in the formula; of N". 22,

the coefficient of the sine and cosine of the angle w, has always for

factor the excentricity e of the orbit of m, the coefficient of the sine

and cosine of the angle Sur, has for factor the square of this excen-

tricity, and so of the rest. In like manner, the coefficient of the sine

and cosine of the angle 9, has for factor tang. \ip, <p being the inclina-

tion of the orbit of in on a fixed plane. The coefficient of the sine and

cosine of the angle 29, has for factor tang. *^ip, and so of the rest

;

from this it follows, that the coefficient k has for factor, e«. e*'. tang.

«"('i^). tang. ^"0,<p) the numbers g, g', g', g'", being taken positively

in the exponents of these factors. If all these numbers are positive in

themselves, this factor will be of the order t—i, in consequence of the

equation

>
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but if one of them, such as g, be negative and equal to —g, this factor

will be of the order i'— i + ^2g.* Therefore, if we only preserve,

among the terms of k, those which depending on the angle i'n't—int,

are of the order «

—

i, and neglect all those which depending on the

same angle, are of the orders i'—i + '2, i'—i + 4, &c. ; the expression

of k will be constituted in the following manner :

H.e^.e'^. tang. ^".(4?). tang. ^'".(4?0- cos. (i'n't—int

-^i'/-h-g. ^-g'. ^'-^'. ^-g". r)

H being a coefficient independent of the excentricities and of the

inclinations of the orbits, and the numbers g, g, g", g", being all

positive, and such that their sum is equal to i—u

If we substitute in R, a.(l +m,,), in place of r, we shall have

fdR\ (dR\

If in this same function, we substitute in place of «,, v, and c, their

values given by the formulae of N". 22, we shall have

fdR\_ fdR\
\dv)-[dj'

provided we suppose that t— xs-, and e — 6 are constant, in the

differential of R, taken relatively to i ; for then u,, v^, and z are

constant in this differential, and as we have v ::: nt + t + v^, it is

evident that the preceding equation has place. We can therefore

easily obtain the values of r. ( -^ j and of |
-7-

J
, which occur m

* For in this case i'—i+^g=g-{-g'-\-g" +g"'-

/dR\
. rfr dR dR dr dr ,, ^ . /dR\

dR\Q
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the differential equations of the preceding numbers, when we shall

have obtained the value of R expanded into a series of the cosines

of angles increasing proportionally to the time. It will also be very

easy to determine the differential d/?, by taking care that the angle

nt, solely varies in the expression of R, the angle n't being supposed

to be constant ; because d22 is the difference of R, taking on the

supposition, that the coordinates of m', which are functions of n't, are

constant.

49. The difficulty of the expansion of R into a series, is reduced to

the determination of the quantities J'*', i?''\ and their differences, taken

relatively to a and a'. For this purpose, let us consider generally the

function (a'

—

2aa'. cos. 6 + a'*)"', and let us expand it according to the

cosines of the angle 6, and of its multiples. By making — = «, it will

become a'~^.(l—a. cos. 6+ a)~'. Let

fl—2«. cos. e-|-«*)-' =^. bi'^+bi'K cos, O+^f . cos. 26.

+3f. C0S.39+&C.

bf', U}\ bf\ &c., being functions of a, and s. If we take the loga-

rithmic differences of the two members of this equation, with respect

to the variable 0, we shall have

—25. a. sin. 9 —bi'\ sin. 9—26f . sin. 29— &c.

1—2«. cos. e-|-«* ~ i.6f'+6i". cos.9-i-*i->. COS. 29+ &C. '

by multiplying transversely, and comparing together like cosines,

we find generally

m_ 0-1 ).(i+.-).z>r"-(i + s-ou.br'' ,.

by this means the values of bf\ bf\ &c., will be given, when bf\ 6^'^,

are known.
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s being changed into 5-f 1 in the preceding expression of (1—2a.

COS. ^)+«^)~'~\ we shall have

(1—2«. COS. 9+«^)-'-'zr }2'l^fli.+ b%i COS. 6 + bfl^. cos. 29.

+ 6fj,. C0S.39+&C.

By multiplying the two members of this equation, by 1—2a;. cos. 9 + a*,

and by substituting in place of (1—2a. cos. 94-a*)~', its value in a se-

ries, we shall have

i. 6('»+^,w. cos. 9-(-if . COS. 29+ &c.

=(1—2«. COS. 9+a*).(4.i.fj,+Z.^'].i. cos.9-t-6fj,. COS. 29+6fji. cos. 39+&c.)
;

from which may be obtained, by a comparison of similar cosines

i«= (l + «^). b^Ji,- cc. b^-l^— «. iii+/).*

The formula (a) gives

the preceding expression of bi'\ will therefore become

'
i—s

PART. I, BOOK II. O O

When this transverse multiplication is performed we must substitute for cos. t. sm.'(l),

sm. 6. COS. (•'«, their values m terms of ^—^

—

1 >
; hence we obtain

'2 2

_ f«e('-2J. sin. (i—1). «—««e«. sin. (f—1). 6— (I + ««).(i_l). €j-i, sin. (j— 1). e+ «?£(').

sin. (i—1). *. +«.(j—2). €('-2). sin. (i— 1). «=0. .". Sj. «.(»—«) = (1 + «=).(?—!). Ij>-i) _
a.{i—2+ji). gj-2.

* To obtain this value of S<'', it is to be remarked that cos. t. cos, it

cos. (i'+l). 9+cos. (j—1). « , ,. , • ,= ' 2 ' "6"ce multiplying the two factors of the second member

of this equation, the coefficient of cos. id is (!+«') £'"' , ab^'+^^ «4(*-\'.
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By changing i into i+1, in this equation, we shall have

and If we substitute in place of ^il^i', its preceding value, we will have

''• ~ {i—s).{i—s+\).o<.

These two expressions o? b'l\ and of ^i'"*"", give

to -_L___ , f ; (b)
(1-.^)

by substituting for 6^'+^', its value deduced from the equation (a), we

shall have

e:=-i TT—^ ' (^)*(1—a ;

which expression might have been inferred from the preceding by

changing ? into —?", and by remarking that i,''= Ur'^. We shall con-

sequently obtain by means of this formula, the values of 5f+i, 6f|.,, bfl^i,

&c., when the values of bf\ b[^\ bi'\ &c., will have been known.

In order to abridge, let x denote the function 1—2a. cos. 6 + a', by

differentiating with respect to «, the equation

X-' = 1. bm. + 6i'> cos. i-bi'K cos. 29 + &c.

;

we will obtain

-2s.(«-cos. 0). A-'-^=i. -^ +^^ . COS. e + -^. cos. 29+ &c.;
^ "^ ^ da, dtt. da.

* Hence if we know the coefficients of the multiple cosines in the series which is equi-

valent to(l—2«. COS. S+a^)-*, we know the coefficients of the multiple cosine's in the

series which is equivalent to (1—2«. cos. i-\-a-)-^~'^.
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but we have

1 — a*—

X

—X -\- COS. 9 zz ;

therefore we shall have

—i ^ . A '-' = J
. ^-j-^ -| ^. COS. 9 + &c. ;

lience we deduce generally

db<P _ s.(i-x^) sM;> ,
•—J • t's-t-l

•

M« a a

By substituting in place of bi'li its value given by the formula (i), we

will obtain

dblf__ ( i+(i+^s).x'
I _ 2.(i—s+ l)

dx ~
I «.(i—«^) S

'
' 1—«* ' '

This equation being differentiated, will give

dx* ~\ «.(1—a*) V dx '^\ (1—*')* «*

- 1-a* • dx
"*• (1—«*r '

'

oo 2

* Substituting for a-»-i, a-«, their values given in the preceding page, the coefficient

of COS. U, in the value of x-'-^ is Cj^, , and the coefficient of the same quantity in the

value of A—* is £'''.

\ Differencing the coefficient of €^'' with respect to a it becomes

— 2.(1—g^H-a^^z (i+25).(l—<»')-f2«"-.(i+2^) _
«^(1—»')"- * (!—«')'

~

_J£—3£)_ (z+ 25). «M1—g^
) 2«''.(i+2i) _ _ f£—2«_l+£i

a°-.(i—«')«+ *^(l_«7 + (1—«^)^ ~ ««.(i—««)2

+ (1—«*)2 ' .



284 CELESTIAL MECHANICS,

By differentiating again, we will obtain

-t-
I {l—a'Y

"^
«^ V ' 1—a* • dx'

_ ^.{i-S+\).x dU:^'' 4.0—^+l).(l+3a^) ,^„

{\—x^y ' dx (1—**)' •
* ' •

It appears from this that in order to determine the values of b['\ and of

its successive differentials, ' it is sufficient to know those of Up, and of

up. These two quantities may be determined in the following

manner

:

Let c represent the number of which the hyperbolical logarithm is

unity ; the expression of >r% may be made to assume the following

form

:

By expanding the second member of this equation, with respect to the

powers of c^V^, and of c—''v=ij it is evident that the two exponen-

tial quantities eW^, and c—'"V-i will have the same coefficients

which we will denote by k. The sum of the two terms /cc'V^T, and

k.c-^W=i is 2A-. cos, i6 ; this will be the value of b['K cos. ?6 j there-

fore we will obtain Up =. 2A-. Now tiie expression of a~' is equal to

the product of the two series

1 + sx.c-W-^ + !A!±^ . ^\c-'"^-^ + &c.
1 .2

these two series being multiplied, the one by the other, will give, in
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the case of i = 0,*

and in the case of « zr 1

,

/, _ «.
^
*+«•

-TTi-- " +—7:2 r.2.3 • * + &c.
,

^

consequently,

I

In order that this series may converge, it is necessary that a should

be less than unity ; this may be always effected by assuming « equal to

the ratio of the smaller of the distances a and d to the greater, and as

we have already supposed a= —r, we will assume that a is less than a!

.

In the theory of the motions of the bodies m, m', m", &c., it is ne-

cessary to know the values of U^\ and of h[^\ when sittV, and inf. In

these two cases these values do not converge rapidly unless a is a

very small fraction. These series converge with greater rapidity when

5ZZ—\, and we have

4.-4 = '+ «)« + (^:)*- «'+(a^)'-
'' + (^)' -'+ ^^-

,1, _ C 1.1 , 1 1.1.3 ^ 1^ 1.1.3.5 g 1.3.5
6_i_—a.^1—— . a-— -.g^^^y.a — ^•2_4_6,8-'^ ~ 4.6.8

•

1.1.3.5.7 o ?
,. „ . a^ — &C. \ •

2.4.6.8.10 3

* i = when equal powers of 4 ^~', and c"~ ', are multiplied together and, ;=I,

when powers of J)'^~^, are multiplied into powers of c"""^""', which are less by unit than

these. This is evident from the value of/-.
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In the theory of the planets and of the satellites, it will be sufficient

to assume the sum of the first eleven or twelve terms, the subsequent

being neglected, or more accurately, by summing* them as a geometric

progression ofwhich the ratio is 1—a*. When ^>"'J, i<'i, shall have been

thus determined we will obtain 6'^i by making ?=0, and s——\, in the

formula (6), and we will find

h'V
_(l+^')-^L°l+6-«.6"l

If in the formula (c), we suppose ? = 1, and s — —\, we will have

J^V=
2.«5f5+3.(l+«*).

6l!i

By means of these values of h^V, and of j}t\ we will obtain by the

preceding formula, the values of U'l, and of its partial differences,

whatever may be the number i, from which we may we may conclude

the values of lip, and of its differences. The values of Vl\ and of Vl''
2 'It

may be determined very simply, by the following formulae;

(0) ^(1)

I -(1—*?)^ ' 1 - ^- (1—«*)* -^

• For if (1—«2)—1 be expanded to a series, the sum of the remaining terms will be very

nearly equal to this series multiplied into the eleventh term.

(l+«^).i(0)—2«ii^

f By formula (6) 6^ = ^w ''5 substituting for IP , i'D , their values we

(1 +«2)2.60
1
+6«.(1 +«2). hi\ _4,Z.4W _6«.(1 ^.«2).m (1—«2)2i«»)

obtain h\ =
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Now, in order to obtain the quantities A^°', A^^\ &c., and their dif-

ferences, it may be remarked that by the preceding number, the series

l.A^"' + J<'\ COS. 6 + ^(2'. COS. 29+ &c.

results from the expansion of the function

a. COS. fl . , , . /,v_i
-,i

(«"

—

2aa'. COS. fl-fa*)-*,

in a series ranged according to the cosines of the angle 9 and of its multi-

ples ; by making —j- zz a., this same function is reduced to
a'

rr- b?^ + (-^—V- *"' ) ' cos. 6—4-. bf\ cos. 29—&c.
la

which gives generally

^"^ = -V- *»'-

when i is zero, or greater than unity, abstracting from the sign. In

the case of ? = 1, we have

^(1)

we have then

1_ dhl" fdo. \
~ ~d* da. • \da J

'
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Finally, even in the case of i=:l, we have,

\ da" )~ a'^' dx^
'

\ da' J - a'*' dx'
'

&c.

In order to obtaia the differences of A'-''' relative to a' it may be ob-

served, that A^'^ being an homogeneous function of a and a', of the

dimension — I, we have by the nature of this kind of functions,

hence we deduce

, ( dA'^\
.,, ( dA^'>\

**• \da.da')- "^-y da ) ' \ da" ) '

&c.

J5''' and its differences will be obtained by observing that by the preced-

ing number, the series

1. B^''> -|-5<". cos. 9-f i?'=>. COS. 6+ &c.

is the expansion of the function a'^. (1

—

2a. cosJ-l-a'')"^ according to
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the cosines of the angle 6 and of its multiples ; but this function thus

expanded, is equal to

a'-', a. ¥i'-¥¥i\ COS. + bT- cos. 29+ &c.) ;

therefore we have generally

hence we obtain

(dB''\ _J_ dVr (<£B^\ _J_ d'bl'

\-d^ ) - a'^-
-ir ' \da^ )-a-'-d^' ""''

Moreover, B''^ being an homogeneous function of a and of a, of the

dimension —3, we have

C dB^" •) CdB" •>

from which it is easy to infer the partial differences of B'^'> teken re-

latively to a', by means of its partial differences relatively to «.

In the theory of the perturbations of m' by the action of m, the

values of A^'^ and of fi' ' are the same as above, with the exception of

/i<", which in this theory becomes -^ r. ^i"- Thus the compu-
•^ a a

tation of the values of ^<'', B'^'\ and of their differences, serves at once

for the theories of the two bodies m and m'.

50. After this digression on the expansion of R into a series, let us

resume the differential equations (A''), (F') and [Z') ofN"'. 46 and

47 ; and let us determine by their means, the values of Sr, Sv, and Ss,

the approximation being extended to quantities of the order of the ex-

centricities and of the inclinations of the orbits.

If in the elliptic orbits, we suppose

r =: a.(l + u^ ; r = a'.{i + <) ;

vzznt+ t-^v,; 1/ =. n't-{-i'-\-'^l

;

PART 1. BOOK II. P P
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by N". 22 we shall have

Ui =—e, COS. {ni-\-i—73-) ; «/ = — d . cos. (n7+e'—z/)

f, = 2e. sin. (w?+f"~^) >
""'

, — 2e'. sin. (nV+i'

—

v)
;

n^+£, n7+«' being the mean longitudes of m and m' ; a and a' being

the greater semiaxes of their orbits ; e and e' being the ratios of the

excentricities to the gueater semiaxes ; finally, s- and nr' being the lon-

gitudes of then- perihelions. All these longitudes, may be referred in-

differently to the planes themselves of the orbits, or to a plane which is

very little inclined to them ; because quantities of the order of the

squares and products of the excentricities and of the inclinations are ne-

glected. The preceding values being substituted, in the expression of

R of N". 48, will give

R = -^- 2. ^'".(cos. i. (n't^nt-\-i'—i)*

* As the approximation is carried only as far as terms involving the first power of the

excentricity, the only terms in the general expression for R which are to be considered, are

, . ^ VT .,-, ., : , /rfA('')\ /c?A(-')\ , . , ^

the four first. Now as A(') = A(-') and I—— j = I
—-— I, and cos. i.ui =: cos. (

—

im)

to representing {n't—nt-\-i'— i), and sin. (—i.ui) =— sin, iw, we shall have generally (i'

representing the positive values of i, and n representing (nt + s— w)), cos. i.w. cos. n :=

2 COS. Hm. cos. n= cos. (i'.w-\-n)-{-cos. (i'M—n), and i. sin. i.tu. sin. n = 2t'. sin. i'uj. sin.

?i = + i. cos. {{i'M -\- n)— i'. cos. {n—i'.iv) See page 274, Notes). Hence substituting

for n, its value, (nt + s — ar), and observing that cos. i, (n't — nt + t' — t.) cos.

(nt+i—w)

= cos.i'.(7i't—vt+ i'—i)+vt-^t—-iir)+cos.i'.(n't—H<+ e'—<)

—

(nt+t—ia)),

and also that when 2e. sin. (nt+ t—a-) is substituted for v/, sin. i.(n't—nt+ t'—s).

&m.(nt-^i—ot) = COS. i.(n't—nt+i'—i)J{.nt+i—a) — cos.

i'.(n't—nt+ i'~i)—nt—i—rv), we obtain the second term in the expression ; in like manner

the third term is obtained, by taking the index i— 1 ; in the third term the circular part is
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—-. 'ZAa. \ —— V + 2i.^<''f . e. cos.(«.(«7

—

nt-\-i-i)-^nt + 1—n-)

the sign S of finite integrals, extending to all integral values positive

and negative of i, the value izzO being comprehended among them.

From which we obtain

° 2 i da S ^ c (aa^ w

—

7i 5

cos. j.(n7

—

nt-{-B — i)

m
~2

e'. cos. (nt+ £—w')

^ i..in—n)—n c ( da )

c. COS. (?.(n7

—

nt+

1

—i) 4- w^+ *

—

bt)
;

pp 2

made to assume a more symmetrical form, for it becomes by performing the prescribed

operations, cos. (j

—

\).{v!t—nt \-

i

—e)4.n'<+i'

—

<«/), which is evidently identical with

the expression cos.c.(n't

—

ntA^i—ej+n^+ t

—

t?'), besides the values when j=0, are com-

prized in this expression.
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2

i da.da' ) '^ L da S

t.(n—«)

—

n L i da S

e'. COS. (J,.[n't—nt-\-i'—i) + nt+ i—w')
;

The sign S extending in this and the following formulas to all the inte-

gral values of i, positive and negative, the sole value ?' — being

* When the value of i = 0, is excepted out of the positive and negative values of i,

we shall have

dR m' dA'S» m rf.2AW ., , m' d^A<-'»— = ,—; \- ——•—

;

. COS. t.in't—nt+^— r--. a. , „ . e. cos. (nt+f— ar)

dr 2 da ^ 2 da ^ ^ ' 2 da"
v t /

m' I d"A<-') dAf.') \—— . 2.( a. —r-^+ 2?.—;— }e. cos. ?.(n'f

—

nt4-i'—e)+ nt—s—ar)

2 \ da^ ^ da f ^ -r
/

7r'\a'-^-r-i— J— je'- cos.(ni+s—ar')— 77- ^'O-
, ,

,
— 2(t—1

.

2 V da'.da ^ da ' * ^ '2 rfa.t/a' ^

J
d. COS. t.(n'i—wi-j-s'

—

e) + ni + s—cr'), .'. substituting for r its value, a.(l—e.),

COS. («<+ .-«), we shall have r. (—j = -. a. ^- .^ •

m' rfsAW ., , , , , Hi' a!2A'''
c. COS. (n/+ t—11) + -^ . a. —-5— . cos. t.(n't—nt-f-i— —-. a. —z— e. cos. «.

^ da ^ ct(z

(n't—nt 4. ^— i)+ nt-\r i—-a)

(Sa-. , „ Ajiia. -t- J. e. cos. Urit—n<'+ e'—f)+n<+ '—w)
2 \ aa- ^ da I

m' „ d^AO)
.0-. e. cos. (ni+'—'°)

2 ofa^

w' /d'^AW 2dAm\
-. a'.a. { -y-r-, k O.

;
1. C'. COS. (««+ £ 1:/)

2 \da'.da
^ da J

^ '

m' I rfAt'~'' Af>~)\— —. 2.{a^a' 2(i— 1) d.f~- )e'. cos. ((»'<_«<+«'—.)+nt+i—sr>
2 V da da I

(the remaining terms are omitted because e* occurs)
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excepted, because the terms in which i — 0, are extricated from this

sign : mg is a, constant quantity added to the integral fdR. There-

fore by making

^ , 3
Cc?*AW7

, ^ , C</A«"7
. ^

2.(z.(w—?i')—w) ( L da S n—

«

)

?.(n

—

vf)—n L ( da ) )

^ \ da.da' ) ^
'

\ da \

diJ = + _. indt. 2AW. sin. i.(n7—«<+6'— + -^. «fi?to. -^ . c sin. (n< + «—w)

+ :^ {n—in).dt.^. f «-(^')+ 2JAw)e.sin.i.(n'<—«<+t'-0+n«+i—^)

+ ~. ndt. h-o.'-^^+ 2AW v. sin. («<+e—^) + ^. (1 — ^), «)rf<.(2a'.
rfAC-')

—2.(j—l).A('-i)) e'. sin. «.(«'<—«<+£'—0-|-ni+t—K^)> .'. 2/cliJ

=2»»'ff • 2.AW. COS. i.(n't—nt-^i'—i\- — . 2a. -j—. e. cos. (nt+s—w) —
° 2 n'—n 2 aa 2

'

^•^"~'"^
. f2a.-^ +2iA(').)e. cos. i.(n't—nt+e—i) + nf +«-,=)— -J . 2a'.

»n'—2re+« \ da . / a

dR
el. cos.i.(n't—nt-\-i—i)+nt-J[-i—v'), •.• by reducing we obtain 2yd/? + r. -j-= the

expression which is given in the text.
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t.(7i—?7)—n C (da) 3

the sum of the masses M-\-m being assumed equal to unity, and

—^y— being supposed equal to «* ; the equation (X') will become

6?/* ' ^2 C da )

* The equation (X') becomes by neglecting the square of the excentricity, —^ ^-

n'^u—n-a.{l—t. cos. (nt+i-''sr).(2/dR + r. -j—j — 2ean^.fndU (sin. {nt + t— w).

l^/dR + ''• —7- ) ; ("''^ being substituted for -^ and M+fl» bemg by hypothesis =1).

By substituting for 2/diJ+ 7--^, its value, this equation becomes =

t.(n't—nt

+

1*—
e) + "2- •

I
<* • -Jl- + 3a --^

—

) • «• COS. (n(-f!— -a)+

({n^a).(2m'g+Y) -"'-^ H2an^{2mV-j-^. a.-j—Xj. e. cos.(wf+i—or); (=7:V.Cc.

cos.(««+i-:x))+.i=a.—( aa'. .^-^+2a. -^+2a'.—-^+4.A0);«'. (cos. 7,t +

,_B^) =: (n*m'. Def. cos. (si+t—a/).

^+(2^1,..^
+ ^-'«^-^

2.rJn.n , .AC.) [
\e.cos.ii^n't-nt+^-,) + nt+^)

J, ^. jjifl. (sa.—T— A ^. AC'-*. ) c.cos. ».(«'<—71/+t—«)+««+«—o)^2 \ da n—n' I

_2an«.e./«(f«.(sin. i.(n'/~«/ +t'-f)+ «<+ i-<r) (-2-.2«-^^+-;;z:7AW; =^-.
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-^'. 1. U(^) + -^.aA<4, COS. i.(n't-ntH-0
2 c \ da y n—n 3

+M*m'. Ce. COS. (nt+i—u)-\-n'm'. De'. cos. (??/+£—t^-')

+n''m'.I..O'Ke.cos.(i.(n't~^t-\-t'—e)-\-nt+e—t!r)

+}i'^m'X /)'*. e' COS. (i.{n't—nt+e—i) + nt+^—zy')

;

and by integrating

jm' j ( \ da / ' n—n' )—-. » . ^. ^-7 ^:t 7 . COS. i.{n't—nt+i—i)

j-m'J).e COS. (nt-\-i—vs)-\-m'fl, d, cos. («#+£—w')

— . Cn^. e. sin.(n^+£

—

ss) —. D.nt. e'. sin. {iit-\-f-—w-')

-}- jm'.S. 7^77 rr-—Ni 1 • e. COS. («.(w'^—?2^+e'—0+«^+«—^)

1an\ ( . ,

"
- ).2a..^^+ /-^V AW.)e. cos.«.(n'<—n<+i'—f)+«<+i—«))

V.(?»'

—

n).\.n' da \n—ri / ' '

which added to the preceding term becomes, by changing the signs of the numerator

and denominator of -;

—

r

t.{n —n)-\-n

—(. nK-^^ '-^ . 2a^ — U -. AW), e. cos.(». «'<—n^+ i-—0+«<+«—jt)
2 \ i.{n—«')

—

n da n—n' I

and by adding this quantity to -— . n^a. ( 2.a°. „
— + (22+ l)-a.

—

-^— J, it will ap-

pear that he coefficient of nW. e*. cos. (i.(n't—nt-\-^—%)-{-nt-\-(—ro) is equal to C'-" ; it is

evident from an inspection of the coefficients of e". cos. (k^+s— th'), d, cos. j.(n't—«<-)-b'—«)

+ni4-t—w') that they are respectively equal to D, and Z)W.
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,/, and //, being two arbitrary quantities.

The expression for Sr in Su which has been found in N". 47, will

ir ^ ,
m' ^ /^^A^N

a ^ 2 \ da J

'

^'Ida') n—n' [. cos.».(«7—nf+f'—
i\[n—7i'y—n'' )

— ni.fe. cos. {nt + £— -3-)

—

m'fe'. cos. («^-|-£

—

-u)

+ ^. m'C.nt. e. sin. (n^+ £—•!!!-)+4. m'.D.nte'. sin. (w^+ £—s/).

+ W.n*S.
!«-1^5+^=^-^^"'

c^'

i*.(w

—

n'y—?z* (j.{n-n')—ny—n*)

(e. COS. (i.(n't—ntAr e'—e) + nt+ i
—-ar)

—?n'.w*.S. :-: 77 r. e'.cos.(i.(w7—nf+ 1'—e) + ?J^+£-5r');
t.(ji—71)—nj —n ^ ^

/andy being two arbitrary quantities depending on^ and J'J.

This value of Sr, substituted in the formula (Y) of N°. 46, will give

h', or the perturbations of the motion of the planet in longitude

;

but it may be observed, that 7it expressing the mean motion of m, the

term proportional to the time must disappear from the expression of

Sv. This condition determines the constant quantity g, and we find

f —— Xn
to — 3"

\ da y

The introduction of the arbitrary quantities f and J', might have

dR
* As nt must vanish from this expression, by substituting for dR andyr.—— their

vdues in the expression for iv given in page 263, and then integrating, the terms involv-

n^ /dAf'>^\ 2m' dA^^
ing vt are Sam'gnt and 2 — . a'nt. i —;— i, hence we will have 3m'g= -—

. a.—j— .

2 \ da ' J aa
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been di!«pensed with, by supposing them to be comprised in the elements

e and s- of elliptic motion ; but then the expression for h\ would have

involved terms depending on the mean anomaly, which would not

have been included in those which are given by the elliptic motion :

now it is more convenient to make those terms to disappear from the

expression for the longitude, in order to introduce them into the ex-

pression for the radius vector
; J] and J] will be so determined as to

satisfy this condition. This being premised, by substituting in place of

a' . \
—

-r-r t Its value —A' '— a. \—-,— f , we sljaii obtaui
i da ) I da S

11—f.(«—n) n—t.{ii—n) \ da J

moreover let JE'*' =r

3^
„ A (0^ i\{n—n').{n^i.{n^n'))—3rn

n—n t .{n—n) —n

PART. I.—BOOK ir. Q Q
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i^«zzi^=l2^. «A«+|-. (n+i(n-n'))-3n^)
n—n

S , /c?AW\ 2n \ 2w^Jgw

r'\ da J'^ 71—
n''

S n^—(71—1.(71—71'))"
'

(i—^).{Qi—l).7ia.A'-'> + (i—l).7ia\ { ^^^ )\ da J
, G«=

2.(n—t.(7i—71'))

2n\D'''^

n''— [71—i.(7i—7i')y
'

we shall have

-a'=^-''\-^)'r-^'^i--\^rLl}^n''
^ ^ i\(n—7i'y—n'

aA'''-'] . COS. i.(n't—nt-\-i'—i)

— 7n'.fe. COS. (7it-\-t—w)— m'.f'e'. cos. (tiI-^-i—w')

i-^m'. C.nt e. sin. («/+£—iir)+iwi'. Z). w/. e'. sin. («?+£—w')

r—

7

7z T^xir-e. cos.(i.{n't-nt+B~()-i-nt+ t-sr)
, ,

jTl (71 1(71—71)) ^ ^
' J '

-f -T—} —, KTi- e'' COS. (i.(7it-7lt-\-i-i)-]r7lt+ i
—

-a-')

7f -(71-1.(71—?z))* ^ ^
-^

2n5.5a*.3-7— f H r- «A"'S /

^ I da i n—71 ) >

.

7«' „ f 71 ,,.,

2 li.[n—7i'y ^
t,

sin. ?.(n'^—??/+£'—i),

+jn'. C.w/. e. cos. (n/+£

—

sy) + rn'D.7it. d. cos. (w^+t—w')

—^!^ ). -. aA('\.±
/ n—n'
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-rr. e. sin. (iJn't—nt+ i'—t) + nt+i— n-) ,n—1.(71—n') ^ ^
' ^'

H 7-7 77. e'. sin. (i.{n't—nt+i—t) + n-{-i—u) '

n—t.{n—71)
^ '

\

in these expressions the integral sign X extends to tlie whole

values of i both positive and negative, the sole value 'f=.0 being

excepted.

It may be observed here, that in the very case in which the series

represented by S.A'''. cos. i.(nt—nt-\-^— i) converges slowly, the ex-

pressions of—, and of Sv, may be rendered converging by means of the

divisors which they acquire. This observation is extremely important,

QQ2

r-r
— •

7- aA(') It will become =zi.^rT,— ?- (a-. —;—
t.(n—n')—n n—n' ^ da- ' 2 \ da

2n „r\ /2«+I\ 2n ^., i.in—n')~3n

U{^ + J^. „A..) + -p}^^ . (aK^+ _i!L,
. axA- £:l!=i>'

V \d»f^n—n' /^ i-(n—n')—n'\ d* ' n—n' I n—n'

nA('' ; now by reducing the two terms which constitute the factor off. cos. i.{n't— /i/+ f

—i)J^nt-\-i—w) in page 296, to a common denominator, it will become = to

{1^.{n—n'f—iin.(n—ri)—2i.(p.[n—n'f+ 2i.n-—iK(n—n'f+ n'—v.(n—n'f-\-2in.(n—n')

(rfA'*' 'In \
a"-—!

f-
7.«A(''» (divided by

(a-. —;
1 ^. aA"A. divided by 2j'.(7i—«')*—«')+ -:; —r- aM*\ ; which is

\ da n—n! I 2.(?i

—

n')

evidently equal to jE'*'.
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because without it it would be impossible to express analytically the

reciprocal perturbations of the planets, the ratio of whose distances

from the sun, differ little from unity.

These expressions may be made to assume the following form, which

will be extremely useful in the sequel ; let

h=: e. sin. w ; li z=. ef sin. •ar'

;

/ :^e. cos. 73- ; I'zz: e. cos. -a/
;

we shall have

a - 6''''{ da J+ 2 '
""

(. K(JiII^fr^-^' ^

cos. i.(n't—nt-\-i'—t)

—m'.{hf-^}if). cos.7?/+£)-m'.(//+/'/0- sin. («H0

^^JL, (l.C+ l'D').nt.{sm.(nt+s)— ^.\ih.C+h'D).nt.cos. («/+0

-T.
—-r-^, ;ttt . sm. (i.(rLt—nt+ t'—0+«^+

?«

—

{ii—.(n

—

zi;)

m \ ?r

>'

iXn—7i'\.(i\[n—ny—n^) )

sin. e.(?z7

—

nt+i— O*

-\-nL{h.C+h'.D). tit. sin. (nt+e) + m'.(l.C+l'.£>). nt. cos. (n/+0

^

—

.;' .. . sin. (i.(n't—nt + t'— + «/ +
n—t.{n-—n) ^ ^

n—t,{n—n) ^
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these expressions of ir and h> being added to the values of r and of v,

relative to the elliptic motion, will give the entire values of the radius

vector ofm, and of its motion in longitude.

51. Let us at present, consider the motion of m, in latitude. For

this purpose let the formula (Z') of N°. 47, be resumed ; and if the

product of the inclinations, by the excentricities of the orbits, be ne-

glected it becomes

the expression for i? of N°. 48, gives, by assuming for the fixed plane,

the plane of the primitive orbit of m,

I
^- ) = —7^ . E. Jjw. cos. t.(nt-r-nt+£—i);

the value of i comprehending all whole numbers both positive and

negative, including i =. 0. Let y represent the tangent of the in-

clination of the orbit of ?«', to the primitive orbit of m, and n the

longitude of the ascending node of the first of these orbits, on the

second ; we shall have very nearly.

z' = a'.y. sin. {7i't+i'—n) ;t

which gives

• When the primitive orbit of m is assumed as the fixed plane, the differential of the

two last terms in the value of R (which is given in page 276) with respect to z, becomes

(when quantities of the order m''- are neglected) the expression which is given in the text.

f When quantities of the higher orders of the inclinations are neglected, we may sub-

stitute for sin. {n't-\-i'—n), the longitude on the fixed plane, and we can also assume the

distance of the planet from the centre of its orbit, equal to the mean distance a', ; under

these restrictions it will readily appear that the tangent of latitude of m' above the fixed plane

= y. sin. (n't+i—n), and v s' = a'.y. sin. (n't+ i'—n).
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—. a'.S.i5(*-".y. sin. (i.(7i't—nt+t'—i) + nt+i—n),

the value of i, in this and the following expressions extending to all

whole numbers, as well positive as negative, the sole value / = 0*

being excepted. The differential equation in $u', will consequently

become, by multiplying the value of ( -r^ j , by n*a^. which is equal

to unity,

= —^-;— + ifJu'—m'.n.—Tz. y. sin. (n't+i'—n)ar a

, m'n'' ,_,,, . ,

H -—
. aa'. B'-'K y. sin. (nt+i—n)

^ g— . ad. Y..B'-''\y. sin.(J.(nV—n/+ /—£)+n^+£-n);

from which we obtain, by integrating, and by remarking that by N".

47, ^5= — a.hi,

^'=—
^f—;f-'

-^' y- «'"• (n'^+f'—n)

* When this value of s' is multiplied into 2. Sl*>. cos. i.^n't—nt 4-'t'— t), it becomes,

when»=l, equal to Bd). sin. («'«— ?!<+ s'—O+w'^+ f"—n)+ 5('>. sin. (n<+i—n), and

whenj = it becomes =5^"'. sin. (/('Z+ t'—n) ; now had this product been expressed

generally .a'.S.BW.y. sin. (j.(w'i

—

nt-\-i'—e)+n<-|.j—11), it would not answer to the

two cases in which jrz:l, and in which i=0; hence we see the reason why this product

is resolved into parts in the expression for \—rj^ and also why the value »=0, is ex-

cepted out of the values of /.

f This difiFerential equation is integrated in the manner prescribed in N°. il.
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2 w — (7i

—

i.{ii-n ))

In order to obtain the latitude of m, above a fixed plane, a little

inclined to the plane of its primitive orbit, naming <p the inclination

of this orbit on the fixed plane, and 9 the longitude of its ascending

node on the same plane, it will be sufficient to add to Ss, the quantity

tan. p. sin. {y—9), or tan. 9. sin. (/jf+i—9), the excentricity of the

orbit being neglected.* Let <p' and 0' represent what ip and 6 become

relatively to /»'. If m moved in the primitive orbit of m', the tangent

of latitude will be tan. ^'. sin. {nt -\- i — 9') ; it will be tan. ip. sin.

(«f+£ — 9), if m continued to move on its primitive orbit. The

difference of these two tangents is very nearly the tangent of the

latitude of m, above the plane of the primitive orbit, it being sup-

posed to move on the plane of the primitive orbit of vi j therefore

we have

tan. (p'. sin. {nt-\-i—S')— tan. (p. sin. (ni+£—9) = y. sin. (nf+f—n).

Let

tan. (p. sin. 9 = p ; tan. (p'. sin. 6' = p'

;

tan. 9. cos. 9 = 9 J
tan. 9'. cos. 9' zz ^'

;

we shall obtain

y. sin. n =. p'— p ; y. COS. FI — / — q ;

and consequently, if s denote the latitude of m above the fixed plane,

we shall have very nearly,

s =. q. sin. (nt -\- i) — p. cos. (?z^ + e)

-. (p'— p). B^^\ nt. sin. (w^+O
m'.a'a'

* This expression for the latitude of m above the fixed plane, which is a little inclined

to the plane of its primitive orbit, is true when quantities of the higher orders are ne-

glected.
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{(j'—q).B''\nt. COS. («^+0

-TT- (;?'

—

q)- sin. (w'/+0

—

[p'—p). COS. (??'/+£'))

-^-^?^;^""'!,,. . sin. (:i.(«7—«/+/—o+n^+o)

+
^;

-^
(d' n\ B^'-" (

52. Let us now sum up the formul;e which we have investigated. If

(r) and (xi) represent the parts of the radius vector and of the longitude

V of the orbit, which depend on the elliptic motion ; we will have

?• — (r)-\-Sr ; v = {v) + Sv;

The preceding value of 5 will be the latitude of rn above the fixed

plane ; but it will be more exact to employ instead of its two first

terms which are independent of wj', the value of the latitude which

would obtain in case that m did not depart from the plane of

ts primitive orbit. These expressions contain the entire theory of

the planets, when the squares and products of the excentricities

and of the inclinations of the orbits are neglected, which we are in

most cases permitted to do. They have besides the advantage of

appearing under a very simple form, which enables easily to perceive

the law of their different terms.

Sometimes it will be necessary to recur to terms depending on the

squares and the products of the excentricities and of the inclinations,

and even on higher powers and products. These terms may be de-

termined by means of the preceding analysis : the consideration which

renders them necessary will always facilitate their determination. The

approximations in which we will have occasion to take them into

account, will introduce new terms depending on new arguments.

These will again reproduce the arguments which the preceding

approximations give, but with coefficients which are smaller and smaller
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according to the following law, which it is easy to infer from the

expansion of R into a series, and which has been given in N". 48 ; an

argument which in the successive approximations is found for the

first time among quantities of any order r, is only produced again by

quantities of the orders r-f 2, r4-4, &c.

It follows from this that the coefficients of the terms of the

form t.
^'"'

[nt + {)> which occur in the expressions of r, r, and s,

are approximate as far as quantities of the third order, that is

to say, the approximation in which we only consider the squares

and products of the excentricities and of the inclinations of their

orbits, will add nothing to their values; therefore they have all

the required accuracy ; this observation is the more important,

in as much as the secular variations of the orbits depend on these

coefficients.

The different terms of the perturbations of r, v, s, are comprised

in the form

k. ^^^^'ii.(nt—nt+B—i) + r7it+ri) I,

r being either a positive integral number, or equal to cypher, and k

being a function of the excentricities and of the inclinations of

the orbits, of the order r, or of a superior order : we are enabled

by means of this, to determine of what order a term depending on a

given angle is.

It is manifest that the action of tiie bodies nf, m"', &c., only

cause to be added to the preceding values of r, v and s, terms

analogous to those which result from the action of iri, and that if

we neglect the square of the perturbating force, the sum of all

these terms will give the complete values of r, v and *•. This fol-

PART I. BOOK II. U R
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lows from the nature of the formula; (X'), (Y') and (Z'),* which

are linear with respect to quantities which depend on the perturbat-

ing force.

Finally, we shall obtain the perturbation of m', produced by the

action of m', by changing in the preceding formulae, a, n, h, I, i,

nr, p, q, and m', into a', n', h', I', i', txt', p, q, and m, and vice versa.

* When quantities of the order of the square of the perturbating forces are neglected,

the formulae X', Y', Z, are linear with respect to the perturbating force, from which it

follows, that the variation of the sura is equal to the sum of the variations.
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CHAPTER VII.

Of the secular inequalities of the celestial motions.

53. The perturbating forces which disturb the elliptic motion

introduce into the expressions of r, —t— and of s, which are given in the

preceding chapter, the time without the signs of the sine and cosine,

or under the form of arcs of circles, which increasing indefinitely,

must at length render these expressions erroneous ; it is therefore es-

sentially necessary to make these arcs to disappear, and to obtain the

functions which produce them by their expansion into a series. There

has been given for this object, in the fifth chapter, a general method,

from which it follows, that these arcs arise from the variations of the

elliptic motion, which are then functions of the time. These varia-

tions being performed with extreme slowness, have been termed

secular inequalities. Their theory is one of the most interesting

points in the system of the world : we proceed to present it here, in

all the detail which its importance requires.

By the preceding chapter we have

1 — h. sin. (nt+i) — /. cos (nt-\-i) — &c."

r -^z a.

7H
+ -y-. (/. C-\-l.D).nt. sin. {nt-\-i)

f

771——. Qu C-\-h'.D).nt. cos. (7it+e)i-m'S.

-^ = n+2n/?. sin. {nt-\-i')-\-2nL cos. (nZ-j-O+^c-

R R 2
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— 7n'. (LC-\-t'D).n*t. sin. (nt+i)

+ m'.(;?.C+A'Z)).n*/. COS. (nt+i)+m'.T;

s •=. q. sin. {nt-^i)— p. cos. {nt-\-i)-\- &c.

——. a*,fl'.(/— _p).JB'". nt. sin. (w^+ i)

m'_I!L , a\a'.{q'—q-).B^^\nL cos. (nt-\-t)+m'.x ;

'V, T, %, being periodic functions of the time t. Let us at first

consider the expression of —rr, and compare it with the expres-

sion of y of No. 43. As the arbitrary quantity n multiplies the

arc tt under the periodic signs, in the expression for —y- ; we must em-

ploy the following equations, which have been found in N°. 43,

0=X' + 9. X^-'— F;

= F + 9. Y"-irX" — 2Z ;

let us consider what X, X', X", Y, &c. become in this case ; the

fit)

expression of —j— , being compared with that of ij of the above cited

N". gives

X zz n-\-^nh. sin. (nt + + 2^^- cos. (nt+i) + m'. T ;

Y = m'.n\(h. C+h'D). cos. (nt+s')—m'?i\(l.C+l'.D). sin. (nt+i).

The product of the partial differences of the constant quantities,

into the disturbing masses being neglected,* which we are permitted

* Since the product of the partial differences of the constants into the disturbing

masses are neglected, it will not be necessary to take into account the periodic function

m'.T; the second and third terms of the value of A' involve 7if under the periodic signs,

.'. differencing the arbitraries contained under the signs with respect to n, we obtain the

value of X", which is given in the text.
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to do, because these differences are of the order of the masses, we shall

have bv N°. 43,

X'= (^y (l+2A.sin.(«^+0 + 2/. cos.(«/+i))

+2w. {-k)'(h. cos. {nt-\-t)— /. sin. {nt-\-t))

->r^n.(~y sin. (72/+0 + "^n-l^jA . cos. (n/+0;

X'^'in. (^). (A. cos. {nt+i)— l.sm.{nt+i)).

The equation O = X' + 0. X''— F, will consequently become

-
( ^^) . (1+ 2^. sin. (w^+0+2Z. cos. (jit+t))

4-2W. [
—

j . sin. (wf+f) + 2n.
( ;jq ) • cos. (n/+0

+^''-^- {%)'^ ^^)|.(/^cos.(«^+0-/.sin.N+0)

—m'.n\{h. C+h'.D). cos. (?z^+ H- m'.w*.(/. C+/'.Z)). sin. w/+ f),

.

The coefficients of the corresponding sines and cosines, being put se-

parately equal to nothing, we shall have

If these equations be integrated, and if in their integrals, 6 be

changed into t, we shall have by N°. 4o, the value of the arbitrary
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quantities, in functions of t, and we can efface the arcs of the circic

from the expressions for -5— and for r, but instead of this change we

can all at once change 6 into t, in these differential equations. Tlie

first of these equations indicates that n is constant, and as the arbitrary-

quantity a of the expressions for r depends upon it, in consequence of

the equations ?z^ rz -y ; a is likewise constant. The two other equa-

tions are not sufficient to determine h, /, i. We shall have a new

equation by observing, that the expression for -j—
,
gives by integrat-

ing, fndt, for the value of the mean longitude of m ; but we have

supposed that this longitude is equal to nt-\-i ; therefore we have nt+i

=.fndt, which gives

dn , dt ^

and as —^ = ; we shall have also -^ = O. Thus the two arbitrary
dt dt

quantities n and i are constant ; the arbitrary quantities h and / will

be consequently determined by means of the differential equations,

^^' "^'-^

il C+l'.D); (1)
dt 2

dl m'.n

dt~ "1
(Ji.C+h'.D); (2)

dxi

The consideration of the expression of—7— being sufficient to deter-

mine the values of n, a, h, /and i; we may perceive a priori, that

the differential equation between the same quantities, which results

from the expression for r, must coincide with the preceding. We may

be easily assured of this a posteriori^ by applying to this expression the

method of N°. 43.
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Let us now consider the expression of s. By comparing it with the

expression of 1/ in the N°. already cited ; we shall have

X — q. sin. (nt+i)— p. cos. (nt+ e)+W. x

Y=-^ . a\a'.B^^\{p—p'). sin. (nf +

«2 71

+ —f-. a^.a'.B^'KCq—q'). COS. (nt+t).
4

n and i being constant, as is evident from what precedes ; by N". 43,

we have

X^' = O.

The equation = X'+ 6. X'^— Y consequently becomes,

"*'"-.
a*a'. £'''. (p—p'). sin. (wM-

^ . a\a'.B^'\ (?—?')• cos. (wf+t)

;

4

from this we deduce, by comparing the coefficients of corresponding

sines and cosines, and by changing fi into /, in order to obtain p and q

directly in functions of t,

±.^-.I!^.a^.a'.B^Kiq^qr, (3)

^ =_^. a^a'. JS<'> (;,-/); (4)

After that p and q shall have been determined by these equations, if

we substitute them in the preceding expression of s, by obliterating

the terms which contain the arcs of a circle, we will have

4

m'.n
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s := q. sin. (w^+O—'i'-cos. {nl-\-i)+m'. ^.

dn
54. The equation —rr "= 0, to which we have arrived, is of great

importance in the theory of the system of the world, in that it indi-

cates that tlie mean motions of the heavenly bodies, and the greater

axes of their orbits are invariable ; but this equation is only accurate

as far as quantities of the order in .li, inclusively. If quantities of

the order m!Jf , or of the superior orders, would produce in

dv
--TT, ii term of the form* ^kt, k being a function of the elements of

the orbits of m and of rn' ; a term of the order kf would be produced

in the expression of v, which by changing the longitudes of m, pro-

portionably to the square of the time, would at length become ex-

tremely sensible. The equation —7— zz 0, would no longer obtain,

but in place of this equation there would be obtained by the preceding

dn
number —j- zz 9,k ; it is therefore of importance to ascertain whether

there exists in the expressions for v terms of the form A/*. We proceed

to demonstrate that if we only consider the first power of the disturbing

masses, however far we extend the approximations relative to the

powers of the excentricities and the inclinations ot the orbits ; the ex-

pression of w will not involve terms of this kind.

For this purpose let the formula (X) of No. 4-6 be resumed.

Sr=
a. cos. v.fndt. r. sin. v. j2jdli-^ r. );t^( f

f* Vi-

* If the value of n contained a term of the order kt°, there would exist in the exjn''esfion

dv

~dt
of --3-, the term 2kt, and consequently this term would exist in A', so that in comparing

coefficients ofcorresponding terms, we would have -7- = 2i.
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— a. sin. v.fndt. r. cos. v. \9,fAR-\-r. \ --r-\\

Let us consider the part of Sr which involves terms multiplied by t*,

or for greater generality, let us consider the terms, which being mul-

tiplied by the sine or cosine* of the angle a,t+ €, in which « is very

small, have at the same time a* for a divisor. It is evident that n

being supposed =0, there will result a term multiplied by f*, so that

the first case is contained in the second. The terms which have a*

for a divisor can only be produced by a double integration j therefore

they must be produced by the part of Sr, which involves the double

integral signy^ Let us first examine the term

2a, cos. v.Jndt.{r. sin. vfAK)

The origin of the angle i being fixed at the perihelion, we have in the

elliptic orbit, by No. 20,

a.n—e*)
rzz ^^ ^—.

1 -\-e. cos. V

and consequently

COS. V=.—^ — :

er

hence we deduce by differencing

r''.dv. Sin. v =. —i: — dr ;t

PART I.—BOOK II. S S

• K must be very small, because the sine is supposed to increase with great slowness ;

it is evident that if a be supposed equal to nothing, the double integrations would produce

a term proportional to the square of the time.

, . — enrfr— e.a.((l—«')+r). </r a.(l—e')
_,

f — dv. sin. i> = j-^
i-i—

i

= - —'
. dr.
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but by No. 19, we have

y-^.dv = dt's/iJ^a.(l—e*) = a*.ndt.^\—e* ;

consequently,

andt. r. sin. v rdr

x/l—e' e

„, ^ 2a. COS. v.fndUr. sin. v.fdR) ... ,, - ,

The term =^

—

.
^ ^^-

—

-, will therefore become

2. COS. ^
^y(^^^,y^^)^ or -^^^^. (rS/d«—/r*.d/J).

It is evident that as this last function does not contain any double

integrals, there cannot arise any term which h^s as* for a divisor.

Let us now consider the term

gfl. sin, vfndt. (r. cos. v/diR)

w.v/l

of the expression of Sr. By substituting for cos. u, its preceding value

in r, this terra becomes

g. sin. v.fndt.{r—a.(l—g*))./'dj?

By N°. 22, we have

;^' being an infinite series of the cosines of the angle nt + t, and its

multiples j therefore we shall have

Jj^. (r—a.(-e')).fdR= a.fndt.Qe-i-x:).fdR.*
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Denoting by x '^^ integral fxndtt we will have

a. ffidt.Qe + x')f^R= h^'fndt.f d/^+ax^'/d^ — «•/ x"- dh.

As these two last terms do not involve the double sign of integration,

no term which has a* for a denominator can arise from it ; therefore if

we only consider terras of this kind, we will have

2a. sin. v./ndt.{r. cos. v.fdR _ 3rt^.e. sin. v.fndt.fdR

= -^.—'fndt./dRi -

nai f*

and the radius r will become

dr

w+(i^)-v-^"*-^'"'^

(dr \ dr

—f- ) being the values of r and —-rr in the case of elliptic

motion. Thus, in order to consider in the expression of the radius

vector, the part of the perturbations, which is divided by a*, it will

be sufficient to increase the mean longitude 7it -\- t, by the quantity

—./ndt.fdR, in the expression for the mean longitude in the case of

the elliptic motion.

Let us now examine whether this part of the perturbations should be

taken into account in the expression for the longitude v. The formula

( F) ofN°.46, gives by substituting — . —^. J ndt.fdR in place of ir,

when the terms divided by a* are only considered

( 2rd'r-\-ar' ^

LZE^LA.^. /ndt./dK;

ss2
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but by what goes before, we have

ae.ndt. sin. v
$r= /

— : r*dv — a^ndU s/

\

—e*
;

hence it is easy to conclude, by substituting for cos. v^ its value, which

has been already given* in terms of r

rd'r-{-dr* i^rd'r+dr''
—1-15.

dv

v/l—e* ~ ndt '

therefore if we only consider the part of the perturbations, of which

the divisor is a*, the longitude v will become

(y) and ( -^ j being the parts of v and of —-r- which are relative to

- r.ae.n.dt. COS. v.dv ,, , . . - (a.(o.(l

—

(r)—r).ndt.dv
r,a^,r= .

—— equal by substituting for cos. v ; y== ,

vl

—

e- VI—er

2rd"r ^a'.ndtVl—e". dv 2ar.ndt.dv , „ a"e'n^dt'

aVdtWl—e'- a"n'dtWT^~ (\—e').ahi'dt-
'

1-

(aVn-'rft'. {a'.{l-eY—2ar^l~^)+ r-) .
dr^ _f_ aWT-

2a 1 , 2rd°r+dr^ _ 2dv 2rdv e'

"^ rVuI? (1—e')i '

*

' ~~^iW~ - l[dt
~ {\—r)andt "^ (1—e*)!

aWT^ .2a 1 1 2rdv lanow--—-^j-—J- +

_ 2r^dv+2a^ndt.Vu^ « ,
«' . ^ 1 „ .—— =0, and_=r s + —r=^=- s =0. ••since

o«Vl

—

er dv dv
-J

=
-J-, the preceding expression becomes equal to—-j-

.
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the elliptic motion. Therefore in order to consider this part of the

perturbations in the expression for the longitude of m, we should follow

the same rule as we have given, when considering the expression of the

radius vector, that is to say, it is necessary to increase in the elliptic

expression of the true longitude, the mean longitude w^+ £ by the quan-

tity .fndt.fdiR.

The constant part of the expression for ( —j-
j

, being expanded into

a series of the cosines of the angle nt-\-i and of its multiples, is reduced

3fl
to unity, as we have seen in N". 22 ; hence arises the term —. fndU

/d-R in the expression for the longitude. If d/? contains the con-

stant term km'.ndt, this term would produce f. . k.v^fy in the

expression for the longitude v. Therefore in order to ascertain whe-

ther such terms exist in this expression, we must consider whether &.R

contains a constant term.

When the excentricities of the orbits and their mutual inclinations

to each other are small, R can be reduced always into an infinite series

of the sines and cosines of angles proportional to the time /. They

can be generally represented by the term km, cos. {int-\- int -f A),

i and i' being integral numbers, either positive or negative, or equal to

cypher. The differential of this term taken solely with respect to the

mean motion of m, is -^ikni.ndL sin. [i' >i' t + i7it+ A) ; this is the part

of dR, which is relative to this term : it cannot be constant unless we

have O =1 i'nf+ in; but this supposes that the mean motions of the

bodies m and m' are commensurable with each other ; and as this is not

the case in the solar system, we ought to infer from it, that the value

of dR does not contain constant terms ; and that consequently if we

only consider the first power of the perturbating masses, the mean

motions of the celestial bodies are uniform, or what comes to the
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same thing, -j-= 0. The value of a being connected with that of n,

by means of the equation w* = — ; it follows that if we do not take

into account periodic quantities, the greater axes of the orbits are

constant.

If the mean motions of the bodies m and m', though not exactly

commensurable are very nearly so ; there will exist in the theory of

their motions, inequalities of a very long period, and which may be-

come very sensible, on account of the smallness of the divisor a*. We
will see in the sequel that this obtains in the case of Jupiter and

Saturn. The preceding analysis will give in a very simple manner,

the part of the perturbations which depend on this divisor. It follows

from it, that then it is sufficient to make the mean longitude nt+i or

fndt vary by the quantity . fndtAR ; which comes to make n,

in the integral fndt, increase by the quantity . J'dB ; the orbit
/*

of m being considered as a variable ellipse, we have n* zr -^; therefore

the preceding variation of n must introduce in the semiaxis major of

the orbit, the variation* — .

If in the value of --^— we carry the approximation as far as quantities

of the order of the squares of the perturbating masses, terms proportional

to the times will arise ; but by attentively considering the differ-

ential equations of the motion of the bodies m, m', m!', &c. j it

will readily appear that these terms are at the same time of the

order of the squares and of the products of the excentricities and of

_ . . o A* , . 2nn*dn , . .
San , , r> r

• From the equation «' = -V we have da = substituting . Jan for

a^ -V ft

dn, and we have da = = /<!-"•
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the inclinations of the orbits. However, as every thing which affects

the mean motion, may at length become very sensible, we will con-

sider in the sequel those terms, and we shall see that they produce

the secular equations which have been observed in the motion of

the moon.

55. Let us now resume the equations (1) and (2) of No. 55, and

let

V Tn'7iC ,
I

tn'.n.D
(0,1) = —; 12l1} = —^ ;

they will become

^ = (0,1)./-[o:T]./';

The expressions of (0, i ) and of [oTI] ^^Y ^^ determined very simply

in the following manner. By substituting in place of C, and of D,

their values, which have been determined in N°. 50, there will be

obtained

(o,l)=-_.).^(-^j^-i«^ (^^j(j
__- m'.n C .,„ , /dA('>\

, ,
/d'A^'^\

)

By N°. 49, we have

we will readily obtain by the same N". —r^> -
, ^ , in functions of bf\

d(x, da,

and of 6^"; and these quantities are given in linear functions of b'^^, and

of 62', ; this being premised we shall find
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therefore

(0,1)=
S,m'.n.oi.\h%^

4.( !_«»)» '

let

(a*~2aaf. cos fl f flf'*)* = (o, a') + (a, a )'. cos. e+(a. a'")*, cos. 2fi+&c.

by No. 49, vve shall have

(aa') = ifl'. Z.l!i
;
» (a,ay = {a'.b%), &c.

therefore we shall have

consequently by N". 49, we obtain

by substituting in place of b'^^ and of its differences, their values in b'^,

and b!^, the preceding function will be found equal to

((l+c.^).b<2lH-'b^V
.

(1—a )

therefore

L2LJ.J-— 2.(1'^—«^)*

or

we shall obtain by this means very simple expressions for (0, 1) and for

[0. '1, and it is easy to conclude by the values in a series for b'l\, and

for b''2\, which are given in N°. 49, that these expressions are positive,

if w be positive, and negative, if « be negative.

Naming (0, 2) and [oTi] what (O, 1) and [±J] become, when a' and

m' are changed into a'" and w", and in like manner let (0, 3} and [oTs"]

represent what these same quantities become when a' and m' are changed

into of" and mf^' ; and so on. Moreover let A'-', f, h'', I", denote what
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h and / become relative to the bodies m'', m"', &c. ; we shall obtain

in consequence of the combined actions of the different bodies m', m",

vr\!", &c. on m,

^ = ((0, 1) + (0, 2) + (0. 3) + &c.)). ^-[orr].r- [aj]./'"- &c. J

^=—((0, l) + (0, 2)+(0, 3)+&c.). A+[orT].A'+[al].;/''+&c..

.^ ^ dK dl' dM dl' , -u u i . • au
It IS manifest that —j-, —j-; —rr>-7r> &C'> ^"^ be determined by

G^ dt dt dt

expressions similar to those of -^ and of -5-, and that it is easy to

infer them from the preceding by changing successively, that which

is relative to m, into that which refers to rnf, m'', &c., and vice versa.

Let therefore

(1,0), [O]; (1,2), [O]; &c.

be what

(0. 1), [O] ; (0, 2), [o;j]
; &c.

become when we change in them that which is relative to m, into that

which is relative to m', and conversely ; let also

(2, 0), [ro]
; (2, 0, CEI] ; &c.

be what

(0,2), [oTT]; (0,1), [2:1]

become when that which is relative to m, is changed into that which is

relative to m', and conversely, and so of the rest. The preceding

PART I. BOOK II. XT

• In this case (1—2a. cos. l+a^)—= (1—2a. cos. e+a^)K •.• s = —i; see page 278;

•.• the first terra in the expansion of a'-^.(l

—

2a. cos. S+o*)-' becomes (when 4 = — ^.)

a'.i'^l, and the coe£Scient of cos. i = o'.Jt"..
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diflPerential equations referred successively to the bodies m, m', n^',

&c. will give for the determination of h, I, h, I', h'\ I' , &c. the follow-

ing system of equations,

-^=((0, 1 )+(0, 2)+(0, 3)+&c.).^[0]./'-[ai].f-[0].r-&c.
^

-^=-((0, 1 )+(o,2)+(o,s)+&cO.A+[§3]A'+[^l.r+[or|].r'+&c.

-^=((l,0)+(l,2)+(l,S)+&c.)/'-[k£].KiII].^HlII].^"'-&c.

M' — /;(A)
^=-{(i,o)+(i,2)+(i,3)+&c.)A'+[iZo].H[i^].A'''+[r3]-^i"+&c.r
CIS

f-=((2,0)+(2,l)+(2,3)+&c.)^H!;i]-K!li]-KIi]-^"-&c.

—=-((2,0)+(2,l)+(2, 2)-^kc.)¥-{{J^'\ .H[5rT].A'+[2r|].A''"+&c.

The quantities (0,1) and (1,0), foTT] and [ITo] have remarkable

relations, which will very much facilitate the computation, and which

will be useful in the sequel. By what precedes we have,

- _ Srn!.na^ .a'.{a, a')'

If in this expression for (0, l), m' be changed intonj, n into n, a into

a', and vice versa; we shall have the expression of (1,0) which will

be consequently

3'm.n'a"'.a.{a'. a)'

4(a'*—a*)*

but we have (d, a)' = (a| a')', because each of these quantities results

from the expansion of the function (a*—2aa'. cos. fl+a'*)* into a series

arranged according to the cosines of the angle 6 and of its multiples j

therefore we will have

(0, 1) m.n'a' = (1,0). m\na

;

(1,0) = ~ ,,...,. ,
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but, when the masses m, and m', &c., are neglected with respect to M,

therefore

(0, \).m.^a =(1,0). m'.\/^j

by means of this equation we can easily obtain (1,0) when (0, 1) will

be determined. In like manner we have

[oTTl m.s/a = [iTo] m'.k/a!.

These two equations will also subsist when n and «' have contrary

signs ; that is to say, when tlie two bodies m and m' revolve in contrary

directions ; but then we must give the sign of n to the radical \/a,

and the sign of n' to the radical i/«'.

The following equations result evidently from the two preceding

:

(0,2) m.\/a — (2,0) m'.y/a!'
\

[oTa"] OT.\/a — [JTo"]. m".\/a" ; &c.

(l,2)TO'.\/a = (2, \)m".K/a!'; \TJ]m'.s/a' z=\TT]. m\s/7^' ; &c.

56. Now in order to integrate the equations (A) of the preceding

number, let

h = N. sin. (gt-i-^) i
I z=N. cos. (gt+Q) ;

h' = N'. sin. (gt+S) ;
/' = N\ cos. (gt+S) ;

these values being substituted in the equation (A), will give

Ng = ((0, l)+(0, 2)-h&c.).A^— [oTT]. iV'_[or^] N''^ &c.\

N'g= ((1, 0)+(l, 2)+&c.).A^'—[ITo]. N'—lT7r\. A''"—&c. V; (B)*

A^'g-=((2,o)+(2, i)+&c.).N'—iro]. N—\jrr]' A'— &c.)

&c.

T T 2

* In general, the number of these algebraic equations is equal to that of the coefficient!
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The number of bodies m, m', fvi', &c., being equal to t, the

number of these equations will be also i, and by eliminating the

constant quantities N, N' &c., we will have a final equation in

g, of the degree i, which can easily be obtained in the following

manner

:

Naming p the function

N\ m.\/a.(g—(0, l)-.(0, 2)—&c.)

-[.N"m'.\/^'.(g—{l, 0)—(1, 2)~&c.)

-f-&c.

J-2N. »J.v/a.([orT]. iV'+[on;]. N^'^kc.)

+ &C. *

In consequence of the relations which are given in the preceding

number, the equations (B) are reduced to the following f -r^ j =r ;

(^,)=0j (^^A =0, &c,; therefore N, N', N\ &c. being

considered as so many variables, (p will be a maximum. Moreover, (p

being an homogeneous function of these variables of the second di-

mension ; we have

therefore in consequence of the preceding equations, <p zzO.

Now, we can determine in the following manner the maximum of the

function <p. First, let this function be differenced relatively to N, and

then substitute in q>, in place of N its value deduced from the equation

N, N', &c. ; by means of the operations performed on the function gi, the ratio of these

coefficients is obtained ; one of them remains undetermined.
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( -TTv 1=0; this value will be a linear function of the quantities N',

N'\ &c. ; in this manner we shall obtain a rational function^ which is

both integral and homogeneous, of the second dimension in A^', N",

&c., let ?i''' be this function. By differencing <p'" relatively to N', and

by substituting in p''^ in place of N^^^ its value deduced from the equa-

tion ( -rx^, j =0 ; we shall obtain an homogeneous function, which will

be likewise of the seconJ dimension in N", N"', &c. let ?>® be this func-

tion. By continuing this operation, we will arrive at a function (p*'~" of

the second dimension, in iV~", and which will consequently be of the

form (A'^ ""'')*. /i ; A- being a function of ^, and of constant quantities.

If the diiferential of ip''~'^ taken with respect to A''~", be put equal to

cypher, we shall have A: = ; this will give an equation in g of the

degree ?', of which the different roots will give so many different

systems for the indeterminate quantities N, N', N", &c. ; the inde-

terminate N^'~\ will be the arbitrary quantity of each system, we shall

obtain immediately, the ratio of the other indeterminate quantities

N, N', &c, of the same system to this, by means of the preceding

equations taken in an reverse order, namely

Let^, g^, gi, be the i roots of the equation in g\ let N, N', N\
&c. be the system of indeterminate quantities relative to the root g

;

let N, N,', Nl', &c. be the system of indeterminate quantities relative

to the root g,, and so on of the rest : by the known theory of differ-

ential linear equations we will have

hzzN. sin. {gt-\-^)+Ni. sin. (^z+ej+iVj. sin. {git-\-^d + &c-
;

h'=zN'. sin. {gt-\-V}+N^. sin.C^-^+ej-hiV^s'. sin. {g^t-ir^i) + &c.
;

;/''=iV'''.sin.(^?-fe)4-iV/.sin.(^/-fe,)+A7.sin. (^2^+60)+ &c.

;

&c.
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?, Si, ^2, being constant arbitrary quantities. The values of /, t, I",

&c. will be obtained by changing in the expressions for h, h!, h", &c.

the sines into the cosines. These different values contain twice as

many arbitrary quantities, as there are roots g, gi, gi, &c. ; for each

sj'stem of indeterminate quantities contains one arbitrary quantity, and

besides, there are i arbitrary quantities S, Si, 62, &c. ; these values

are consequently the complete integrals of the equations (A) of the

preceding number.

It is only now required to determine the constant quantities N, iV,

&c. N', Nf. &c. €, C',, &c. These constant quantities are not given

immediately by observation ; but they make known at a given epoch,

the excentricities e, e. &c. of the orbits, and the longitudes -sr, ts', &c.

of their perihelions, and consequently the values of A, h\ &c. /, /, &c ;

thus we shall derive from them the values of the preceding constant

quantities. For this purpose it may be observed, that if we multiply

the first, third, and fifth, &c. of the differential equations (A) of the

preceding number, by Nm.\/a, N'rd,\^d, &c. respectively, we will

have in consequence of the equations (B), and of the relations found in

the preceding number, between (0, l)and (1, 0), (0, 2) and (2, 0), &c.

^^ dh ,. ^ dh' ,- d¥ ,-
N. -^. mVa +N'. -^. rd.^d +N". -g^. id'.^/a!' + &c.)*

— g. (N.l. mVa + N'J.77i.\/7+N''J'.m"V7' + &c.)

* Multiplying the first of the equations (A) by N.m.Va, and the third by N'.m'.'t/a',

we shall obtain by adding them together,

_, dh ,_ dh' _ -

~dt-
"''^'^

'^^'•'dT- "''•'V^«' = (0- 1) + (0, 2) + (0, 3) + &c.) l.N.m.Va—
[ori].Z'.Mj«.Va — &c. +{(l,0)+ (l,2)+(l,3) + &c.) I'.N'M'Wd — [iTo]. /.JV'.m'.

Vl' — &c. = (as [i5n].m.v/5 = [M] m'.Va',) UiW^'a. ((0, 1) + (0, 2) + (0, 3)

-f- &c.) iV_ [oTT]. iV' _ &c.) + V.rri- VI'. ((1, 0) + (1,2) + (1, 3) + &c. M
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By substituting in this equation, in place of //, fi, K', &c. /, t, I", &c.

their preceding values ; we will have by comparing the coefficients of

the same cosines,

0=JV.2V,.mVa+iV^'.iV;.m'.v/7+iV",iV;'.w"Va^'+ &c.

;

0=N.N^.m-y'~a + N'. No'.m'V^ + N".NJ'.m"Vd' + &c.

&c.

This being premised, if the preceding values of h, h', &c., be multiplied

by N.m.^/a, N'.m'.^/a', Scd, respectively, we will have in consequence

of these last equations,

N.mh.^/a + N'.m'h'.s/'^ + N".m"h".^^'d' + &c.

zz{N\m.\/a+ N'\rn.\/a + N"\m".y/'a" H-&c.). sin. {gt-\-%).

we shall have in like manner,

N.ml.\/a-\-N'm:i'V^ + N".m"r.s/'^ + &c.

={N\m.K/a-{-N'\m'.^/7-{- N"\m!'.s/7' + &c.) cos. {gt-\-^).

The commencement of the time being fixed at an epoch, for which

the values of h, I, h', I', &c. are supposed to be known ; the two pre-

ceding equations give

— [liO]. JV— &c.) = (iV./m. Va. + N'.l'm'.>/a'. + &c.) g; now by substituting for

dh dh'

•^+-^+&c. /, /', &c, we obtain; m.Va. (m.g. cos. (gt-\-Z)+ NNg,. cos.(g/-|-e,)-|-

NN^g;,. cos. {g,tJf.Z^))+ &c. +nt'.v/a'. (N'^.g. cos. (gt+Z) + N'N.'.g,. cos. (g,t+ Z,) +
NN\.g,. cos, (gj +e,)+&c.) =g)N~. mVa. cos. {gt + €) + iVA^, cos. (g^ + g,) +
NN'2- cos. (g,<+e,) + m'Va'.N'^. cos. (gt+ <^) + N'N,'. cos.{g,t + €) + N'N',. cos.

{gtt+ ^2)+ &c.) From hence it follows, that in order for this equation always to obtain,

we must have NN,mVa+ N'N;.m'.^/a' + &c. — 0.
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tan. e= N.hn.\/a + WM.m'.^/d'-'r N".k"m''.s/a:'+8ic. *

NJm,K/a+ N'.l'.m'.x/7+N".l"m"Va"+ &c.

This expression of tan. 6 does not contain any indeterminate quantity ;

for although the constant quantities N, N', N", depend on the inde-

terminate quantity N^'-^'> ;
yet, as, their ratio to this indeterminate

quantity is known by what precedes, it must disappear from the tan.

e. e being thus determined, we shall obtain iV^'~", by means of one of

the two equations which determine tan. €, and from it we infer the

system of indeterminates N, N', N", &c., relative to the root g.

And if in the preceding expressions, this root be successively changed

into gi, gs, gs, &c., the values of the arbitrary quantities relative to

each of these roots will be obtained.

These values being substituted in the expressions for h, I, K, I', &c.

the excentricities e, e', &c. of the orbits may be deduced from them,

as also the longitudes w, z/, &c., of their perihelions, by means of

the equations

e* = /«* + l" ; e" = h*'-\-l" ; &c.

h , h'
tan. w r:

-J ; tan. sr — —p- ; &c.

thus we shall have

e\= N' + iSTj* + N^'' + kc+QNNi. cos. ({gi—g).t+€i~-t)*

- +2NN,. cos. ((g,—g).i+t,^Q-)+^N,N,. cos.(5-2—gi).^+e2—e)+ &c.

This quantity is always less than (^N + A^, + N„+ &c.)*, when

By fixing the origin at the epoch when h, h', I, I', &c. are known, gt vanishes, there-

fore the coefficients of N.m.Va \- N'^.m'.*/a' -{- &c are sin. 6, cos. S.

• The coefficients by which 2NN is multiplied in the values of A'+f are sin. (gi+€).

sin. (g,t + €,), COS. (gt + S). cos. {gf +€ ,), and the sura of these two = cos. {g,
—g)

.

*+ £,—£).
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the roots g, g„ &c., are all real and unequal, the quantities N, N„ &c.,

being supposed to be positive. In like manner we shall have

N. sin. (g-/.+g)+AV sin. (g-tif+gi)+ JV„. sin. (g.^+ e„).f &c.

N. COS. (^gt-\-^)-^Ni. COS. (^git-\-^i)+N2' COS. (g2^+fo)+ &c.
'tan. -azz

hence it is easy to infer

AVsin.((g.—g)./-fg.-€))+.Vo.sin.((gc-ff).^+e,-g))+&c.
im.^-^:-^ f-6;_

^^^^^ cos.((^'-i-5-). ^+e,-e)) +A^o. cos. ((-2--). ^+e,-e))+&c.*

When the sum A^, +iV"j, +&c. of the coefficients of the cosines of tiiis

denominator, taken positively, is less than N ; tang, (w

—

gt—S) can

never become infinite ; therefore the angle ra-

—

gt—g can never attain

the fourth part of a circumference ; so that in this case, the true mean

motion of the perihelion is equal to gt.

57. From what precedes it follows, that the excentricities of the

orbits, and the positions of the greater axes are subject to considerable

variations, which change at length the nature of these orbits, and as

their periods depend on the roots g, g , gt, &c., they embrace relatively

to the planets, a great number of ages. The excentricities may therefore

be considered as of variable ellipticities, and the motions of the peri-

helions as not altogether uniform. These variations are very consider-

PART 1. BOOK II. V U

^ r^ , , »v> tan. ar—tan. (ff<+ S) h , .,
* Tan. izr—{st-\-i)) = —; l^-i-;s,= -, tan. (gtJ^^)

V \& -r Ji
l-f-tan. a-. tan.(^4-€)

J_ -
l+y.tan.(^/+e)

A. COS. (f<+£)— /. sin. (rf+?)
, ,../.,.,.. , ,,

, ,;—r—^—^-^5r> no«' by substitutine for h and / their values, and observ-
/. cos.(^+£)+A. sin. (^<+e)' •' ^

ing that sin. (g«+S). cos. (^;+g,)— sin.(g/+Q. cos.(g<+€)=sin.((g,— g). t + (?,—£)),

the numerator of this fraction becomes A', sin. {gt + £). cos. (gi+ S)+ -^^z-
sin. (gf+ £,). cos.

{gt-\-Z)Jr &c— iV. sin. (gt + £). cos. {gl+ <i)—N,. sin. fgt+€). cos. {g,t +€,)_ &c. =
y,. sin. {(g—g). <+ (S'—€)+N„. sin. (gi,—g). t + (C„—€)) + &c., and the denominator

becomes N. sin.' (^+ €) + N. cos.^f^+g) + A'^ sin. (g<+ g). sin. {gjt +€,) + N,. cos.

(^+£) . cos.(^;+€,)+&c. =:N-\-N, cos. (g-g). <+(£—£,) + &c.
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able in the satellites of Jupiter, and we shall see in the sequel that

they explain the remarkable inequalities which are observed in the

third satellite. But are there limits to the variations of the excentri-

cities, and do the orbits always differ very little from circles ? It is of

great moment to investigate this question. We have already observed,

that if the roots of the equation in g, are all real and unequal, the ex-

centricity e of the orbit of m is always less than the sum N+N-1+ N^-^-

&c. of the coefficients of the sines of the expression for h, taken posi-

tively ; and as these coefficients are supposed to be very small, the value

of e will be always inconsiderable. It is therefore evident, that if we

only consider the secular variations, the orbits of the bodies ?», m\

m", &c. will undergo slight changes in their compression, deviating

inconsiderably from the circular form ; but the positions of the greater

axes will experience considerable variations. These axes will be always

of the same magnitude, and the mean motions which depend on them

will be always uniform, as we have seen in N". 54. The preceding

results, which are founded on the small excentricities of the orbits, will

invariably subsist, and maybe extended to future and past ages ; so that

we can affirm, that at any assigned period, the orbits of the planets

and of the satellites have not been very excentrick, at least, if we only

consider their mutual action. But this would not be the case if any of

the roots g, gu gi- &c., were equal or imaginary : the sines and cosines

of the expressions of h, I, fi', I', &c, corresponding to these roots, will

then be changed into arcs of circles, or into exponentials ; and as these

quantities increase indefinitely with the time, the orbits will eventually

become very excentrick ; the stability of the planetary system will then

be destroyed, and the results to which we have arrived will cease to

have place. It is therefore very interesting to determine whether the

roots g, gi, gi, &c., are all real and unequal. This may be demonstrated

very simply in the case of nature, in which the bodies m, m', m", &c., re-

volve in the same direction.

Resuming the equations (A) of N°. 55, and multiplying the first by
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w».v/a. h ; the second by m. \/a, I; the third by n(. \/d. h'; the fourth

by m'.^a'. I', Sec, and then adding them together ; the coefficients of

k. I, K. I, h". I". &c., will vanish in this sum ; the coefficient of A'. /

—

h. I',

will be [oTT"]. m.^a— []Z°]' fn'-s/a'. and it will be equal to nothing,

in virtue of the equation [oTT"). vi.y/a —fTT^l . m',\ V, which has been

found in N°. 55. The coefficients oih".l—h. I", h". l—K.F will va.

nish for the same reason ; therefore the sum of the equations (A) thus

prepared, will be reduced to the following equation

:

(hdh + ldO r (h'dh/-\-l'dt)
, /- , . ^

^^ ^-

—

-.m.y/a'l.^^ ^ . m'.Va' + &c. =0;
at at

and consequently to the following,

0—ede.m.y/a + efde". w:,\/a'-\- &c.

By integrating this equation, and remarking that by N". 54, the greater

axes fl, a', of, of the orbits are constant, we will have

e*.Tn.y/~aJre".ni.s/7-\- e"*.rn'-\/^' + &c. = constant; (zO-

Now the bodies m, m\ nf, &c., being supposed to revolve in the

same direction, the radicals \/5i \/a', -^d' ; &c., ought to be taken

positively in the preceding equation, as has been observed in N°. 55 ;

therefore all the terms of the first member of this equation are positive,

and consequently each of them is less than the constant of the second

member ; but if we suppose that at any given epoch, the excentricities

are; very small, this constant quantity will be very small ; therefore

eai^h of the terms of the equations will always remain very small, and

cannot increase indefinitely ; consequently, the orbits will be always

ve ry nearly circular.

The case which we have now examined, is that of the planets aad ofthe

sa tellites of the solar system ; because all these bodies revolve in the same

direction, and the excentricities of their orbits are at this present epoch
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very inconsiderable. In order to remove every doubt on this important

result, it may be observed that if the equation which determines g,

contains imaginary roots, some of the sines and of the cosines of the ex-

pressions of //, /, h', I', &c., will be changed into exponentials ; thus the

expressions for h will contain a finite number of terms of the form

P.c^', c being the number of which the hyperbolic logarithm is equal

to unity, and P being a real quantity, because h or e. sin. sr is a real

quantity. Let Q.c^', P'.c^', Q.c^\ P".c^\ &c., be the corresponding

terms of /, U, V, ¥, &c. ; Q, P', Q, P", &c., being also real quanti-

ties : the expression of e'' will contain the term (P*-|-Q*). &^*
; the

expression of e'* will contain the terra (P'^+Q'*). (?^\ and so on of the

rest : consequently the first member of the equation {u) will contain

the term

((P* + Q^).»n.v/a+(P'HQ'*).wj'.\/74-(P"*-fCr*).wi".\/?''-f&c.).c=-^

If c^' be the greatest of the exponentials which h, I, h', I, &c., con-

tain, that is to say, in which f is the most considerable ; c^-" will be

the greatest of the exponentials, which the first member of the pre-

ceding equation will contain ; therefore the preceding term cannot

be destroyed by any other term of this first member ; consequently in

order that this member may be reduced to a constant quantity, it is

necessary that the coefficient of r^' should vanish, which gives

0=(P^ + Q^).M.v^ + {P"-+a').m'.\/a+ (P'^-fQ'0-"i"-vV'-}-&c.

When \/a, \/a\ \/ a", &c., have the same sign, or what comes to

the same thing, when the bodies m, m , m", &c., revolve in the same

direction, this equation is impossible, unless we suppose PzzO, QzzO,

P'=0, &c. ; hence it follows, that the quantities //, /, h', /*, &c., do

not contain exponential quantities, and that consequently the equation

in g does not contain imaginary roots.

If this equation have equal roots, the expressions of h, I, h', I', &c.,

contain, as we know, arcs of circles, and we would have in the ex-

pression for //, a finite number of terms of the form P.f. Let Q.t%
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Ff, Q'f, &c., be the corresponding terms for /, h', I'. &c. ; P, Q, F,

&c., being real quantities j the first member of the equation in ?Mvill

contain the term*

(P'+Q'), mVa+(P'^ + Q^). m!.s/a ^{P'"' + Q'^-^m".s/^', &c.) f\

If V be the highest power of t, which the values of //, I, h', iy &c.

contain ; t^ will be the highest power of t, contained in the first

member of the equation (ii) ; thus in order that this member may be

reduced to a constant quantity, it is necessary that vve have

0=(P" + Ct).m,<y~a-k-{P" + Q'* ).)«'. >/a^+ &c.

consequently P=0, Q—0, P'z=.0, Q'=0, &c. It follows therefore

that the expressions of h, I, h', I', &c., do not contain either exponen-

tial quantities, or arcs of circles, and that consequently all the roots

of the equation in g are real and unequal.

The system of the orbits of ?«, in, m", he, is therefore perfectly

stable, relatively to their excentricities ; these orbits only oscillate

about a mean state of ellipticity, from which they deviate a little, the

greater axes remaining the same : their excentricities are always sub-

ject to this condition, namely, that the sum of their squares multiplied

respectively by the masses of the bodies, and by the square roots of

their greater axes is constantly the same.

58. When, by what precedes, the values of e, and of ts- shall have

been determined ; let them be substituted in all the terms of the

expressions for r, and —7—, which are given in the preceding numbers,

the terms which contain the time t, without the signs sine and cosine,

* See Lacroix, torn, 2, No. 613, for the truth of the assertion will be immediately ap-

parent, in the first case, if in place of the sines and cosines their imaginary exponentials

be substituted, or if in the second, the equal roots be supposed to diflFer by very small in-

determinate quantities.
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being effaced. The elliptic part of these expressions will be the same

as in the case of the undisturbed orbit, with this sole difference, that

the excentricity and the position of the perihelion will be variable

;

but the period of these variations being very long, on account of the

smallness of the masses m, m', m", relatively to M; we can suppose

these variations proportional to the time, for a long interval, which

for the planets may be extended to several ages, before and after

the epoch which we select for the origin of the time. It is useful, for

astronomical purposes, to have under this form the secular variations

of the excentricities of the perihelions of their orbits ; they can be

easily inferred from the preceding formulae. In fact, the equation

e*=A*-j-f, gives edezzhdh+ldl ; and if we only consider the action of

m', we have, by N". 55,

§=(o,,)./-[on:.f;

therefore

-^=-(0,l).A + [oQ].A'>

but we have h'U—hl'—e.ef. sin. (z/—sr) ; therefore we shall have

-J- =[^]' ^- sin. (tj—bt) ;

consequently, if we only take into account the reciprocal action of the

bodies m', m", &c. we shall have

-^ = \El\- e'-sin. (^—T!r)+ [ol] ^'. sin. (z^'—z,)-^ &c.

-^ = [iT], e. sin. (w—i!r')+[ili]. e^'- sin. {z!"—z/)^&cc.

• h—t. sin. zr, A' = e'. sin. -s/ ; l^ e. cos. ar ; i' = e' cos. w', •/ hi — hi = te'. sin.
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^^1
'—r- = [iTol. e. sin. {-a—g^04-[g' Q. C sin. (w—tst^-J- &c. ;

&c.

The equation tang, w =: -j-, gives by difFerenceing it

e^.dts zz l.dh —• h,dl.

If the action of m', be only considered, by substituting for dh and dl

their values, we shall have

i^=(0, 1). (A» + /»)-[^]' {^A' + ^0 }
*

which gives

-£-= (0, 1)— [oTT]. -^. COS. (Tsr'—Zir)
j

therefore we shall have, in consequence of the reciprocal actions of the

bodies, m, m', m", Sec.

;

^"^
==(0, 1)+ (0, 2)+&C.—[oT].—. COS. (-sZ—Tir)—

dt

e"
[o. g"}. . COS. (w"—w)— &C. J

e

-^=(l,0) + (l,2),4-&c.— [i^].-^. cos. (w—w')—

.

e"
(" i, z"! . —r. cos. (w"—w*)— &c.

}

cos
——= ; but from the equation tang, -a — -j- , we have cos. 'w s

,^—^— -^, V by substituting we have the expression in the text.



336 CELESTIAL MECHANICS,

-^= {% 0;+(2, 0+&C. - [E^]. -^. COS. (^-;;r")-

[2^].-7r. COS. (=/

—

et'O— &c.

&c.

These values of -rr, -7-, &c. : —7-. —Tr-» &c., being multiplied by
at at at at

the time t, the differential expressions of the secular variations of the

excentricities and of the perihelions will be had ; and these expres-

sions, which are only rigorously true, when t is indefinitely small, can

however serve for a long interval, relatively to the planets. Their

comparison with accurate observations, which are made at consider-

able intervals from each other, is the most exact means of determining

the masses of the planets, which have no satellites. For any time t, the

1. . . (de\
,

f d'-e ,„ de d^'e ^

excentncity e is equal to e-\-tA-r
j + —3-. •+«c; e,—r-, ,^ , &c.

being relative to the origin of the time t, or to the epoch. The preced-

es
ing value of —^ will give by differencing it, and by observing that a,

etc

a', &C.J are constant, the values of -j-^t '"ITr^ *^^" ^^ ^'^^ therefore

continue as far as we please the preceding series, and by a similar

process, the series relative to to- ; but in the case of the planets, it will

be sufficient, in the comparison of the most ancient observations of

which we are in possession, to take into account the square of the time,

in the expressions in series of e, e', &c., a-, -a', &c.

59. Let us now consider the equations relative to the position of the

orbits, and for this purpose let the equations (3) and (4) of N°. 5S, be

resumed,

4-=:^.aV.B....(;^y).
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By
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This system of equations is similar to that of the equations (A) of

N°. 55 ; it would coincide altogether with it, if in the equations A, h,

I, h', I', &c., be changed into y, p, q, p', &c., and if we suppose

[
oTT'] . = (0, 1) ;

[iTo] = (1, O), &c. ; consequently, the analysis

which we have employed in N". 56, in order to integrate the equa-

tion (A), is applicable to the equations (C). Therefore let us suppose

q z=N. cos. (gt+^)-\-Ni. COS. (git-\-^i)-^N2. cos. (gJ+Q+Scc. ;

p = N. sin. (gt+&)-\-N'i. sin. (git+^O+N^. sin. (gst+Q2)+ &<=• i

q' = ivr'.cos. f^f+e)+iVi'. COS. (§i?+e,)+A7. cos. (^2f+g2)+ &c.

;

/ = iV'. sin. (gt-^%)^Ni. sin. {g /+ei)+iV'2. sin. {git^%^-if &c.

;

&c.

and by the method given in N°. 5^, an equation in g of the degree i,

may be obtained, of which the different roots will be g, g,, g^, &c.

It is easy to see that one of these roots vanishes, because the equations

(C) vvill be satisfied by supposing p, p', p", &c., equal and constant,

and also q, q', (^', &c., but this requires that one of the roots of the equa-

tion in g should vanish, and thus the equation is depressed to the degree

i— 1. The arbitrary quantities N, Ni, N^, &c., €, fi, Sj, &c., may be

determined by the method detailed in N°. 56. Finally, by an analysis

similar to that of No, 57, we shall find

const. = {p^-\-q'). m.\/a-\-(p'^+ q'^). m'.^+ &c.

;

from which may be inferred, as in the above cited N". that the ex-

pressions of p, q, p', q', &c., do not contain either arcs of a circle, or

exponential quantities, when the bodies m, m', m", &c., revolve in the

same direction : and that consequently all the roots of the equation in

g, are real and unequal.

Two other integrals of the equations in C may be obtained. In fact,

if the first of these equations be multiplied by m. y/a, the third by m.\/d^

the fifth by m".ija", &c , we shall have in consequence of the relations

found m N°. 55,
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0= -^. m.\/a + -^. w'VZ + &c.

which being integrated, gives

constant = ^.»2.v/a + 9'.»j'.\/a'+ &c. (1)

In the same manner we shall find

constant =. f.m.^a -\-p.rn.sf a' -f &c. (2)

Naming p the inclination of the orbit of m, on the fixed plane, and

9 the longitude of the ascending node of this orbit on the same plane ;

the latitude of m will be very nearly, tang. ip. sin. (n/+£—6). By

comparing* this value, with the following, ^. sin. («/ + i)— ^. cos.

{nt-\-i) we will have

p =. tang. (p. sin. 6
; ^ i= tang. (p. cos, 6\

hence we deduce

tang. 9 = \//)*+y* ; tang. 6 = ^^ ,
-JL

1

therefore the inclination of the orbit of m, and the position of its node,

may be obtained by means of the value of^ and of q. If we denote

successively by one stroke, two strokes, &c., relatively to m', m", &c.,

the values of tang, (p, and of tang. &, the inclinations of the orbits of

xxSJ

» I / d'^ \ idh—hdl _ , „ , . . , J „ , w* d. tan. TT.Izz ;— 1= = ,
• • as P— e-. cos. 'a-, we obtain eHin^idh—hdl;

\ COS. ^w/ P

as hh'+ll= ed. cos. (a-'—n-) ; if -^7^= (0, 1). (A' + V)— [M]. i}iK-\-U), be divided by

e*=A*4-^ we shall have the value of —j- which is given in the text.

* This is the value of i, or of the latitude very nearly, when periodic quantities are ne-

glected, in fact the values of ip and i, which are derived from a comparison of the two

values of*, are tho mean values, only affected with secular inequalities ; see N°. 53.
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m', val'., &c., and the positions of their nodes, will be had by means of

the quantities f', q. f", q", &c.

The quantity s/p^+ q*, is less than the sum N, Nu N^, + &c. of

the coefficients of the sines of the expression for q ; therefore these co-

efficients being very small, because by hypothesis, the orbit is inclined

by a very small angle to the fixed plane, its inclination to this plane

will be always inconsiderable ; hence it follows, that the system of the

orbits is always stable relative to their inclinations, as well as relative

to their excentricities. The inclinations of the orbits may therefore

be considered as variable quantities comprised between determinate

limits, and the motions of the nodes as not being altogether uniform.

These variations are very sensible in the satellites of Jupiter, and we

shall see in the sequel that they explain the singular phenomena,

which are observed in the inclination of the orbit of the fourth

satellite.

From the preceding expressions for p and q, results the following

theorem

:

That if a circle be conceived, of which the inclination to the fixed

plane is N, and of which gt-{-^ is the longitude of its ascending node

;

and if on this first circle a second be conceived inclined to it by an

angle- equal to N„ g,t+^, being the longitude of its intersection with

the second circle, and so of the rest ; the position of the last circle

will be that of the orbit of m.

The same construction being applied to the expressions of /z and of /of

N". 56 ; it will appear that the tangent of the inclination of the last

circle on the fixed plane, is equal to the excentricity of the orbit of

m, and that the longitude of the intersection of this circle with the

same plane, is equal to that of tlie perihelion of the orbit of in.

60.* It is useful for astronomical purposes to obtain the differential

variations of the nodes and of the inclinations of the orbits. For this

purpose let the equations of the preceding N°. be resumed, namely,

It should be observed, that tlie differential^expressions which are gJvcii in this N".,

are relative to the secular variations uf Uit- uoJes ana ot the inclinations of the orbits.
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tang. <p
— \^p*+q* ; tang 9 = —

•

By differentiating, there will be obtained,

d(p zz dp. sin. ^-\-dq. cos. 6 ;
*

J. _ dp. COS. —dq. sin. 6
oB — ,

tang. <p

Substituting for dp and dq, their values, which have been given by

the equations (C) of the preceding N"., we will have
,H. <i»C

-^ — (0, 1). tang. <(,'. sin. (6_6')H-(0, 2)'. tang. <p". sin. (9—6''')+ &c.

-^=-((0. i)+(o,2)+&c.)+(0, D.^f^'. COS. (9-^)
*

+C0, 2).
^^"^' '^"

. COS. (0—90 + &C.
;

tang. <p
^ "

d^ pdp-^gdg ,

* rf. tan. (p=: r—

=

' J—J- = by substituting for p and o their values, and
COS.*?l -v/^+ y^

-^ 6 A' "/

neglecting —, the expression in the text. d. tan. 6 = — =(f«. r "t i =
COS. '?! COS. ^S \ q f

q.dp—p.dq
,— , which becomes, by substituting for p and q their values, and multiplying by

9*, rf«. tan. 2(p = dp. cos. 9. tan. ip—rfy. sin. «. tan. ip.

f When this substitution is made, the first term in the expression for dp. sin. 6 becomes

equal to the first term of the expression for dq. cos. 6, and affected veith a contrary sign,

consequently they destroy each other. The second terms of these expressions are respec-

tively (0,|1). tan Ip'. cos. 6'. sin. «—(0, 1). tan. <p'. sin. (/. cos._^^=(0, 1). tan. qi. sin. (6—f) ; by

a similar process the third and following terras are obtained. The first term in the value

of</;j. cos.«= — ((0, 1) -I- (0, 2) + (0,3)+ (0,4) +&c.,) tan.?, cos. % and the second

term = (0, 1). tan. ip'. cos. i'. cos. 6; in like manner the first term of the value of

—

dq sin.

» is —({0, 1), +(0, 2)+ (0, .S)+ &c. tan (p sin. -6, and the second term =—(0, 1). tan. ip.

sin. V, sin. 6, &c., by making these terms respectively to coalesce, they become — ((0, 1)

+(0, 2)+(0, 3)+&c.) +(0, 1).
""''^

. (cos. 6. cos. «'+sin. i. sin. V). If there are only
ttin* (p
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In like manner we will have

-^ = (1,0). tang. <p. sin. (e'_e)+(l, 2). tang. /. sin. (6'—r)+ &c.j

^=-((1, 0H(1, 2)+&c.)+(l, 0).-^^. COS. (S'-fi)

&c.

Astronomers refer the celestial motions to the moveable orbit of

the earth ; in fact, it is from the plane of this orbit that they are

observed; it is therefore of consequence to know the variations

of the nodes and of the inclinations of the orbits, with respect to

the ecliptic. Suppose, therefore, that it were required to deter-

mine the differential variations of the nodes, and of the inclinations

of the orbits, with respect to the orbit of one of the bodies 7n, m', nf,

&c., for example, relatively to the orbit of m. It is evident that q. sin.

(71't+i')—-p. cos. (n't' + e) will be the latitude of m' above the fixed plane,

if it was in motion on the orbit of wi. Its latitude above the same plane,

is y. sin. (?i't-]-i)— p'. cos. (n't-{-i'); now the difference of those two

latitudes, is very nearly the latitude of m' above the orbit of m ;

therefore i?/ representing the inclination, 9/ being the longitude

of the node of the orbit of m' on the orbit of m, by what goes before

two bodies m, m', the nodes of each of them will regrade on the fixed ecliptic, when

-Eh^. cos. in 6\ . . COS. [6—(f) are respectively less than unity ; if one of them,
tan. ip' ^ ' tan. (p

^ '
"

as, for instance, the first, be greater than unity, this can only arsise from tan. f being

,

greater than tan. ip', therefore the second must be less than unity ; consequently, the nodes

of one of the orbits must always regrade. It appears also from this expression, that if

the distance between the ascending nodes of the two planets be greater than 90°, the

nodes must regrade. It is likewise evident that if t—i is greater than 180, the inclination

increases, and that it diminishes when this inclination is less than 1 80 ; the variation is

greater according as the distance between the nodes approaches to 90, and according as f

increases. See Princep. Matth. Lib. I. Prop. 66, Cor. 11.
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there will be obtained

tang. 9/= v/(?/-pr + (y'-# ; tang. 9/= ^Ef-*

If the fixed plane be assumed to be that of the orbit of m, at a given

epoch ; for this epoch p and q will be respectively = ; however the

differentials dp, dq, will not vanish ; thus we shall have

d(p]z=.{dT^—dp\ sin. ^'•\-{dq'—dq"). cos. 6' ;t

„ , _ {dji—dp'), cos. 9'

—

{dq—dq\ sin. 6'

'

tang'. 9'
*

By substituting for rfp, dq, dpi, d(f, &c., their values given by the

equation (C) of the preceding N°, there will be obtained

-^=((1, 2)-(0, 2)). tang. <p'^ sin. (9—9'")*

* Neglecting quantities of the second and higher orders, the differences of the expres-

sions for the tangents of these latitudes, which in the present case may be substituted for

the latitudes themselves, is equal to (9'

—

q). sin. (n't-\-i)—(p'—p). cos. [n't-\-^)-= tan. <p/

sin. {n't-\-^—«;), •/ q— ijf
— tan. ip/. cos. «/ ;

p'

—

p = tan ifJ. sin. «/ ; hence we get the

values of $/. and tan. ^6', as before.

t d. tan. ip/ = dip; = (as p and q vanish) ( P— P)-P +\ 1— V- ?
^ ^\{x,^ by sub-

stituting for p' and y', their values tan. Q^. sin. «', tan. (f'. cos. i'. becomes the expression

•I o- •, , ,. ^ d6! (dp'—dp).q'—{dq'—dq').p' ^ I

in the text. Similarly by substitutmg '-^-=1 — ^
„

' ili-; but —
-,^ ^ ^ co%.°6; q'^ cos.^«,"

_ ?"+f" , ,_ (dp'—dp). COS. »—{dff—dq). sin. V
-

f-
'

• "*'
T^.^

X dp. sin. 6' = —((1, 0) + (1, 2) + &c.) tan. tp'. cos. 6'. sin. «'+(!, 2), tan. ip". cos. «".

sin.«'+&c.;

—

dp.sm.ef——(0, l).tan. (p'. cos. «'sin. «'—(0, 2). tan. <p". cos. fl". sin- «'-&c.)

;

dq'. cos. «'=((!, 0)+( 1,2)+ &c.). tan.<p'. sin. «'. cos. «' — ( 1 , 2). tan. ip/'. sin. «". cos. «'

— &c.) — dq. COS. y= (p, 1). tan. ?>' sin. «' cos. '6 + (0, 2). tan. (p". cos. e+ &c. ; hence,

obliterating the terms which destroy each other, and making corresponding factors of tan.

ip", tan. (p"', &c., to coalesce, we obtain the expressions which are giveen in the text. Since

dp dq dp/ .

p and qzzO, the coefficients of these terms are neglected in the vhlue of "^j ''jr'~Jt'
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((1, 3)—(0, 3)). tang. <f". sin. (9'—9^)+ &c.

-((1, 0)+ (l, 2)+(I, S)+cScc.)— (0, 1)
dt

+ ((1, 2)-(0, 2))-^!^. COS. (fl'-flO

+ ((1, 3)-(0, 3)) -^J^.
COS. (6'-r)+ &c.

It is easy to infer from these expressions, the variations of the nodes

and of the inclinations of the orbits of the other bodies, w!\ m" , &c.,

on the moveable orbit of m,

61. The integrals previously found of the differential equations

which determine the variations of the elements of the orbits, are only

approximative, and the relations which they indicate between all these

elements, have place only on the hypothesis that the excentricities of

the orbits and their inclinations are very small. But the integrals (4),

(5), (6) and (7), to which we have arrived in N°. 9, give the same

relations, whatever may be the excentricities and the inclinations. For

this purpose, it may be observed, that—^"^^— is double of the area

described in the time dt, by the projection of the radius vector of the

planet m, on the plane of x and of y. In the elliptic motion, if the

mass of the planet be neglected, relatively to that of the sun, which

is assumed equal to unity, we have by N°% 19 and 20, relatively to the

plane of the orbit of m,

xdy—ydx

dt
= s/a.{l—e^y.

In order to refer the area of the orbit to a fixed plane, it is necessary

to multiply it by the the cosine of the inclination of (p, of the orbit to

this plane ; therefore with respect to this plane we will have
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-r. = COS, ffl.va.f 1

—

e) = V—^^ r *

o' r^ V. y ^l+tang. ?>•

In like manner we have

x'dy'—y'dx' _ / a'.(\J:^
dt ^ 1-ftang. >''

&c.

These values of xdy—ydx, x'dy'—y'dx', &c., may be employed,

when we do not take into account the inequalities of the motion of the

planets, provided that the elements e, e', &c., (p, (p', &c., are consi-

dered as variable, in consequence of the secular inequalities ; therefore

the equation (4) of N". (9). will then give

' l-f-tang. *(P 1+tang.?)*

+E.7nm'
, ^ (a/—t). {di/—dy)—{y'^y).{dx'-dx) 7

'I dl 5*

This last term, which is always of the order mm', being neglected,

we shall have

c = m.y—!^ /- + 7n'.V —H^ r^ + &c.
^ 1-l-tang. > ^ ^ 1-l-tang. *9' ^

Therefore, whatever changes may be produced in the progress of time,

in the values of e, e, Sec, tp, <p' , &c., in consequence of the secular

variations j these values ought always to satisfy the preceding equation.

If the very small quantities of the order e*, e*ip*, be neglected, this

equation will give

c =.m.s/a-\-m.\/a' ^ &c. —\.m.s/a. (e*-ftang. *i?)

—|.7B'.v/«'-(e'*+tang. *(p')— &c.

;

PART 1. BOOK II, T y
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and consequently, if the squares of e, ef, 9, &c., be neglected, we

shall have m.\/a -j- m'.\/a' + &c., constant. It has appeared already,

that if only the first powers* of the disturbing force be taken into

account, a, a', &c., will be separately constant ; the preceding equa-

tion will therefore give, when the very small quantities of the order

e*, or e*^*, are neglected,

const. = m.s/a. (e* + tang. * (p*)-\-m'.\/a' . (e'* + tang. *?>') + &c.
;

on the supposition that the orbits are very nearly circular, and inclined

to each other at small angles, the secular variations of the ex-

centricities of the orbits, are by N°. 56, determined by means of dif-

ferential equations independent of the inclinations, and which are

therefore the same as if the orbits existed in the same plane ; but

on this hypothesis, ?> ir 0, ?>' = 0, &c. ; consequently, the preceding

equation becomes

const. = e'-.niy/'a + e"'.vi'.\/'d^->re"''.m".s/ a-'-if &c.

this equation has been already obtained in N°. 57.

In like manner, the secular variations of the inclinations of the

orbits, are by N". 59, determined by means of diflFerential equations

independent of the excentricities, and which are therefore the same as

if the orbits were circular ; but on this hypothesis, ezzO, elzz. O, &c.

;

therefore

const. z=m.\/a. tang, (p* -\-n^.\/a! . tang. (p'*-{-rnf'-\/a". tang. ?**+ &c.

which equation has been obtained in N°. 59-

If we suppose, as in this last number, that

p zz tang, (p. sin. ; qzz tang. ip. cos. 6

;

It is easy to be assured, when the inclination of the orbit of m, on

the plane of a; and _y, is <p, 9 being the longitude of its ascending node,

reckoned from the axis of z ; that the cosine of the inclination of

• See No. 54, page 324.
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this orbit on the plane of x and 2;, will be

q *

\/l+tan. *^

This quantity being multiplied by—^^-j~— , or by its equivalent va-

lue \/a.(i—e*), the value of ^ , will be obtained ; therefore
at

the equation (5) of N°. 9, will give, when quantities of the order m*

are neglected,

/a.ri—e») , ,
A I'd.{I—e'*)

,
„

d —m.q.is/ -r~-^ / + vi.q'.V r-j-—r-, + &c.
^ 1 + tan. *<p * * l+tan.*p'

In like manner the equation (6) of N°. 9, will give

^*l+tan/9^ ^ *l+tan.*?

If quantities of the order e', or e*(p, are neglected in these two equa-

tions ; they become

constant = mq.\/a-\-m'q'.\/a' -(- &c.t

constant = mp.\/a-\-rrip'.\/a! + &c.

which equations have been already obtained in N". 59.

Finally, the equation (7) of No. 9, when quantities of the order

Y Y 2

by substituting for q its value tan. <p. cos. ), we obtain

\^l-|-tan.=ip

S =s sin. p. COS. i, which is the cosine of the inclination of the orbit of tn to

v^l-f- tan. =<p

the plane x, r.

f tan. ^, tan. (f, being of the order c, the quantities which are neglected are of the

order e^, and of higher orders.
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miri are neglected, will give, by remarking that by N". 18, —= —

^

df '

. . m , m' m" . .
constant z=. r-{—- -^ See*

a a a'

These different equations subsist with respect to those inequalities of very

long periods, which may affect the elements of the orbits of wz, m, &c.

It has been remarked in N". 54, that the relation of the mean motions

of these bodies may introduce into the expressions of the greater axes

of the orbits considered as variable, inequalities of which the argu-

ments being proportional to the time, increase with great slowness,

and which as they have for divisors the coefficients of the time /, may

at length become sensible. But it is evident, that if we only take

into account the terms which have similar divisors, the orbits being

considered as ellipses of which the elements vary in consequence of

these terms, the integrals (4), (5), (6) and (7) of N". 9, will always

give the relations which we have found between these elements

;

because that the terms of the order 7nm which have been neglected in

order to infer these relations, have not for divisors the very small coef-

ficients of which we have spoken ; or at least, they only contain them

multiplied by a power of the disturbing force, superior to that which has

been taken into account.

6a. It has been remarked in N°'. 21 and '_'2, of the first book, that

in the motion of a system of bodies, there exists an invariable plane,

When quantities of the order mw' are neglected, we have (M being considered as

unity) A=2m. ~fr • "°"' ^'^ ^^^^ f«=l+'"> '- " '"^ expression — =

—— [— j'i ) ^^ multiplied by m, it will give when quantities of the order m* are

neglected, — = —— m.
^ ^'' '

, •/ by making similar substitutions for the

bodies rri, m", &c., we obtain the expression which is given in the text.
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which preserves always a parallel position, and which the following con-

dition enable us to find easily, at all times, namely, that the sum of the

masses of the system respectively multiplied by the projections of the

areas described by the radii vectores in a given time, is a maximum.

It is principally in the theory of the solar system, that the investigation

of this plane is important, in consequence of the proper motions of the

stars, and of the ecliptic, which render the exact determination of the

celestial motions a matter of great difficulty to astronomers. Naming

y the inclination of this invariable plane, to the plane of x and of ^, and

n the longitude of its ascending node, it follows, from what has been

demonstrated in N". 21 and '^2, of the first book, that we will have

tan, y. sm. n — —
; tan. y. cos. n n —

;

consequently.

7n.v/a.(l-e*. sin. a, sin. 6-fm'.v/a'.('l-e"'). sin. <p'. sin.9'-|-&c.
tan. y. sm.ITn ; — , =

wj.Va.(l—e*.cos. <p+w'.\/a'.(l

—

e"'). cos. ip'+ &c. •

w.v'c.{'l-e*).sin.<2i.cos.9+w2'.V'a'.Cl-£^*). sin.©'. cos.6'-f&c.
tan.y.cos.nrr- > —

7n.v fl.(l—e*). cos. <(-\-m'y d.{\—e*). cos. <p' + &c.

The two angles y and IT may be easily determined, by means of these

values. It is evident that in order to determine accurately the invari-

able plane, it is necessary to know the masses of the comets and the

elements of their orbits ; fortunately, their masses appear to be very

small, so that their action on the planets may be neglected without any

sensible error ; but time will give us fuller information on this point.

It may be remarked here, that with respect to the invariable* plane,

the values of ^, ry, p\ q, &c. do not contain constant terms ; for it is

• Since -— — cos. 'ip we obtain c"-=z m.y'a.(l — £*). sin. ipsin. i+ &c., by
1-f-tan. ^<p

substituting for p, its value tan. f. sin. i.
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evident from the equations (C), of N". 59, that these terms are the

same for p, p', pi', &c., and that they are also the same for q, q', q", &c.

and as relatively to the invariable plane, the constant quantities of the

first member of the equations (1) and (2) of N". 59, vanish ; in con-

sequence of these equations, the constant terms must vanish from the

expressions of^, p', he, q, q', &c.

Let us now consider the motion of two orbits, which are inclined

at any angle to each other, by N°. 6l, we will have.

d = sin. (p. COS. 6. m.\^a.{\—e*) + sin. (p'. cos. 9'. m'.\/a'.(l—e'*)
;

d'— sin. <p. sin. 9. 7».v^a.(l—e*) + sin. ^'. sin. fl'. 7ril.\/d.{\—e'*);

Let us suppose that the fixed plane to which the motion of the orbits

is referred, is the invariable plane of which we have treated, and with

respect to which the constant quantities of the first members of these

equations vanish, as has been remarked in N''^ 21 and 22 of the first

book. The angles 9 and (p' being positive, the preceding equations

give the following

:

7n.\/a.(l—e*). sin. <p
— vrl.^/a'.^l—e'*). sin. 9'

:

sin. & "=. — sin. 9' ; cos. 9 = — cos. 9'

;

hence we infer that 6' = 9 + the semicircumference j consequently the

nodes of the orbits are on the same line ; but the ascending node of

one coincides with the descending node of the other; so that the

mutual inclination of these two orbits is equal to (p+(p'.

By. N". 61, we have

c = m.v^a.(J—e*). cos. ?i+7n'.\/a'.(l—e*). cos. (p';

this equation being combined with the preceding one between sin. f

and sin. <p', gives*

• These constants must vanish, for they are in fact equal to c' and c", which in the case

of the invariable plane are equal to cypher.
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2mc. COS. 9.\/a.(l—e*) = c* + 7n*a.(l—e*)—?n'V.(l—e'*).

If the orbits be supposed to be circular, or at least of such a small ex-

centricity, that the squares of the excentricities may be neglected, the

preceding equations will give <p equal to a constant quantity ; therefore

the inclinations of the planes of the orbits to the fixed plane, and to

each other, will be constant, and these three planes will always have a

common intersection. It follows from this, that the mean instanta-

neous variation of this intersection, is always the same ; because it is

only a function of those inclinations. When they are very small, it

may be easily proved by N°. 60, and in virtue of the relation just foundt

between sin. <p, and sin. <p', that for the time t, the motion of this in-

tersection is—((0, 1)-|-(1,0)). t.

The position of the invariable plane, to which the motion of the

planets has been referred, may be easily determined for any given

instant; as it is only requisite to divide the angle of the mutual in-

clination of the orbits into two angles (p, and <p', such that the preced-

ing equation may obtain between sin. (p, and sin. q>'. Therefore de-

noting this mutual inclination by w, we shall have

m',\^a'.(l—e'*). sin. tir

tan. (p= — —^^
, ^ .t

m.\/a.{\—e*)+m .%/«'.! 1—e'*). cos.w

• Multiplying both sides of this equation by 2m. Va.{^\—e^. cos. ip, we obtain 2mc. cos. (p.

•/a.(l—e* = 2ni^a(l—e"). cos 'ip+ 2jn.m'. cos. ip. cos. (p'Va.(\—^). V a'{\—e^), which

will coincide with the second member of this equation, if we substitute for c^ its value, and

observe that m?a.[\—e'). sin. ''(p=jn"a'.(l—e^). sin. *(?'.

f When q> and <p' are very small the nodes must regrade. See page 342.

f If one of the angles be 9, then we have sin. <p. m.V a.[\ — e^) = sin. (»•— <p)_

m'.i/a'.{\—d^) = (sin. ar. cos. (p— sin. <p. cos. a). m'-\^a'.(\—e^), •/ dividing by cos. (p.

tan. (p.(mVa.(l—e^j -J- cos. 'a.m'Va'.(l—e^) = sin. w. m'Va'.{l—e^).
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CHAPTER VIII.

Second method qf approximation of the Celestial Motions.

63. It has been observed in the second chapter, that the coordinates

of the heavenly bodies, referred to the foci of the principal forces

which actuate them, are determined by differential equations of the

second order. These equations have been integrated in the third

Chapter, the principal forces being solely taken into account, and it

has been shewn that in this case, the orbits are conic sections, of

which the elements are the constant arbitrary quantities introduced by

the integrations. As the action of the disturbing forces, cause only

very small inqualities, to be added to the elliptic motion ; it is natural

to endeavour to reduce to the laws of this motion, the disturbed

motion of the heavenly bodies. If the method of approximation ex-

plained in N". 45, be applied to the differential equations of elliptic

motion, increased by small terms due to the action of the disturbing

forces ; we can still consider the celestial motions in the reentrant

orbits as being elliptical ; but the elements of this motion v/ill be va-

riable ; and their variations can be obtained by this method. It follows

from it that the equations of the motion^ being differentials of the

second order, not only their finite integrals, but also the indefinitely

small integrals of the first order, are the same as in the case of inva-

riable ellipses ; so that we can differentiate the finite equations, the

elements of this motion being considered as constant. It likewise

results from the same method, that the equations of this motion, which

are differentials of the first order, may be differenced, the elements of
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the orbits, and the first differences of the coordinates being solely-

made to vary
;
provided that in place of the second differences of the

coordinates, we only substitute that part of their values, due to the

disturbing forces. These results may be immediately inferred from

the consideration of elliptic motion.

For this purpose, conceive an ellipse passing through a planet, and

through the element of the curve which it describes, the centre of the

sun being supposed to exist in one of the foci. This ellipse is

that which the planet would invariably describe, if the distubing

forces ceased to act on it. Its elements are constant during the

interval of dt; but they vary from one instant to another. Let there-

fore F=0, be the finite equation of the invariable ellipse, F being a

function of the rectangular coordinates, a\ y, z, and of the parame-

ters c, c', d', &c., which last are functions of the elements of elliptic

motion. This equation will also obtain in the case of the variable

ellipse ; but the parameters c, c', &c., will be no longer constant.

However, since this ellipse appertains to the element of the curve

described by the planet, during the instant dt ; the equation F = 0,

will also obtain for the first and last point of this element, c, c/, &c.,

being considered as constant.

This equation can therefore be differenced once, x, y, z, being

solely made to vary, which gives

''=(^:)--(f)-.+ (?)-- CO-
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* In consequence of the mutual action of the planets on each other, it is necessary to add

to the differential equations of their motion, terms which render the accurate integration of

the resulting equations impossible in the present state of analysis, we are therefore obliged

to have recourse to approximations ; fortunately the terms resulting from the action of the

disturbing forces are extremely small, for they are multiplied by the masses of the planets,

or rather by their ratio to that of the sun ; therefore if the differential equations, deprived

of these terms, were integrated, the constant arbitrary quantities in this case, would only
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Hence we see the reason why the finite equations of the invariable

elh'pse, may, in the case of the variable ellipse, be differenced once,

tlie parameters being considered as constant. For the same reason,

every differential equation of the first order, which belongs to the invari-

able ellipse, obtains equally for the variable ; for let PnO, bean equation

of this order, V being a function of x, y, z, ~jjy-n:' -^ » ^^^ of the

parameters c, c', &c. It is evident that these quantities are the same

for the variable ellipse, as for the invariable ellipse, which coincides

with it, during the instant dt.

Now, if we consider the planet at the end of the time dU or at the

commencement of the subsequent instant ; the function V will not

vary from the ellipse relative to the instant dt, to the consecutive

ellipse, except in consequence of the variation of the parameters, since

differ by a very small quantity, from tlie arbitrary quantities which the integration of the

complete equations vvould furnish, if such integration could be effected ; for since the two

equations differ only by these small terms, the difference between the arbitrary quantities

must depend on the disturbing force, and therefore must be extremely small ; hence the

expressions of the constant arbitrary quantities, which would be furnished by the integra-

tion of the imperfect or elliptical equations, may be assumed to express the variable arbi-

trary quantities, provided that the variations of those latter are determined by means of

the difference between the two sets of equations ; therefore the elements of elliptic motion,

which would be constant if the planet was subject to the sole action of the sun, are liable

to small variations ; and although the motion is no longer elliptic, still it may be considered

as such, during each indefinitely small portion of time, and the variable ellipse in which

the planer may be considered to move during each instant, will be osculatory to the true

orbit of the planet ; in fact, since the equation V-= 0, has place for the first and last point

of the curves described by the planet during the instant dt, the expressions for the coor-

dinates X, y, 2, will be the same : consequently the curves to which they belong are si-

milar, but in one case the curve is an ellipse ; •/ the curve of which x, i/, z, are the coor-

dinates when c, d, c", &c., are variable, must be similar to the former, and •.• an ellipse,

and if the disturbing forces ceased to act, the planet would describe this ellipse ; but as

c, d-, c", &c., have different values for each subsequent instant, the ellipses which would be

respectively described if the disturbing forces ceased to act during these instants, must be

different, so that they constitute a series of ellipses of curvature to the orbits of the planets.
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the coordinates x, y, z, relative to the end of the first instant, are the

same in the case of the 6wo ellipses; thus the function F being equal

to cypher, we have

This equation may be also inferred from the equation V-zi d, by

making to vary at once, x, y, z, c, c', &c. ; for if the equation

(?) be subtracted from this differential, we shall have the equa-

tion (?').

By differentiating the equation (i), we shall have a new equation

in dc, dc'y &c., which combined with the equation («') will enable us

to determine the parameters c, c', &c.

It is thus that the geometers who first occupied themselves with the

theory of the celestial motions, have determined the variations of the

nodes and of the inclinations of the orbits ; but this differentiation may

be simplified in the following manner.

Let us consider generally the differential equation of the first order

V zz 0, which equation, as we have seen, appertains equally to the

variable ellipse and to the invariable ellipse, which, during the interval

dt, coincides with it. In the following instant, this equation agrees

equally to the two ellipses, but with this difference, that c, d, &c.,

remain the same in the case of the invariable ellipse, whilst they change

with the variable ellipse. Let V" be what V becomes, wiien the

ellipse is supposed invariable ; let V, be what this same function be-

comes, in the case of the variable ellipse. It is evident that in order

to obtain V", we must change in V, the coordinates rr, y, z, which

are relative to the commencement of the first instant dt, mto those

which are relative to the commencement of the second instant ; it is
»

necessary then to increase the first differences da; dy, dz, respectively

by the quantities d^a,, d^y, d^z, relatively to the invariable ellipse,

the element dt of the time, being supposed constant.

zz2
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In like manner, in order to obtain V', it is necessary to change in

V' the coordinates x, y, z, into those which are relative to the com-

mencement of the second instant, and which are likewise the same

in the two ellipses ; it is necessary afterwards to increase dx, dy,

dz, respectively by the quantities d''x; d^y, d''z ; finally, it is neces-

sary to change the parameters c, (/, &c., into c-\-dc, c -j- (^c\ ^'' +
dd', &c.

The values of d^x, d''y, d^z, are not the same in the two ellipses

;

they are increased in the case of the variable ellipse, by quantities

which are due to the action of the disturbing forces. It thus

appears that the two functions V and Vf only differ in this, that in

the second, the parameters c, d, &c., are increased by dc, dc', &c.

;

and the values of (Px, d^y, d^z, relative to the invariable ellipse,

are increased by the quantities which are due to the disturbing

forces.

We shall therefore obtain V'— V'' by differencing on the supposition

of J^, y, z, being constant, &c., and of dx, dy, dz, c, d, d', &c., being

variable, provided that in this differential, we substitute for di^x, d''y,

d*z, &c., the parts of their values, which arise solely from the action

of the disturbing forces.

Now, if in the function P'

—

V we substitute in place of d^'x, d^y,

d^z, their values relative to elliptic motions, we shall have a function of

X, y, z, —Tr^—4r> ~yr> <^y ^» &c., which, in the case of the invariable*

ellipse, is equal to cypher ; this function is therefore likewise nothing in

* When in V"— V, the values of——, •
. „ » —rr- > due to the elUptic motion are substi-

tuted, the terms of the resulting equation must be identically equal to cypher ; but in the case

d'^x d^v d^-
of F;-F, the values of-—, —|-, -—1. must be increased by the quantities due to the

aaion of the disturbmg forces ; so that after substitution, the resulting expression may

be resolved into two distinct equations, one of which would obtain, if there were no dis-
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the case of the variable ellipse. We have evidently in this last case, V,

—F'=0
; for this equation is the differential of V'zzO ; by subtracting

from it the equations P''

—

V'= 0, we shall have V'— V'zzO'y conse-

quently we can in this case difference the equation V'=:0, dx, di/, dz,

c, c', &c., being solely made to vary, provided that for d''x, d^'y, d^z, be

substituted the parts of their values, relative to the disturbing forces.

These results are precisely the same as those which we obtained in N°.

45, from considerations purely analytic \ but considering their great

importance, it was deemed right to deduce them here from the consi-

deration of elliptic motion. This being premised,

64. Let the equations (P) of N°. 46 be resumed.

0=4^+dV

Oz=

dtf"

d^z

-73-

de

fdR\
{dxj'
dR\
dyj'(

(p)

If we suppose R=:0, we shall have the equations of elliptic motion,

which were integrated in the third chapter.

In N". 18, the seven following integrals were obtained,

-zdz „ ydz—zdyxdy—ydx , xdz—z^^ „-
It '

It
'

0=/+^;. t^[^ \-dz^

dt

(dx^'+dz' \
) ,

xdx.dy
+

n _ /^ 2/^ _L fdx''-^dy'-+dz^\

dt'

xdx.dz

de

dt

zdz.dx

~~df

zdz.dy

~dF~
ydy.dz

dF~

{P)

turbing forces, and by means of the other the variations af the parameter, may be ob-

tained, these equations are respectively equal to V" and V,— F".
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These integrals give the arbitrary quantities, in functions of the coor-

dinates and of their first differences ; their form is extremely commo-

dious for determining the variations of these arbitrary quantities. The

three first integrals give, by differencing them, and by making the pa-

rameters c, (/, d', &c., and the first differences of the coordinates

solely to vary,

_ xdP'y—yd^x , , __ xdi^z—zd^'x , «_ yd^z—zd^y
'^'-

di '
"^^ - Jt '

'^''-
di

'

By substituting in place of d^x, d^y, d^'z, the parts of their values whicl*

are due to the actions of the disturbing forces, and which in virtue

the differential equations CP), are—dt"", ( -f-;]
»

—

dt^.
( ;t- ) >

—dt^'

( -T-
J

; vye shall have

/ ,, ^ fdR\ fdR\l

We have seen in N°'. 18, and 19, that the parameters c, d, d', &c.,

determine the three elements of the elliptic orbit, namely, (p the incli-

nation of the orbit on the plane of x and 3/, and 9 the longitude of its

node, by means of the equations

tan. (B =. -T
; tan. 6 = —j-

j
c d

and the semipararaeter a.(l—e'") of the ellipse, by means of the

equation

iua.(l—e*) =z e-Vd"- + d"- ;

These same equations obtain also in the case of the variable ellipse,
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provided that c, c', d , are determined by means of the preceding

differential equations. In this manner the parameter of the variable

ellipse, its inclination to the fixed plane of x and y, and the position

of its node may be obtained.

By means of the three first equations (p), we have deduced in N°. 19

the finite integral Q — d'x— dy + cz ; this equation, and also its first

differential, = d'dx — ddy + cdz, taken on the supposition that

c, c', d', are constant, obtain in case of the disturbed ellipse.

If the fourth, the fifth, and sixth of the integrals {'p) be differenced,

the parameters f, /', f", and the differences dx, dy, dz, being con-

sidered as the sole variables, and if then we substitute, in place of

d''x„ d^'y, d^z, the quantities — dt''. { -r- )
>

—

dt^' 17") — '^^^

I
y-

J
, we shall have

+ (jydx—xdy). ^-^j +(zdx— xdz). (^ j 5

* Differentiating under these restrictions we have

„ (du.(Py+dz.dh) , d'^y ^ d'-x
, ,

d^x .
d°-z

•/ by ordering the terms we have

df= dy.
(
^.— - X. ^) ^dz. (..__.._)+ (ydx-xdy). ^, +

d^Z , ^.
fdR\ /'^^\ /<^^\

(:rfx

—

xdz). —„, wliich becomes the expression m the text, wheni -^1, i~7~)' Vd')'

, . , ^ d''x d-ii d°z
are substituted for -j-r-, -;^) -r-;.

dt- d-y dt^
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+ {xdy-ydx).g| + izdy-ydz). |^^

j

^^{xdz-zdx). Jg ^
+{ydz^zdy). \^\ .

Finally, the seventh of the integrals (^), when differenced with the

same restrictions, will give the variations of the semiaxis major a, by-

means of the equation d. ^ = 2. diJ, the differential di2 being* re-

ferred solely to the coordinates x, y, z, of the body m.

The values oif,f\ f, determine the longitude of the projection of

the perihelion of the orbit, on the fixed plane, and the ratio of the

excentricity to the semiaxis major ; for / being the longitude of this

projection, we have by N". 19,

tan. /= ^,

* Differentiating the seventh equation under the same restrictions, we obtain d. — =

By means of this expression, Lagrange ascertained that the mean motions were invari-

able, if the first power of the disturbing masses be only considered, the approximation

being extended to any power of the excentricities and inclinations. From the extreme

simplicity of this expression of the differential of the major axis, the determination of the

longitude is a very easy problem. In the supplement to the third book, Laplace investi-

gated the simplest form of which the other elements were susceptible, and he has suc-

ceeded in assigning such a form to them, that they only depend on partial differences of

the same function, taken with respect to these elements, and what is particularly remark-

able, the coefficients of these differences do not involve the time, and are solely functions

of the elements themselves.
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and e being the ratio of the excentricity to the semiaxis major, we

have by the same number

This ratio may also be determined, by dividing the semiparameter

a.(l—e*), by the semiaxis major a, and by taking the quotient from

unity, the value of e^ will be obtained.

The integrals (p) have given by elimination, in N°. 19, the finite

integral, O^j^r

—

h*-\-fx-\-f'y-\-f"z\ this equation obtains also in the

case of the disturbed ellipse, and it determines at each instant the

nature of the variable ellipse, we can difference it, f, /', /'''', being

considered as constant quantities, which gives

= ft.dr+fdx+f'dy-y'dz.

The semiaxis major a determines the mean motion of m, or more

accurately, that which in the troubled orbit, corresponds to the mean

motion in the invariable orbit ; for by N". 20, we have nz=.a~*'\/y.

;

moreover, if we denote by ^ the mean motion of m, we have in the

invariable elliptic orbit d^ = ndt j this equation obtains equally for the

variable ellipse, since it is a differential of the first order. By differ-

encing, we shall have c?'^ =r dn.dt; but we have

, San J «* SanAR ,
dnzz —-— . a. —= ,

therefore

San.dtAR
d^^ =

PART I. BOOK II. S A
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and by integrating

^ =— . JXayi.dtAR

.

Finally, it has been observed in N°. 18, that the integrals (p) are

only equivalent to five distinct integrals, and that they furnish between

the seven parameters c, d, d
, f,f',f'\ and e the two following equa-

tions of condition, rr;;, il

O^fd'-fd^f'c;

these equations obtain also in the case of the variable ellipse, provided

that the parameters be determined by what precedes. We can likewise

be assured of this a posteriori.

We have thus determined five elements of the disturbed orbit,

namely its inclination, the position of its nodes, the semiaxis major

(which gives the mean motion), its excentricity, and the position of

the perihelion. It now remains for us to determine the sixth element

of the elliptic motion, namely, that which in the undisturbed ellipse

corresponds to the position of m, at a given epoch. For this purpose,

let the expression for dt of N°. 1 8 be resumed.

J (1+e. cos.(t;—^))*

This equation being expanded into a series, gave in the number

already cited,

ndt =dv.(l+ E™. cos. (r—zr) + £(^'. cos. ±(v—zr) + &c.) :

which being integrated on the supposition that e and w are constant,

will give

fndt+izzv-\- J2"'. sin. (v—v) -\ ^—. sin. 2.{v—or) + &c.
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t being an arbitrary quantity. This integral is relative to the inva-

riable ellipse ; in order to extend it to the disturbed ellipse, it is ne-

cessary when we make ail the terms to vary, even to the arbitrary

quantities e, e and nr, which it contains, that its differential should

coincide with the preceding ; which gives

di—de. \ 1—7— \' (sin. (v—w) -f- \, \—j— \ • sm* ^'iy— =^)+ &c.
|

—d^.iWK cos.(i>-3r)+ i:%cos,.2<i^w)+&p,),, ,,,

V—Tij- is the true anomaly of m, reckoned on the orbit, arid w is the

longitude of the perihelion, also reckoned on the orbit, /the lon-

gitude of the projection of the perihelion, on a fixed plane has been

already determined ; but by N°. 22, we have by changing v into w,

and V, into / in the expression for v—€ of that N°.,

w—e=/—^+tang.*4(p. sin. 2(7—6) + &c.

If then y and v, be supposed equal to cypher, in this same expression,

we have

€=9+tang. *^9. sin. 26 + &c.

therefore

w=/+tang. *4(?.(sin. 26+sin. 2(7— G))-|-&c.

;

which gives

dis—dl{\^-<i tan. '\<p. cos. 2.(7—9) + &c.)

+2rf6. tang. *:|<f..(cos. 2^—cos. 2.(7—6)+ &c.

^^tan.iy
^ 26+sin, 2.(7-6)+ &c.)^ cos. 4? ^ \ J ^

consequently, the values of dl, 6?6 and d-a being determined by what

goes before ; we shall have that of dv:, by means of which, the value

of dl will be obtained.

3 A 2
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Hence it follows, that the expressions in series of the radius vector,

of its projection on the fixed plane, of the longitude reckoned either

on the fixed plane or on that of the orbit, and of the latitude, which

have been determined in N". 22, in the case of the invariable ellipse,

obtain equally in the case of the disturbed ellipse, provided that nt be

changed into Jiidt, and that the elements of the variable ellipse be de-

termined by the preceding formulas. For, since the finite equations be-

tween r, V, s, X, y, z, and fndt, are the same in the two cases ; and

since the expressions in series of N". 22, result from those equations by

operations purely analytic, and altogether independent of the con-

stancy or variability of the elements ; it is evident that these expres-

sions obtain also in the case of variable elements.

When the ellipses are extremely excentric, as is the case in the

orbits of the comets, the preceding analysis should be changed a little.

The inclination (p of the orbit on the fixed plane, 6 the longitude of its

ascending node, the semiaxis major a, the semipararaeter a.[\—e*),

the excentricity e, and / the longitude of the perihelion on a fixed plane,

may be determined by what goes before. But the values of ts-, and of

(/la- being given in series arranged according to the powers of tan. ^^,

it is necessary in order to render them convergent, to select the fixed

plane, such that tang. \(p may be inconsiderable, and the simplest

mode of effecting this, is to assume for the fixed plane, that of the orbit

of m, at a given epoch.

The preceding value of di is expressed in a series which is only

convergent, when the excentricity of the orbit is inconsiderable, it

cannot therefore be employed in the present case. In order to remedy

this, let us resume the equation

dt.\/f/. dv.(\—e*)^

fll ~
( 1 -{-e. cos. (v—TB-))*

If we make 1— e z= a, we have by the analysis of N*. 23, in the case

of the invariable ellipse,
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^+T= ^* ^^7^*]-
. tan. h(v-^) \ 1 + -p^. tan. 'Uv—nr)+ &c. l ;

T being an arbitrary quantity. In order to extend this equation to

the variable ellipse, it is necessary to difference it, T, the semiparame-

ter a.(l—e*), « and zr being considered as the sole variables. By this

means we shall obtain a differential equation, which will enable us to

determine T; and the finite equations which obtain in the case of the

the invariable ellipse, will likewise subsist in the case of the disturbed

ellipse.

65. Let us particularly consider the variations of the elements of the

orbit of m, in the case of the orbits having a small excentricity, and

small inclination to each other. In N". 48, we have shewn how to deve-

lope R in that case, into a series of sines and cosines of the form m'.k,

cos. (in't—int+ A),k and A being functions of the excentricities and of

the inclinations of the orbits, of the positions of their nodes and of their

perihelions, of the longitudes of the bodies at a given epoch, and of

the greater axes. When the ellipses are variable all these quantities

may be supposed to vary agreeably to what precedes, it is necessary

moreover, to change in the preceding term the angle i'n't—int into

i'fn'dt—ifndt, or what comes to the same thing, into i'^'—i^.

Now, by the preceding number we have

^ = 2/di2;
a

I —fndt- -. ffandtAR.

The difference d/J being taken solely with respect to' the coordinates

«, y, Zt of the body ni, we should not make to vary in the term m'k.

cos. (i'l'
—i?,-\-A) of the expression for R, developed into a series,

only that part which depends on the motion ofthis body ; besides, R being

a finite function of x, y, z, x, y', z, we can by N°. 63 suppose the

elements of the orbit constant in the differential dR, it is therefore
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sufficient to make ^ to vary in the preceding term, and as the differ-

ence of ( is ndt, we shall have i.m'.hidt. sin. (i'^'— i^ + A) for the

term of dR, which corresponds to the preceding term of R. Thus, by
having regard only to this term, we shall have

1 2i.Tr/ \,, , .

J= -y-' f^^'dt. sm. ii'^—ilJ^A)
;

i ~ ^^^. fSakrC'dt\ sin . {i'^—ii + ^).

If the squares and products of the disturbing masses be neglected,

we can in the integration of tliese terms, suppose the elements of elliptic

motion constant, which changes { into nt, and ^ into n't ; hence we
deduce

1 2im'n.k .., ,^ . ^ ..— = ,v , N ' cos. (tn't—mt+ A) :
a fA..(in'-in)

^'

I =r——jv,—^-To. sin. (mt—tnt-\-A].*
fi..(tn-iny

^

It appears* from this, that if «V

—

in does not vanish, the quantities

a and ^ only contain periodical inequalities, the approximation being

continued as far as the first power of the disturbing force ; but as

i' and { are integral numbers, the equation i'n'—in= 0, cannot have

place when the mean motionst of m and of m are incommensurable,

• This conclusion which was first shewn by Laplace to be true, when the approxima-

tion was continued as far as the first power of the disturbing force, and as far as the pro-

ducts of four dimensions of the excentricities and inclinations, was shewn by Lagrange to

be true, taking into account any power of the excentricity and inclination ; and it was

further extended by Poisson, and afterwards by Laplace and Lagrange, who proved, that

even continuing the approximation as far as the squares of the disturbing forces, no ine-

qualities, but those which are periodic affect the major axis ; and in general, that the sta-

bility of the planetary system is not deranged, when the squares of the masses, and all

powers of the excentricities and inclinations, are taken into account. See N". o*.

\ The equation i'n'— in = 0, w ould therefore suppose an unique case, among an in-

finity of others equally possible, besides the disturbing action of m' is solely considered in
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which is the case of the planets, and we may assume in general, since

n and n' are constant arbitrary quantities susceptible of all possible

values, that their exact ratio, number to number, is extremely im-

probable.

We are consequently brought to this remarkable conclusion, namely,

that the greater axes of the orbits of the planets and their mean motions,

are only subject to periodic inequalities depending on their mutual

configuration ; and consequently, if these quantities be neglected, their

greater axes are constant, and their mean motions are uniform : which

result accords with that which was previously deduced in another

manner, in N°. 54.

If the mean motions nt and n't without being accurately com-

mensurable, are yet very nearly in the ratio of i' to i ; the divisor i'riL—in

will be extremely small, and there would result in { and ^', inequalities

which increasing with extreme slowness, may give ground to observers,

to think that the mean motions of the bodies vi and m', are not uni-

form. We shall see in the theory of Jupiter and Saturn, that this

is the case relatively to those two planets ; their mean motions are

such that twice that of Jupiter, is very nearly equal to five times that of

Saturn ; so that 5n'—2n is not the seventy-fourth part of n. The

smallness of this divisor renders the terra of the expression for I,

which depends on the angle 5n't—^nt extremely sensible, although it

is of the order ?'—/, of of the third order,* with respect to the ex-

this case, but strictly speaking iZ is a function of the actions of all the planets m', m", m"',

&c., V the form of the angle will he (m+ i'n'-{-i">i"+ Szc.)t+ A, so that the similar equa.

tion of mean motion would suppose in+ i'n'+i'n"+ &c. =0, which is even more improba-

ble than the equation i'n'—iti=0 ; besides, if this last equation obtained, when there were

only three bodies, it would cease to exist when the action of the other planets was

taken into account.

* As i'=5, and? = 2, i'—i = 3, and consequently, the periodic function is multi-

plied by quantities of the third order, with respect to the excentricities and inclinations-

If the axis major is subject to an inequality increasing proportionally to the time, the mean

longitude has one increasing proportionally to the square of the time. See N". 5i-
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centricities and inclinations of the orbits, as has been observed in N*.

48. The preceding analysis gives the most sensible part of these

inequalities ; for the variation of the mean longitude depends on tw^o

integrations ; while the variations of the other elements of elliptic

motion depend only on one integration ; consequently, the terms of

the expression for the mean longitude are those solely, which can have

the square of (?V

—

in) for a divisor ; therefore taking into account these

terms solely, which considering the smallness of this divisor, must be

the most considerable, it will be sufficient in the expressions for the

radius vector, the longitude, and the latitude, to increase by these

terms the mean longitude.

When we have inequalities of this kind, which the action of m
produces in the mean motion ofm; it is easy to infer the correspond-

ing inequalities produced by the action of m on the mean motion of

m'. In fact, if we only consider the mutual action of the three bodies

M, m and m! ; the formula (7) of N". 9. gives

const. = ™. V^+^^J:) h.

„,,«fe-+y+-^^")

((mdx-{-in'da/y + {mdy 4- rri'dr/y + (jndz + midzy ) , .

2Mm QMm' 2mm'

The last of the integrals {p) of the preceding number, gives by

substituting for—, the integral S/dii
a

dx*->rdty-\-dz* _ 2.(M + 7n) __^ .^^

If we then call; R' what R becomes, when the action of m on mf i«

considered, we shall have'
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^,_ m.{xafAry2f-\-z^^ m

df -^/^^q^N^*

the differential characteristic d' only referring to the coordinates

x't y, zl, of the body w!. By substituting in the equation (a) in

place of TIT and of —-t:^-^ 1 these values, we^
df- dt*

shall have

mfdR+m'J'd'R = const.

C(m.dx+m'dx')*-\-(m.dy + n/.dy'y + {m.dz-{-m'.dz'y)

2.(M + m+m')dt*

It is evident that the second member of this equation does not

contain terms of the order of the squares and of the products of the

masses m and m', which have for a divisior ifn'—in j therefore if we

only consider such terms, we shall have

mfdR+m'/d'H' = ;

hence if we only take into account those terms, of which the divisor

is (i'n'—iny, we shall have

Sffa'n'dtd'R' _ __ m.{M+m).a'n' Sffandt.dR ^

M-\-m' " m'.(^M+m').an* M+m /

but we have

. _ S.f/andtdR __ S.ffdn'dt.d'R! ^

consequently

PART 1. BOOK II. 3 B
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7n'.(jM +m').an^'±in.(M+m).a'n'))=. ;

moreover

\/M+ m , \/M4-m'

,

• 77' — I .

S } " ,5

therefore m and m' being neglected in comparison with M, we shall

have _

or

m.y/a

Thus the inequalities of ^, which have for a divisor (i'n'—iny will

make known those of ^', which have the same divisor. These ine-

qualities are, as we have seen, affected with contrary signs, if n and

n' have the same sign, or what comes to the same thing, if the two

bodies m and m' revolve in the same direction ; they are besides in a

constant ratio to each other ; hence it follows, that if they appear to

accelerate the mean motion of m, they will appear to retard that of m',

according to the same law, and the apparent acceleration of m, will

be to the apparent retardation of m', as m'.\/a' to m.\/a. The acce-

leration of the mean motion of Jupiter, and the retardation of

the mean motion of Saturn, which the comparison of ancient

with modern observations made known to Halley, being very nearly

in this ratio ; I have inferred from the preceding theorem, that they are

owing to the mutual action of these two planets ; and since it has

been demonstrated, that this action cannot produce any change in the

mean motions, independent of the configuration of the planets, I did

not hesitate to admit that there exists in the theory of Jupiter and

Saturn, a great periodic inequality of a very long period. And observ-

ing then that five times the mean motion of Saturn, minus twice that

of Jupiter, is very nearly equal to cypher, it appeared to me very

probable that the cause of the phenomena observed by Halley, was
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an inequality depending on this argument. The determination of this

inequality verified my conjecture.

The period of the argument {i'n't—ini), being supposed very long,

the elements of the orbits m' and m experience in this interval

sensible variations, which it is essentially necessary to consider in the

double mtegvsX ffakn* .dt^ . sin. (i'n't—int-^A). For this purpose, we

shall make the function k. sin. [i'n't—int+A) assume the form Q.

sin. (i'n't—int+i'e'—ie)+Q. cos. (i'n't—int-\-i'e'—ie) ; Q and Q' being

functions of the elements of the orbits, we shall have consequently

ffakn*.di\ sin. (i'n't—int-^A) = •

n*a. sin, (i'n't—int-\-i't—it)
^ _ 2c?Q' Sd^Q

(i'ri—iny V^ [i'n'^in).dt (i'n'—in)\dt^

^ (i'n'—inydt^^ S

3b 2

• Substituting for A its value iV

—

u—gzr—g'w

—

g"t—g"'i; sin. [in't—inf+A) = sin.

(in't—intJ^iW—ii). cos.(g'o+g'a'-\-g"i-{-g"'i')—cos.{in't—int+i't—it), sin. (g-w+^'w'-t-

g"H"g"'*)» hence the value of k. sin. {iri't—inf+A) will be given; calling in't—int+ i't'

.

—ii-/t+ b, the quantity to be integrated becomes fdt. fdt. siB.(^Ji+b)Q+/dt. /dt. cos.

(./l+b).Q, now one integration gives fdt. sin. (Ji-\-b). Q= rr- cos. {Ji+b)+-jrf.

COS. (fi + b). dt. -^.(= j^'^- sin. (/^+J)+ jx-f- sin. {.fi-\-h)dt.^+ 4c.

O \ dO 1 d^Q 1 d'Q
= ^.cos.(fi + A)-yF. ^. sin. (/<+&)+ _. ^.cos. (fi + b)^-^.-^,

sin.(y]!+ i)^&c. ; in like manner we can obtain by partial integration, yc?^ cos.(./?+A).Q'

= -^. sin (/<+6)+ -i . ^. cos. (yi + i) -jr.^- sin- (^2+*)—*c., in order

to obuin the second integrals, i. e. fdt. fdt. sin. (ft + b), each of the terms of the

preceding series into which the first integrals may be resolved, should be multiplied by

dt, and then integrated in the same manner as fdt. sin. (ft-\-b). Q, and if all the fac-

tors of sin. (Jl+ b), and cos. {ft-\-b) be respectively collected, we shall obtain by sub.

stituting foryand b, the expression given in the text.
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n'-a. COS. [i'n't—int-\-i't—u) C 2rfQ 3rf*Q'
\Q! +

(i'n'—iny I
' {i'n'—m).dt {i'n'—inydt

(i'n'—iny.dfi^

In consequence of the slowness of the secular variations of the elliptic

elements, the terms of these two series decrease with great rapidity.

We may therefore only consider the two first terms in each series. If

then we substitute in place of the elements of the orbits, their values

arranged according to the powers of the time, the first power being

the only one which is retained ; the preceding double integral may be

transformed into one sole term of the form

{F-\-E.t'). sin. (i'n't—mt-\-A-\-H.t).

Relatively to Jupiter and Saturn, this expression will serve for several

centuries before and after the instant, which may have been selected for

the epoch.

The great inequalities of which we have been speaking, produce some

sensible terms among those which depend on the second power of the

disturbing masses. In fact, if in the formula

^ _ 3w^^
ffakn\dt\ sin. {i'^—i?^ + A) j

we substitute for | and ^ their values

2i.m'.an''k
nt- -TTj-,

—
^t; • sin- i^t^t—int+A) ;

fA.(tn—my t j>

there will result among the terms of the order ra*, the following

• Assuming p= -
. , and/ = , ,

^rr. -rrr , the value of ^ = £.
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There will result in the value of |' a corresponding term, which is to the

preceding in the ratio oi m.\/a to —m'.>/d , it is therefore

3.i*.w»'*a*.n*.F C .— ,— 1 m.\/~a

66, It may happen, that the most sensible inequalities of mean

motion occur among the terras of the order of the squares of the dis-

turbing masses. If we suppose three bodies m, m', rr^', to revolve

about M, the expression for di2 relative to terms of this order, will

contain inequalities of the form A. sin. (?n/—?'n7+«V^+^)> now if

the mean motions of m, m\ rnf, &c., are such that in—?n' + i"n!',

may be supposed a very small fraction of n, there will result a very

sensible inequality in the value of ^. This inequality may even

render rigorously equal to cypher, the quantity in—i'n' + i'n", and thus

establish an equation of condition between the mean motions and the

mean longitudes of the three bodies m, ni, rnf'-, this remarkable case

obtains in the system of the satellites of Jupiter. We proceed to deve-

lope the analysis of it.

If we suppose M to represent the unity of mass, and if m, m', m",

be neglected in comparison with M, we shall have

ffdi^. sin. {irlt—int-\-(jl—p). sin. {irit—int—A)+ A) (a), now ify,p be supposed to be

very small, we shall have sin. ((p'—jj). sin. {in't—intJf A)) = (y—;?). sin. {i'n't—in/-f- A)»

and the cosine of the same quantity =1, in each case these expressions are true, for the

first power of the disturbing force ; •/ in the expression (a) a term occurs =£. cos.(i'n't int

+ A) (i'pf+ip). sin. (i'n't—inf—A)= — . (i'p'+ip)' sin.2.(in't—int + A), now i'p/ + ip

_ 3ian^k.(i'mVa + im'.^a'
, „ Sim'^aM , _ .—

:

, and E =r , "the coefficient of sin. 2.(n't—nt

fi.{i'n'—inf.V a! f*-"*

, .. 9i\m'°-.aV.k^ {i'mVa +i'm'V7 . ^ , ,_ ^ ,., . . .+ A)=: , ,
.,

:——• 7= ), and when the double integration is per-

formed, there will result the expression given in the text.
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we have also

dlzz ndt', d^ = n'dt; di"= nf'dt;

consequently

d»i 3 ^ da d^' 3 ,i da! d^?" 3 A da"

dt\- r^' a* ' dt - I'd'' dt - 2*" v»-

It has been observed in N°. 6l, that if we only consider inequalities

which have very long periods, we have

, , m , m' , m"
constant= 1 r H t ;a a a'

which gives

da , da'
. ,, da"

a* a* ff'*

It has been also observed in the same number, that if the squares

of the excentricities and of the inclinations of the orbits be neglected,

we have

constant = m.\/a + vd.y/d -\-m".\/a"
j

which gives

_ mda ni.dd . m\da"=—;= +—7^=- +
x/a x/a' n/o*

*

From these different equations it is easy to infer

d'^l _ 3 \ da *

~dr-'~2-'^' d^

d^_3_ m.n's / n—n" \ da

\fit
~ -2' m'.n • \n'—n")' a«

d*^"_ 3 m.n"i / n—ri \ da

dt ~ 2 m".n' \n-^'') ' a**

, I 1 2 dn da ^ d^K , i I da . ...

• n^ss—,
•• — -x* —r=—^. and—T^=:rf«=:— — .R . —r; '« '»" manner
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da

Finally, the equation— = 2/di?, of N°. 64, gives

zz 2diJ.

It is therefore only requisite to determine AR.

By N°. 46 we have,

m.r ,-N~JR = —jr- COS. (y'—v)—rri.(r*—2rr'. cos. (r/—5y)+r'«)
r"

yJInt'.r
+ ^. cos. (i/"—v)—m^(r»—Srr^''. cos. (5:;"_t;)+r"*)

the squares and the products of the inclinations of the orbits being ne-

glected. If this function be developed into a series arranged accord-

ing to the powers of the cosines of »'

—

v, of i/'—v, and of their

multiples : we shall have an expression of the following form,

/2= -^. ir,ry^^m:{r,ry\ cos. (v'~v')^m'.(r,rT\ cos. 2.(t/—r^)

-j-w'.(r,r')'". cos. 3.(w'—w)+&c.

+ -^' (,r,r'y^^rri'.{ryY\co%.{v''^v)^rri'.{ryT- cos. 1.\x/'^v)

4 2

maa
,
maa _ "" = f as n=— 1- 1 7^=— , therefore multiplying

-I -t , „ . m.nn'.da m'nri.da' mn'n".da
both sides by »in'=a ''. a' *=, we shall obtain 1 1 — = -^ 1-

m'rm'Kda' ^ da' _ m.n'.{n—n") da_ ..J^^_^ „,i _^__i.M.n't
J? '

'•*

a«
~ ?«'.«.(«'—«")' a« '

'•'

dt 2' a'^ ^''i^'

(M_n^ -JL the expression for—r- may be obtained in a similar manner.
(«"_«') a*

' ^ dt
^
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heuce we obtain

dR=

dr.

m
<

2

"2~

]d.(r,rT

dr \ +'^'l dr \'
^os.{r/-v) + mf.

d.(r,ry^

dr
. COS. 2.(5/—f)+&c.

\

d.{r/'y^
]

:
dr "

+m\^d.{ryy^\
dr '

,008.(5/—!:;)-|-»i''.

(^ j \^y.
(-008.2.(1/^—t;)+&c.

I +^t, S ^'-(r.r^Tl sin. (»'-t;)+2ffz'.(r,r0''^ sin.'2.(t;*-t;)+&c.

L ' W'.(r,r'/)a).sin.(r;^-t;)+2OT".(r,r"p.sin.2.(t;"-y)+&c.

Suppose agreeably to what is indicated by observations, in the system

of the three first satellites of Jupiter, that n—'^n', and n'—2«". are

very small fractions of n, and that their difference (n'—9,n')—(n'—^2w"),

or n—3n'-\-2n!' is incomparably less than each of them. It results

Sr
from the expressions of — , and oi Sv, of N°.50, that the action of wt'

produces in the radius vector, and in the longitude of m, a very sen-

sible inequality, depending on the argument 2.(n7

—

nt-{-t—1). The

terms relative to this inequality ,have for a divisor 4.(n'—n)*—w*, or

(n—^n').(3n—2m'). and this divisor is extremely small in consequence

of the smallness of the factor n—2n', It appears also from a conside-

ration of the same expressions, that the action of m produces in the

radius vector, and in the longitude of m', an inequality depending on

the argument (n't—nt-\-t—e), and which as it has for a divisor («'

—

n)*

—n'' or n.(n—2«') is extremely sensible. It appears in like manner,

that the action of m" on m produces in the same quantities a consi-

derable inequality, depending on the argument 2.(w"/^

—

n't-\-i"—«').

Finally, we may perceive that the action of m', produces in the longi-

tude and radius vector of m" a considerable inequality, depending on

the argument n''t—n't-\-(''—t'. These inequalities have been recog-

nized by observations, we shall devclope them in detail in the theoi*y
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of the satellites of Jupiter ; their magnitude relative to the other ine-

qualities permits us to neglect the latter in the present question. Let

us therefore suppose

ir-=.m'.E'. COS. 2.(wV—n^+t'—t) ;

ivzzm.F. sin. 2.(n't—nt+

1

—i)
;

iT^=m".E". COS. '2.{nl't—nt-]rt"--i')+m.G. cos. (j^f—nt+t'—i)
;

Sv'=m".F". sin. 2.{n't—n't+i"—i')+m.H. sin. (n't—nti-t'—i)
;

irJ'-m".G". COS. {n"t—n't-\-e"—t')
;

iv"=m".H'. sin. (n"t—n't + i"—i')-

It is necessary now to substitute in the preceding expression for d^,

instead of r, v, r', v', r", v", the values of a-tSr, ni-\-i+h', a'+3/,
n't+t'+Sv', a"-\-ir'', n"t + ("-\-Sv", and only to retain the terms de-

pending on the argument nt—3n't-{-2n"t+ i—Ss'+Sf", it is easy to see

that the substitution of the values of ir, Sv, Sr", Sv", cannot produce

any such term. Therefore it can only arise from the substitution of

the values of Sr^, and of Sv' ; the term m'.{r,r'y^\ dv. sin. (y'—v) of

the expression of d7?, produces the following quantity :

2 \E\ —^V F .(a,a'y^).sir\.nt-3n'l-if2n't+(-3f]-2i").

And it is the only quantity of this kind, which the expression of dR

PART I. BOOK II. " 3 C

* (r/)(«) = (a,ffl')W+
'^•^''f^^'\ ^r+ ^6^. 3/ + &c. ; sin. (v'—v) = sin. («'<+»'

da da

+3i/

—

nt—e—3w) = sin. (n't—nt + s'—f)+ cos. {n't— ni + s'— »). dv' &c. ; by substi-

tuting for V, we shall have ^i^^^, J/ =
d.(a'a')W

^ ^^„^,^ ^^^ {2.{n"t—n't+ •"—s'),

da da

which when multiplied into sin. {n't—n^-j-s'

—

i) gives a term of the form —m".E". sin. (nt

—Sn't-\-2n"t-\.i—3£'+2e"), in like manner by substituting for 3d', we obtain cos. (»V—
»if+j—s'). ivf =— m".P. sin. (nt—3n't + 2n"t + s—3e' + 2s"), hence if we substitute for

dv its value, there will result in the term m', (r,r')('). dv. sin. (i/—r), the expression which

is given in the text.
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ir
contains. The expressions of— and of J^ of N°. 50, being applied to

the action of m" on m', give, when the terms which have n*—2m' for

a divisor are retained, and observing that n" is very nearly equal to

UL
2 '

E' _ ^ L t dd S
' ri—n ^3

~d~
~

(w^2n").(3w'—2w")

therefore we shall have

^^_ m'.rri'.ndt ^, \ %\a,a!T {d.(,a,a'y^) i

2 ' 'I a' da' S

X sin. (nt—3n't+2n"t+('—3s' + 2s")=— 4- -r.

This value of -^- being substituted in the values of —~-,—^ , and
a* ° dt dt

d''l"

^ •, will give, because n is very nearly equal to 2n', and n is very

nearly equal to 2«";

* In page 296, if we substitute for —5— , A'-^\ their values, the coefficient of cos.
da!

2inH-n't+ ."_0 becomes = ^ . n'^.a'^'-^^ + -^, «'.(a;«"P = t!^'

;

^ ' '
2 da! n —n" a'

(n'—2n").(3«'—2n")

in like manner the coefficient of sin. 2.(«"i—n't+s"—t') in the expression for Jv', given

b page 298, = In'', a-. -^J- + -,-^, . a'.(a!a'T
^E"

-=F" = '

^. («'—2n").(3n'—27i")
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d^_ ^^+ ^S-= e^*- sin. Ciit—^nf-t^n'r+i—Si + Se") ;*
at dJ' atr

(6 being made, in order to abridge, equal to

Or more accurately,

SO that if we assume

V = ^—3^' + 2|"+ £—S5'+ 2£",

we shall have

— =. €.«*. sin. F.
dt^"

As the mean distances a, a', a", and also the quantity n vary very

little, we can in this equation consider €«* as a constant quantity. By

integrating it, we obtain

3c2

dr?, 3 I da
* —4- = . n^ therefore multiplying by n, we obtain the coeflScient

ar 2 a*

of—r= — ^. n" =— -^ . n=a, therefore by substituting for —j-
, we obtain —^ =

j„ /2.y ) _ '^•("^«0"'

y „"-.„'^"o. sin.(«f_2n7+3?j"«+s~3»'-2e"); in like

„ da . , ^d°t S mn'i 3? 9 wn'^a'
manner the coefficient of—- m the value of -rr = -^' —;—

•
—^='7;*—;— '

"- dt- 2 m'.n * 2 »»'.?<a- „
2

which being multiplied into m"m'ndt, gives (by substituting for n'-, its value /—
) 1

—-

^^=1. E„(Wfl_dJ^Y_^ ^,^^_,^^,, sin.(«.-3«.+2«"/+.-3.'+2.«).
rfr 2 \ a' da' I '^

1d-l"
The value of - - may be obtained in a similar mamier.
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±dV
dt =

\/c—2S«*. COS. V

c being a constant arbitrary quantity. From tlie different values of

which this constant is susceptible, the three following cases arise.

If c be positive and greater than ±2S«*, the angle F will increase

continually ; and this will be the case, if, at the commencement of

the motion («

—

3n'-j-2n"y is greater* than ±2Qn*.(l +cos. V), the su-

perior, or lower signs having place according as S is positive or negative.

It is easy to be assured, and shall we point it out particularly in the theory

of the satellites of Jupiter, that 6 is a positive quantity relative to the

three first satellites; therefore, supposing T a- = tt— V,f (n being

the seraicircumference) we shall have

dt=
^"

\/c-f-2S«*. COS. ra-

in the interval from zr = 0, to la ir— ; the radical v/c+^^??2*. cos.ra^

is greater than ^2Sn*, when c is equal to or greater than 2Qn' ; there-

fore, the time t in which the angle u passes from zero to a right angles

is less than 7=^* '^^^ value of S depends on the masses m, m',

fn". The inequalities which have been observed in the motions of the

three first satellites of .Jupiter, and which we have already adverted to,

assign relations between their masses and that of Jupiter, from which it

* If c be positive and greater than ± 2£n', the angle V must always increase, for the

quantity under the radical sign can never be equal to cypher ; c— 2?n'. cos. ^ = I -77-)

= (n— 3/i' + 2n"f, if this quantity be greater than ± 2£n'.(l :+. cos. V), c—2Zv?. cos.

Fmust be greater than ±2. S«^.(l rpcos. V) ; i. e. c must be greater than 2Sn'.

f By making q: -srz: ir-— V, we get rid of the ambiguity of sign in the value oidU
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follows that >= is less than* two years, as we shall see in the

theory of these satellites. Therefore the angle ra- passes from zero to a

right angle in less than two years ; now from observations made on

Jupiter's satellites, it appears that since their discovery, the angle w
has been either equal to cypher, or insensible, consequently the case

which we have examined, is not that of the three first satellites of

Jupiter.

If the constant c is less than ± 2Sw*, the angle Fwill only oscillate, it

will never attain to two right angles, if € be negative, since then the

radical v'^c—2g?z*. cos. V will become imaginary ;t it will be never

equal to cypher, if € is positive. In the first case, its value will be al-

ternately greater or less than cypher ; in the second case, it will be

alternately greater or less than two right angles. From all observations

made on the three first satellites of Jupiter, it appears that this second

case, is that of these stars, therefore the value of £ ought to be positive

relatively to them, and as the theory of gravity assigns a positive value

to €, we ought to consider this phenomenon as an additional confir-

mation of this theory.

Since according to observation, the angle a- in the equation

* As 7) =: -—- , P being the time of revolution of the first satellite, we have t Z

P
; the value of £ depends on the masses m, m', m", and also on n, ri, n", these last

are had by knowing the periodic times of the three first satellites, and the first are deter-

mined by their effects in producing certain inequalities, and are obtained in the same

manner as the masses of Venus, Mercury, and Mars, are determined from certain effects

which they produce on the earth's orbit.

-|- When c is negative and less than q:2Sn', the radical is evidently imaginary when

F=?r ; •/ V can never be = to «-, and it must be alternately positive and negative, its

mean value being equal to cypher. If € is positive, the radical is evidently imaginary

when r=0; v '" t^'® case V can never be =0, its value is therefore periodic, and in

its mean state is equal (o ir.
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dtz= .

^"
,*

V C+2g?l*. COS. TS

must be always very small, we can suppose cos. w = 1

—

^t^-*, and the

preceding equation will give by integrating it,

w = A. sin. Qiit.\/1, + y),

X and y being two constant arbitrary quantities, which can be deter-

mined by observation alone. Hitherto, it has not indicated this ine-

quality, which proves that it is extremely small.

From the preceding analysis the following consequences may be

inferred. Since the angle nt—3n7-(-2n'^?+£

—

3/—2/ only oscillates

on one side or other of two right angles, its mean value is equal to two

right angles ; therefore we shall have, if we only consider mean

quantities, n — 3n' + 2Tf zz ; that is to say, the mean motion of

the Jirst satellite plus tmce that of the third, minus three times that of

the second, is exactly and constantly equal to cypher. It is not ne-

cessary that this equality should accurately obtain at the commence-

ment, which would be extremely improbable, it is sufficient that it should

be nearly the case, and that n—3}i'+2n''^, should be, abstracting from the

sign, less thant x.n.^^; and then the mutual attraction of these three

satellites would have rendered this relation rigorously exact. We have

therefore n—3n' + In" equal to two right angles ; hence, the mean lon-

gitude of the first satellite, minus three times the mean longitude of the

second, plus twice tliat of the third is exactly and constantly equal to

* Tlie equation , is that of a pendulum whose length is-^ , i. being
VC+ 'iSn". COS. ar

**"

the number of seconds in a revolution of the first satellite, the amplitude of the arc of vi-

bration being -— •

* Or in other words, at the origin of the motion, it should be comprized within the

limits ± x.n.VZ,
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two right angles. In consequence of this theorem, the preceding va-

lues of Sr' and Sv are reduced to the following,

Sr' = (m.G—mfW)- cos. (n't—nt+^—i) ;*

iv'= [m.H—m'F'). sin. {n't—nt-\-i'—i).

The two inequalities in the motion of m!, arising from the action of

m and oim". are consequently confounded into one, and will be always

combined. It follows also, that the three first satellites can never be

eclipsed together ; they cannot be seen together from Jupiter, neither

in opposition nor in conjunetion with the sun ; for it is easy to

perceive that the preceding theorems obtain equally for the mean sy-

nodic motions, and the mean synodic longitudes of the three satellites.

These two theorems likewise obtain, notwithstanding the changes which

the mean motions of the satellites may experience, either from a cause

similar to that which alters the mean motion of the moon, or from the re-

sistance of a very rare medium. It is evident that if these different causes

d''V
operated it would be merely requisite to add to the value of —jpr > ^

quantity of the form j"
, which can only become sensible by inte-

grations ; supposing therefore Vznir— -nr, and ts very small, the differ-

ential equation in V will become

0=——- + e«*.:D- + ^
df ' df

As the period of the angle w/.v^S embraces but a very few number of

years, while the quantities containedt in —rv ^^^ either constant or

* For2n"<.J.2i"—2n'i—26' = a-+M'i—2<f+6'—t, V m".E".cos. 2.(«"<—n'^-f-s"—t') =
—m".E". COS. (n't—n^-f-s'—s), in a similar manner, for the value of m".F". sin. 2.{n"t—
n'i+i''_8') may be sabstituted -~m".F". sin. (n'i—nt-J-s'—s).

t The period of the variation of ct, and •/ of V will be determined by means of the
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extend to several centuries, we shall obtain very nearly, by integrating

the preceding equation

7^ = x. sin. (nt.\ ^+y) — g^^r^-

Thus the value of w will be always extremely small, and the secular

equations of the mean motions of the three first satellites will be coor-

dinated by the mutual action of these stars, so that the secular equation

of the first plus twice that of the third, minus three times that of

the second, is equal to cypher.

The preceding theorems establish between the six constants n, n', n"

e, e, £*, two equations of condition by means of which these arbitrary

quantities are reduced to four. However they are replaced by the two

arbitrary quantities \ and y, of the value ofw. This value is distributed

between the three satellites in such a manner, that naming p, p', j/^,

the coefficients of sin. (7it.\/i-j-y) in the expressions for v, f', 5/ ; those

c/*<? d*l' d^^'
coefficients are in the ratio of the preceding values of ,\ i -r^' -j^»

\M/L (J/y d/L

and moreover, we have p—3/y+2p''=iA. Hence, results in the mean

motions of the three first satellites of Jupiter, an inequality which differs

for each of them in the value of its coefficient, and which produces in

these motions a species of vibration the extent of which is arbitrary.

It appears from observation that it is insensible.

67. Let us now consider the variations of the excentricities and

,_ P
equation nt.vZ = 2?r, •/ as nP=27r, tzz ~7^\ hence the two limits of* depend on those

The integral of the equation ——- + S?i'-w=0, is «r=A'. sin. («<.^^£+ y) ; nd in the

ofC.

IP intPCTal of flip pniiatinn .

equation isr=x. sin. (ni.V'S+ y)— ; the mean value of -37-, and •/ of n— 3h'-|-
Z.n .at- lit

^n') = 0.



PART I.—BOOK II. 385

perihelias of the orbits. For this purpose, let the expressions of df,

df, df", found in N°. 64, be resumed : naming r the radius vector of

m, projected on the plane of x, and oi y ; v the angle which this

projection makes with the axis of x, and 5 the tangent of latitude of m
above the same plane ; we shall have

x-=zr. COS. v; y z=.r. sin. w ; z-=.rs\

hence it is easy to conclude

X.
\dy\ ^' Idx \-ldvS'
idRl idR-i ,, , ^- idR) ^dRf

sin.

(dR .*

SdR} (dR) ^ , ,, . {dR) . Cc?i?)
5. COS.

L (is ) (. ar ^

dR:^dRi

moreover, by N°. 64, we have

PART r. BOOK ir. 3 D

, {^\_ (^\ dr fdR\ . dv fdR\ ds (^\ _ (dR\ dr /'iR\

^ \dx)- \dr)'~d^'^[Tv)'~d^'^['dIJ' lL'U^)~[d,)- dy/^Kuv)'

dv /dR\ ds /- X dv . v^

2 ds Z.X dv x- ds zu , dR— •• —
. COS. v=—r ; -r~ = t-> hence ar.

Vxt+^i' ' dx t^ ' di/' ' r' ' dy r^ dy

/dR\ fdR\ dR (r. cos. u r^.s^. cos. v\ dR .
dR

manner x.l -r- ) — z. ( -— I = -—— i 1 • 1 — r. cos. v.s. + —-•
\dz) \dxl ds \ r ^ 7^ I dr * ^ dv

rs. sin. v , . i •= the expression in the text, and by a similar process the remaming terms may
r

be obtained
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xdy—ydxzzcdt'y xdz—zdxz=.c!dt, ydz—zdy—d'dt;

these differential equations in f,f\ f", will consequently become

df=-dy.\-^^\-dz.p+ s^).co..v. j-^-r.. COS. r. \-^[ +

\dR}->
..sm...

J^J^
,^ S UlR)

,
cos.w (.dR) 5. sin, w {dR) } c'-di ^dRf

C car) r (Cf) r ( ds )) r ( dsy

df'zzdx. ] -=- i—dz. ] (1 + 5*). sin. v. ]^-l — rs. sin. v. .
,Cdv ) i^ '

t ds S id?

SdR-)}

( 6?y 3 )

+ Cfl/. SCOS. V. <-z->

dR) — s.

COS.

sin.f ^dR} 5. COS. t' ^dR}} d\dt

( dv S r i ds

$dRi
I dsS'

dj' z=dx. J(l-|-s»). COS. '"']--j-\—r.s. cos. vA-j->-^s.sm.vA--r^'>

dR) UR}
-r- (

—

S. COS. r. <^- s-

dr ) (dv )

j-dy.<(l-\-s').sin.v.\-j-i— r.5, sin, v. V-^[—s. cos, t
C Cus ) t dr )

, , T, ^ {dRf sin. vidRl 5, cos. f idRf)
c ( dr y r (dv ^ r i ds j)

, ,, ,. S • SdR}
,

cos. w ^dR) 5. sin. t' {dRl 1

^ L dri r L dv ) r ( ds^}

The quantities c, c" depend, as we have seen in N". 64, on the

inclination of the orbit of m to the fixed plane, so that these quan-

tities become equal to zero, if this inclination is nothing ; besides it is

easy to perceive, from the nature of i?, tiiat j -j^i is of the order of the
\_ do \

inclinations of the orbits ; tlierefore the products and the squares of

the inclinations of tlie orbits being neglected, the preceding expres-

sions for djl and df', will become
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„, , /dR\
, ,, C fdR\ COS. r fdR\^

but we have

dx zz. d.[r. COS. v); dyzz d.{r. sin. v) ; cdt =. xdy—ydx n r*dv
;

therefore we shall have

df-=.— (dr.%\x\. v-\-2rdv. cos. v).
( -7- )

—r*.c?r. sin. r. (
"j"

)
>*

df'zz(dr. COS. t;—2r</y. sin. f). |
-y-

) + r^'.dv, cos. ^'
I 77- 1 •

These equations will be more exact, if we assume for the fixed

plane of x and y, that of the orbit of vi at a given epoch ; for then d,

d\ and s, are of the order of the disturbing forces ; consequently the

quantities which are neglected are of the order of the squares of the

disturbing forces multiplied by the square of the respective inclination

of the two orbits of m and of iii.

The values of r, dr, dv, ( -7-.
) (

-j-
)

remain evidently the same,

whatever be the position of the point from which the longitudes are

reckoned ; but if v be diminished by a right angle, sin v will be changed

into —COS. V, and cos. v will be changed into sin v, consequently the

expression for df will be changed into that of df ; hence it follows,

that if the value of dfhe developed into a series of the sines and cosines

of angles increasing proportionally to the time, the value of df will

3d2

cdt. COS. V , , m • . /. /liRy= rdv. COS. V, •,' the coefficient of (— j in the value o{df is 2rdv. cos. v.
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be obtained by diminishing in the first, the angles c, c, -a, w', 6 and 6',

by a light angle.

The quantities y andy determine the position of the perihelion

and the excentricity of the orbit ; in fact, we have seen in N°. 64, that

f
tan. 7=--^

I being the longitude of the perihelion referred to the fixed plane.

When this plane is that of the primitive orbit of m, we have (as far as

quantities of the order of the squares of the disturbing forces multi-

plied by the square of the respective inclination of the orbits) I zz -u,

zs- being the longitude of the perihelion reckoned on the orbit, there-

fore we shall then have

which gives,

tang, w =^ ;

sin. w ZZ — .
' ^=r : cos. -ST

—

hence results, by N". 64,

Thus c and c" being on the preceding hypothesis of the order of the

disturbing forces,^'''' is of the same order, and neglecting the terms of

the square of these forces, we shall have (^.e rz "J f^-\-f"'' If in the

expressions of sin. is, cos. m, we substitute instead of >//''+ J"', its

value f*e, we shall have

(ue. sin. uT r: /' ;
jj-e. cos. -a- rr^

;

these two equations will determine the excentricity and the position of

the perihelion, and we can easily infer
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t.\edezzf.df-\-f'df ;
y.\e\d^ -fdf-fdf.^

By assuming for the plane of ^' and of j/, that of the orbit of 7n ;
we

shall have by N*". 19 and 20, in tlie case of invariable ellipses,

a.{\—e*) _ r^.dv. e. sin. {y—tt)

~l+e.cos. (w—37)
' ~ fl.(l—e*) '

r^dv—a^ndt. \/l—e*
;

and by N". 63, these equations subsist also in the case of variable el-

lipses ; the expressions of ^and of df consequently become

df-= / -. (2. cos. v-\-^e. cos. •za'+^ff. cos. (St;

—

sr)). { -^rr )
^

— a^'ndLVl—e*. sjn. vA^j ;

df = ^^£=-^.(2. sin. r+f.e. sin. ^+\.e. sin. (2v—^). (-^ j

-\-a*ndt.s/\—e*. cos. v. ( ^ i >

therefore

/' rfar fdf'—f'df
* fC-.e=r^r; •:fc\ede=fdfJrfdf: tan. ,, = ^, ;-—^ =-LJ—,J-J-

*.• substituting forf, we have fi^^dra =-fdJ'—fdf.

. . ,„ r^. f/u.e. sin- (u—w). sin.u

f Substituting for dr and t^dv, we obtain dfz=L

<la\ndtV I—e". (cos, v. (1 + e). cos.(7;—nr) __ andt
^ ^^^^ oA.g.sm. v. sin. (i>

a.(l—e') -/l—e'

-J-2(r. cos. V. cos. (u—w) ; e. sin. u. sin. (u — et) =ze. sin. ^v. cos.w— e. sin. v. cos. r. sin. a-.

'2e. cos. V. cos. (u—a-)=2e. cos. °i). cos. ar-)-2e. sin. v. cos. i). sin. ^=6. (sin. ''i)-[-cos. -ti). cos. ti-

I . X , ^
cos. (2u—w) ,

cos. 3-

-l-e.cos.D.(cos.u.cos.a-+sin. u.sin.'CT)=e.cos.v cos.(u—iij) = e. ^^r f-e.
—-—

,

',' by making similar terms to coalesce we obtain the expression given in the text, we can

in a similar manner derive the other expressions.
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andt . . N ,^ , , ^^ fdR\
ed-m zz J- - . sin. {y—rs). (2+e. cos. (w—ra-)). I j—

]

+
^

COS. (t;-^).
(^ ^j ,

de =
^ ^

(2. COS. {y—vs)-\-e-\-e. cos. *(y—•nr)).
( -jZ

)

a^ndt , , fdR\
^/\^e\ sin. (v—nr).

^ ^ j
•

I"

This expression for de may be made to assume a form which in se-

veral circumstances is more commodious. For this purpose, it may be

observed, that drJ-r;
J
= di2— ^'"•{'J~) > ^y substituting in place

of r, and dr their preceding values, we shall have

r\dv. e. sin. (v— =)•{ ^) =^-C^—^')- di?

—

a.(l—e*). dv.( ^ )»

but we have

r"- .dv =a''ndt.\/

\

—e" ; dv= ^.j

7idt. ( 1 +e. cos. (f

—

zr)y
(1—e*)i

• fdf'—— ^^^^-- . 2. sin. V. cos. arH . e. sin.V. cos. w+^e. sin. (2«-^w). cos. «».( ^i- )

ldR\
-\-ltxa\ndt.V\—e'. cos. v.cos.w.

^^J

f'.df= — !^±^^, 2. cos. V. sin. =r + -|-. e. sin. o-. cos. cr+Je. sin. ,j. cos. (2"—^)-( ^j
.^1—e°

, . /iiJ\— ^e.a'.wc?i.v 1—e*. sin. v. sm. w.
y-j-f \

•: fc-e\dz, =fdf'--f'df=— ~=- 2. sin. {v—a)+^.e. sin. (2t)—2»).^^ j.

, . /dR\
-\'fie. arndt.y I—e*. cos. (v—d-). f —I,
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therefore,

, . fdR\
a'ndt.vl— e*. sill, (y—sr). [~r:)

= —!^ -. dR ; . ri+e. COS. (v—zr))\ f -^ 1

;

therefore the preceding expression for dv will give

ede = <^rtdW'^\
(^ ^ _ <i=!!l. dR.

fj.
\dv J f^

This formula may be also obtained in a very simple manner, by the fol-

lowing method. By N°. 64, we have

dc _ (dR\_ fdR\_ fdR\
dt -y\dx) '• \dy)-~\dv) '

but by the same number we have c=\//*a.(i—e*), which gives

thereforet

^^ </g.v/ji*g(l-g*) ede.\/fi.a .

2a -s/\—e'-
'

.*=^^J^. (f)+.,,_.), ^.
then by N°. 64, we have

i^ - rlT?.

which is evidently equal to the expression given in the text, the value of de may be ob-

tained in a similar manner.

t Dividing both sides by J^^ and observing that «« =-^ and vV;:^=£'
VI—e- ai '

we obtain the value of ede, which is given in the text.
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thus we shall obtain the same expression for ede, as has been given

above.

68. It has been observed in N". 65, that if the squares of the dis-

turbing forces are neglected, the variations of the greater axis and of

the mean motion only contain periodic quantites, depending on the

mutual configuration of the bodies m, m', m", &c. This is not the

case with respect to the variations of the excentricities and of the

inclinations : their differential expressions contain terms which are -

independent of this configuration, and which if they were rigorously

constant would produce by integration terms proportional to the time,

which would at length render the orbits extremely excentric, and

very much inclined to each other ; consequently, the preceding ap-

proximations which depend on the small excentricity and inclination

of the orbits, would become inadequate and even erroneous. But the

terms which being apparently constant, enter into the differential

expressions of the excentricities and inclinations, are functions of the

elements of the orbits ; so that in fact they vary with extreme slowness

in consequence of the changes which these elements experience. We
may conceive therefore that there ought to result from them considerable

inequalities, independent of the mutual configuration of the bodies of

the system, the periods of which depend on the ratios of the masses

m, m', m".hc., to the mass M. These inequalities under the deno-

mination of secular inequalities, have been already considered in

Chapter VII. In order to determine them by this method, let the

value of df, given in the preceding number, be resumed

andl , _
, ,^ NN [dK\

dj— 7j=S- (-• co^- '^'+1- ^' ^os- =r+4. <?. cos.(2r—=r)). ( -^ ]

— a^ndt.\/\—e*. sin. v.(^y

In the developement of this equation we shall neglect the squares
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and products of the excentricities and of the inclinations of the orbits

;

and amongst the terras depending on the excentricities and incli-

natiens, we shall only retain those which are constant. Let us then

suppose, as in N". 48,

r = «.(!+«); r' = a'.(l+u;),

V = nt-{-i+v^ t/ z= ?i't-\-i'-\-vf.

This being premised, if we substitute in place of R, its value found in

N". 48, observing that by the same N". we have

( rfr 5
~ T'lda) ~^

I da )

finally, if we substitute in place of m,, tt^', v^, »/, their values

—e. cos- (nt + c—J3-), —e'. COS. ^m'^+e'— zr'), 2e. sin. (w/-f i—w),

2e'. sin. (n't+e—w'),

which are given in N". 22, and if among the terms which depend on

the first power of the excentricities, we only retain those which are

constant, we shall find (the squares of the inclinations and excentri-

cities being neglected,)

_,^ am'ndt . C idA^'^-)
, , C^^A'^^t).

or =: . e. sm. tj.< a. <—j

—

i- 4- a'.< , . S^
>*

^ 2 (. t da S C da ^

}

+aM. e. sin. .•.{a.-+ J„.{f^}+4„..{^}+i.a-.{^^,}}

:'«rf^.S.|f.A«+ ^a. {^^}}- sin. (i.(n7—w^+Z—0+n^+O J
—am

PART I. BOOK II. 3 E

* Sin. u= sin. {nt—i+ v) = sin. (n<-J-t). cos. v,-\-coi.[nt-\-i).im. v„ now sin. v;=v,—
-^-{- &c., COS. t!;=:l ~--\- &c., hence substituting for r, its value 2.e. sin. («<+«—w),

and neglecting the square of e, we obtain sin. (nf-f-e-J-uJ = sin.(?i«-}-t) + cos. (nt + «).



394 CELESTIAL MECHANICS,

The integral sign S extending in this expression, as in the value of

R of N°. 48, to all entire values of i, as well positive as negative, the

value t = being included.

2e.sia.{nt-\-i—w), differencing 72 with respect to a, and retaining those terms only in

which the first power of the excentricity or inclination can occur, and from which we may

obtain constant quantities, the first term of the expression for -(diiferenced under these

restrictions) will give —;— , the second term will give —;— , and also a. —pr— , •/ (1

—

da aa da*

+
/rf«\ „

,
,/(dl^''\ //rfACA /(^ACu

6—w), now this quantity should be multiplied into sin. u, or into sin. (nt-\-i)-{- cos. (nf+s).

2e. (sin.(ni+s

—

vr) ; hence, performing this operation, neglecting the square of e, and we

'rfA'"'
shall have the coefficient of —-j— =:2.e. cos.(ni+e). &\a.(nt-\-t—'a)-{-e. cos. {nt-\-t—w).

sin. (jit-\-i)—e. cos. {iit-\-i—-a), sin. (^nf +e)=2e. cos. [nt +«). sin. (nf+£—w) = e. sin. (2)

f/iA
(«t+s)

—

ct)—e. sin, a- ; in like manner, the coefficient of—a. —r-?— . is e. sin. (nt+s). cos.
da

(»f+i—Kr)=— . sin.2.(«<-}-t)—ar)+ — . sin. w ; hence, by multiplying by — , see N°.

48, the constant part of the second term of the value oi dfzz —-— . dt. e. sin. w.

//rfAloiN a /d''Am\ \ . ,.,

manner, to obtain the coefficient of e'. sin. -a-', let the

third and fourth terms of the value ofR be differenced with respect to a, [i being equal to

- 1. e'. cos. {n't—tii+ ^—i). cos. (n't 4" t'—=^) ; —A<''.

2.e'. sin. (w'<+ s'

—

jt'). sin. [ti't^—7it-\.t'—i) ; sin. (,nt-{-t) is the only part of the value of sin.

V, into which these quantities can be multiplied without introducing powers of e greater

than the first, •/ when for these quantities equivalent expressions are substituted, deter-

• J u .u »• r.i r ;
COS. (a+ 6) 4- cos. (fl

—

b)
mmed by the equations ot the form cos. a. cos. b =—;-^^—'—^-^ ^

. sm. a. sm.

6= cos.—"^ cos. ; we shall obtain the second and fourth terms of the second

line of the value of df; in order to obtain the first and third terms, let the third and fourth

(J n »

—7-/ =

( -r- ) , and then these terms become—. uj. a'. —;—. sin. (n't—nt+ s'—t) ; + -—. w,'Af>.

\di/ 2 da'
^ 1 / 1 2 '
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By the preceding number, the value of df will be obtained, if the

angles i, i , id-, and -r', be diminished by a right angle in that of f;

hence we deduce

df'= —. e. COS. ^. |..|-^j+la .|-^^||

- «'««^^- ' ^°«- - 1^"+ 4^- {-d^]+ ^^- {-^j+^l^^ll

+tt7»'«c?/.E.|iAc^+ia.|-^||. COS. {i.{n't—nt-^i'—i)-\-7it + X.

Let us name, in order to abridge, X the part of the expression of

df, contained under the sign S, and Y the part of the expression of

df' contained under the same sign. Moreover, let us make as in N".

55,

(0, 1):. ^.|a^|— j+ i.«3. |-^^j|

;

It should be then observed, that the coefficient of e'dt. sin. ts', in the

expression of df, is reduced to foTTl, when we substitute in it,, in

place of the partial differences of A'" in a', their values in partial

differences relative to a ; finally, let, as in N". 50,

3e 2

COS. [n't—nt+e'

—

i), when we substitute for «/ and t)/ their values, and proceed as before,

we shall obtain, after the resulting quantities are multiplied by 2. cos. («<+«). (the only

part of the value of cos. v which can be taken into account) ; the first and third terms of

the coefficient of d. sin. sr' ; in order to obtain the variable part of the value of df, e, d,

do not occur ; the first terra of the value of B, must be differentiated with respect to v,

or, what is the same thing with respect to e, and then multiplied into 2. cos. («/+ •),

this same term should be also differenced with respect to a, and then multiplied into

sin. (ni-{-s).
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e. sin. zT = h; d. sin. is =. h',

e. COS. Ts =! I; e'. COS. z/ =. I'

;

which by the preceding number, gives yzzt^-l ; J''= fj-h ; or simply,

f-=.l;f'z=. h, the mass of M being assumed as unity, and the mass

7)1 being neglected relatively to M ; we shall have

-^= (0, 1)./—[oriy+ffm'.TZ.F;

-7r-=—(0, 1 ).A+[orT]./«'.

—

am'.n.X.

Hence it is easy to infer, that if the sum of the terms analogous to

am'nY be named ( F), which terms arise from the action of each of

the bodies ?b', m", &c. on m ; if in like manner, the sum of the terms

analogous to —ani'nX, arising from the same action, be called (X),

finally, if we denote by one, two, &c., strokes, what the quantities (X),

( F), h and / become relatively to the bodies wz', »/'', &c, ; we shall

obtain the following system of differential equations :

= ((0, l) + (0, 2) + &c.).Z-[0]./'—[O].^'—&c.+(F);

=—((0, l)+(0,2)-i-&c.)./t+[o^]./i'+ [ori].//''+&c.+(A')

;

^/
= ((1 . 0) -K J . ^) + &c.)/'-[ro]./—[17^]/—&c.+( F ') ;

dt

dl

dt

dh'

^^1' =—((!, 0)+(l, 2)4 &cOA' + [irr)]./i+[Tr^].//+&c. + (A'0.

&c.

In order to integrate these equations, let it be observed that each of

the quantities h, I, //, /', &c., is made up of two parts, the one depend-

ing on tlie mutual configuration of the bodies 77i, m', &c., the other

independent of this configuration, cor.taining the secular variations of

these quantities. We shall obtain the first part, if we consider that when

we have regard to it solely, h, I, h', /', &c., are of the order of the dis-
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turbing masses, and consequently (0, !)./«, (0, l)./, are of the order

of the squares of these masses. Neglecting quantities of this order,

we shall have

dh' dV

therefore,

h-f{Y).dt; l = f{X).dt; h'=f(Y').dt; l'=f{X').dt; &c.

If these integrals be taken, the elements of the orbits being considered

constant; and if Q be what /(Q).f// then becomes, and if SQ be the

variation of Q, arising from that of the elements, we shall have

fiY).dt-Q—fSQ;

But as Q is of the order of the perturbating masses, and as the varia-

tions of the elements are of the same order, SQ is of the order of the

squares of these masses, therefore, if quantities of this order be ne-

glected, we shall have

f{Y).dt= Q.

We can therefore take the integrals /(y).^^/, /(A^.^//, /(F).<//,

&c., on the hypothesis that the elements of the orbits are constant,

provided that we consider these elements as variable in the inte-

grals ; by this means we shall obtain in a very simple manner, the

periodic parts of the expressions of //, /, h', &c.

In order to obtain the parts of these expressions, which contain the

secular inequalities, it is to be remarked, that they are furnished by

the integration of the preceding differential equations deprived of their

last terms ( F), (X), &c. ; for it is evident that the substitution of the

periodic parts of h, I, h, &c., will make these terms to disappear.

But if these equations be deprived of their last terms, they will coin-
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cide with the differential equations (A) of N°. 55, which we have

already discussed in detail.

69. It has been observed in N". 65, that if the mean motions ni and

n't of the two bodies m and m', are very nearly in the ratio of / to i',

so that in'—in, may be a very small quantity, very sensible inequalities

may result in the mean motions of these bodies. This ratio of the

mean motions may also produce sensible variations in the excentricities

of the orbits and in the positions of their perihelias ; in order to deter-

mine them, let the equation found in N°. 57 be resumed,

ede = ^^^dtVi=:? /^|_^:Ozr£l. ji?.

It follows from what has been stated in N". 48, that if we assume for

the fixed plane, that of the orbit of m at a given epoch, which permits

us to neglect in R, the inclination cp of the orbit of m on this plane
;

all the terms of the expression for R which depend on the angle i'n't—
int, will be comprized in the following form,

mk. cos. (i'n't—int-\-i'i—ii—gzr—g'-js'—g"^')
;

i, i', g, g', g", being integral numbers, such that we have Oiri'

—

i—g—
g'—^'. The coefficient R has for factor e«. ^'. (tan. yj", g, g', g',

being taken positively in these exponents ; moreover, if we suppose

that i and i are positive, and i' greater than i, we have seen in N".

48, that the terms of R which depend on the angle ?V/

—

tnl are of

the order i'—i, and or of an order higlier by two, by four, &c. unities

;

if therefore we only consider the terms of the order i—i, R will be of

the form ^. e'^. (tan. yy. Q, Q being a function independent of the

excentricities and of the respective inclinations of the orbits. The

numbers g, g", g", contained under the sign cos. are then positive

;

for if one of them, g, for example, was negative and equal to —f, k

would be of the ordery+ o^' \-g" j but the equation Qz=:i—i—g—^—^',

^\sz^f-\-^-\-g"z=.i—? + 2/'; thus k would be of an order higher than

i!— i, which is contrary to the hypothesis. This being premised by
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N'. 48, we have -| —7- r = j "j~
f>

provided* that in this last partial

diflFerence we make e—sr equal to a constant quantity, therefore the

term of ! -5- >- which corresponds to the preceding term ofR is

m.{i+g). k. sin. [i'7i't—int+i'i'—if(—gz7—g'zy'—g''''&').

The corresponding term of dR is

to', ink.dt. sin. (e'nV

—

int-\-i'^—u—g-m—g'Ts/—•^'^S'),

if therefore we only take such terms into account, neglecting the

square of e in comparison to unity, the preceding expression for ede

will give

- m'.andt gk •,.,,,.,..,,. , , ,,,,sae= — . sin. (int—tnt-{-t'^—n—gTs—gs/—g'^^).

fj-
e

but we have

^ = g^^ . e'^. (tang. yy\ Q= ^l

therefore we shall obtain by integrating

m'a7i (dk^ ,., , -i , , 1 «„,^

Now, if the sum of all the terras of R, which depend on the angles

i'n't—int be represented by the following quantity,

vi'P. sin. (i'n't—i?it+i'i-^ii) + m'.P'. cos. (i'n't—int+i'c—it);

the corresponding part of e will be

* Hence —^ = 6— 6,
\' —gta =:Z— gi, therefore if we substitute this quantity for

gvr, and then take the value of -7- , we shall obtain the expression for I—
J

, corres-

ponding to the value of R.
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COS. (i'n't—int-{-i'i'—ii)).

This inequality may become extremely sensible if" the coefficient in'—
in is very small, as is the case in the theory of Jupiter and of Saturn.

Indeed, it has for a divisor only the first power i'n'—in, while the

corresponding inequality of the mean motion has for a divisor the

second power of this quantity, as has been observed in N°. Q5 ; but

J —- > and -! —T- t being of an order inferior to P and to P", the ine-
\de) \de) ^

quality of the excentricity may be considerable, and even surpass that

of mean motion, if the excentricities e and c' be very small ; we

shall see examples of this, in the theory of the satellites of Jupiter.

Let us now determine the corresponding inequality of the motion of

the perihelion. For this purpose, let us resume the two equations,

which were obtained in N". 67. These equations give

df'^ l*de. cos. -a-^iAcdTsy. sin. w

;

hence, if we only consider the angle i'n't—int-\-i'i—ii—g-o!—g'z/—g''^',

we shall have

(dk "i

dfzzm'.andt.
-J-j-

|- cos. -ar. sin. (i'n't—int+i'i'—it—g-sr—g'-s/—g'^d')

—fxcdu. sin. -o-.

Let

— m'.andt. \\-^}+ ^'^'•l- cos. [i'n't—int+h—it^g--a-g^-s/-g'^')*

• By multiplying by sin. a, we shall have dfz^

—m'andt.f— \, (cos. w. sin. (irii—ini-f-jV— it—g-a—^w'—g" <')+ sin.w. cos. (i' n't—int+



PART I.—BOOK II. 401

represent the part of fj-edzr, which depends on the same angle, we

shall have

df:= m'.andt. \\-f\-\- h,^' (• sin.(«V#

—

int-\-t't'-u-{g-\').7ir-g'-sr-g''^'')

—'"' ~~¥'
'
^' ^^"" (*'"'^—^"^ + «'«'—««—(5"+

1 )• ^—g'-^—g'V).

It is easy to perceive from the last of the expressions of^ given in N°.

67, that the coefficient of this last sine, has for a factor e^+'.e'^.(tan.^ip)«";

r dk ~i
k' is therefore of an order superior by two units, to that of -j -7- >

;

consequently, if it be neglected in comparison to ^;7->-i we shall have

m'.andt f dk) ,-i >. • . • , , _//n/N

. ) -J- >-• COS. [in t—mt-{-i

i

—ii—gsT—gsf'—g"W),

for the terra of erfar, which corresponds to the term

m'.k. cos. (i'rit—int—int-\-ii'—it—gzr—g'-^'—^'^'\

of the expression of R. It follows from this, that the part of bt which

corresponds to the part of R expressed by

vti.P. sin. {irit—int-\-'H—?£)-}-m'.P'. cos. {i'r^t—int-^i't—it),

is equal to

—Tv-i—T-T— < -J -7- v. COS. (i n t—int + ti'—it)— { -^— t
f*.{i n'—tn),e 'Wde

)

^ '
(_ de }

sin. (i'n't—int-\-i'c—u)] ,

we shall by this means obtain, in a very simple manner, the variations of

PART I. BOOK II. 3 F

iW—u—gm—g''a'—g'6').)

—triandt.k. sin. to. cos. {in't—intJ[-i'i— it—gw

—

^a'—g"K) =
dk— m'andt, —7- . sin. (int—int—?V

—

U—ie—!)• w

—

g''a'—g"lf),
de ^

and the two terms into the value of the coefficient of are obtained from the

e ,
. , sm. (a4-i)4-sin. (a

—

b)
formula sm. a. cos. b = —i—— > '-.

2
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the excentricity and of the perihelion, which depend on the angle

i'lH—int-\-i'i'—ft. They are connected with the variation ^ of the

mean motion, which corresponds to it, in such a manner, that the va-

riation of the excentricity is

Sin '\de.dlj
'

and the variation of the longitude of the perihelion is

(i'n'-in)fda
Sin.e \ dej'

The corresponding variation of the excentricity of the orbit of w', due

to the action of ot, will be

1 \^l
i'n'.d'lde'.dty3i'.

and the variation of the longitude of its perihelion will be

(rn'—in) fdn
Si'n'.e' 'Xde')'

And as by N°. 65, we have ^'zz . ^ these variations will be
m'.\/a'

m.Va
_ f_^l_\ and

("'-^>0-^^V^ |^l
Si'n'.m'.'\/a'Xde'.dty si'n'.e'.m'.y/a' KdC)'

When the quantity i'n'—in is very small, the inequality depending on

the angle i'n't—int produces a sensible one in the expression of the

^ 5 _ Sm'anH
-

Tfj^ZIinf
— ''^' "^*'^' *''"''~ *'"* + «'s'—")

—

P'- sin. i'n't—int + iV—is^) differ-

encing ^, first with respect to e and then with respect to t, the coefficient become*

im'an^.i

(i'n'—^in)~''
^^ '^^ variable part is the same as the variable part of the expression for de,

bence the ratio of de to (j-^j is that of 1 to Sin ; in like manner it may be shewn, that

the ratio of d^ to (§), is that of 1. to -^
\de^ e (in'—in)
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mean motion, among the terms depending on tiie squares of" the dis-

turbing masses ; the analysis of them has been given in N°. 6d.

This same inequality produces in the expressions of de and d-u,

terms of the order of the squares of those masses, which being solely

functions of the elements of the orbits, have a sensible influence on the

secular variations of these elements. Let us consider for instance, the

expression of de depending on the angle i'7i't—int. By what precedes,

we have

. m'.an.dt ( (dP^ ,., „ . ^ , ., . .. ( CdP'^de=
^r-\{d^]' '''' (' «'^-"^^+^'^ -^0- {{^ }.

sin. (i'n't—int+i'i'—u)].

By N*. 65, the mean motion 7it ought to be increased by

> V ,

'
• L ' ) P' cos.fi'n't—int-\-i'e—ie—P'. sin. (i'n't—int+i'i'—ii) u

(in

—

tn)
.f*.

(.
^

- J

and the mean motion n't ought to be increased by

3m'.an''i' m.\/a ,_ ,.,,,.
'— T^TT—-:-T5—•——7=7. [P' cos. Ci'nt—mt+t^—u)—

P'. sin. (i'71't—int-\-i'^—ii)}

.

In consequence of these increments, the value of de will be increased

by the function

3m'.a''.in^.dt ,_ ,-. r rdP'^ fdP^'^

2iJ.\'s/a.{t'n—iny '\ \de) Idejj'

and the value of du will be increased by the function

3m'.a\in\dt _ cdP) „, {dP'}

2^W~a'.(t'n'-iny.e<'''^''^"'-^''''"-'^'']^- ll^r^'lwl'

we shall find in like manner, that the value of de' will be increased by

the function

3f2
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Sma''.s/a.in^.dt

and that the value of dz/, will be increased by the function

3ma\\/7i.in\dt ^. , ._ . .-^ (' fdP^ „ fc/P'll
o ^ '7-> ,

—'^^' • (.tm'Va'+ t'.m. ^a). i P. i -t-1+ P'-i -rr > >•

These different terms are sensible in the theory of Jupiter and

Saturn, and in that of the satellites of Jupiter. The variations of e,

e', CT and zr', relative to the angle i'n't— int may also introduce

some constant terras of the order of the squares of the disturbing

masses, into the differentials de, de', disy, and dz/, and depending on the

variations of e, e', zr and ta-' relative to the same angle ; it will be easy

by means of the preceding analysis to take them into account. Finally, it

will be easy by our analysis to determine the terms of the expressions

of e, -a; s' and «/, which depending on the angle i'n'i—int-\-i'i —it have

* Let the increment of nt = d.(nt') = j>.{^P. cos. A

—

F'. sin. A), and the increment of

d.[n't) = '——:
. p.(P. COS. A — P, sin. A), then we have d.(i'n't — int) =

_ m'.Va'

(i'TfltV d \
i\. p-(P. COS. A — /*. sin. A), calling this quantity a, and substitute

m'.Va' I

ing it for d.{in't — int) in the value of de, given in this page, we shall have the

dP dP'
factor —T— . cos. ( A+ a) — . sin. (A-|- a ), then by developing and remarking that

dP dP
sm. A= A, and cos. a=1 q-p., the preceding expression becomes—7— . cos. A —.

de de

dP . ^ f I'm.Va ,\ ,_ A r>, AS ,
'^P' A /

sin. A ;— . sm. A. ( = —i] . P.( "• cos. A

—

P'. sin. A)+ -r- . cos. A.{ —
de \ m'Va' ' de \

i'fw.v fli \

T^ —i). p.(P- COS. A

—

P'. sin. A), as sin. A. cos. A, contain only periodic functions,

m'.Va' '

the quantities multiplied by them, or any powers of them, need not be considered st pre-

sent ; but as sin. -A = i — i. cos. 2A ; cos. "A = A + ,^. cos. 2A ; we shall obtain (by

substituting for sin. *A, cos. *A), two terms which do not involve periodic functions, and

which when concinnatcd, become the quantity by which de is said in text to be aug"

ment
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not in'—in for a divisor, and those, which depending on the same

angle and on double of this angle, are of the order of the square of the

disturbing forces. These terms are sufficiently considerable in the

theory of Jupiter and of Saturn to induce us to have regard to them
;

we shall develope them in the requisite detail, when this theory will be

more particularly discussed in the 8th Book.

70. In order to determine the variations of the nodes and of the

inclinations of the orbits, let the equations of N°. 64, be resumed

--'•{4f}-{f}}'

If the action of m be solely considered, the value of R, of N°. 46,

gives

1
((a,'_x)H(y-^)*+(5r'-^)')ii

(dR^ (dR\ ^ ^ ( 1

< —r t
— ^- \ -^r- ?= m'.(x'z—z'x). \

- __i I
((x'—.r)»+(y—̂ )* + (z'—zyp

- ?__ I
((•f"-^)*+(i/'-y)*+(^'-*)*)'^
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Let now

by N°. 64, the two variables p and q will determine the tangent of

the inclination (p of the orbit of m, and the longitude 9 of its node, by

means of the equations

tan. <f~ ^p- + q^
J tan. <?=:-£-.

Naming p', q', p', q\ &c., what^ and q become relatively to the bodies

»»', rt^'y &c.. we shall have by N°. 64,

zzzqy— ipx-y z' =z qy'—•fx ; &c.

The preceding value of^ being differenced, gives

dt ~ c'\ 'di j
'

by substituting in place of dc and of dd', their values, we shall have*

^=—. ((q—q). i/y'+ (P'—P).^'v). I
^-

5

L____V

c" d dp I dc" „ dc\

1 idc" c".dc\ dp m'
,

I

(- , 1; therefore if we substitute for : and r their values, we

will obtain by concinnating and obliterating those terms which destroy each other, th»

dp
expression for -^, which i& given in the test*-.
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in like manner, ive shall find

dq nv .. ,

-i
I

If in place of x, y, x', y', their values /. cos. i», r. sin. v, r'. cos. W,

r' . sin. I'', be substituted ; we shall have

{q^q')-yy'+{p'—p)-^'y = |^^^^|.rr'.((cos.w'+t;)—cos. (v—v))*

+{^^ }.rr'.(sin.(t;'+tO—sin. (v'^v)) ;

(j>—p).X3/+(q—q')'3:y' —Y—^ |-.r;-'.(cos. (»'+») + cos. (u'—r)).

-J.
-j^llll I r/.(sin.(t;' + r) + sin. i}J—r)).

The excentricities and inclinations of the orbits being neglected, we

have

r-=za; v zznt-\- i\ r' = c j v' =. ri t -\- i
\

which gives

1 I

J_

1

(a"—2aa'.cos,(?z7—n^-j-t'—£+a*)J

Moreovei-, by N°. 48, we have

J = \. SB"\ cos. i/n'(—nt+ 1'—0;
(y—lad. COS. (n't—nt + e'—e) + a'*)t

* rr". COS. XI. COS. u' = — COS. (w^-i)') -}- cos. (v—v), rr\ sin. v. cos. »;'—-^ • (•'''•

(u+w') + sin. (v—ti)).
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the integral sign E extending to all entire values of ?, positive as well

as negative, the value i=0 being included ; by this means, we shall

have, neglecting the terms of the order of the squares and products

of the excentricities and inclinations of the orbits,

dp {a'—q) m'a,
, , ,-^- -^-^.-^(cos.Im'^-I-w^+e'+O—COS. (ivt—nt-^i'—i))

(p—p) ma , . ,

+ ^^-^;^.-^- (sin.(n'i+n^+£' + j)— sin. (nU—nt->ri'—i))*

+
~f.

• TO'.aa'E5«.(cos. [(i+l).(n7-7if + t'—«)]—cos. («+l).

+ (fc^. m.aa'.EB").(sin.[(j+ l).(«7—w^+f'—0]—sin.(H- 1).

{n't—nt-\-i— t) + Sw^-^Se]) ;

dq (p'—p) m'.a , , ,

di
~ 2r^'~^' ^^°^' («^+«^+«'+0+cos. (n't^nt+ I'—0)

+ -^-^ • —^' si"- (w'^ + «^+£'+0+ sin. (n't—nt-\-(-—i))

-I-
\ElZP}. wj.a'a.SJ5"'.(cos. [(i+ l).(n7—w^+e'—0] + cos. (i+l).

4c

{iVt—nt+ £'—£)+2«f+20]

* The value of the third term in the expression for -j- will be had by observing that

COS. (tj±i/) „,, , 2.BW
^ ^. ^. 2.B('^. cos.j.(n'<—nf+s'—e)= —-— . (cos. (i.(«'t_n<+ f'—

i)
+«'<+«<+

t'+f)+cos. i.(n'<—7!<4. 6'_ E)_?i7_„<_E'_£))_cos. j.(n7—ni+i'_,)+nV—n<+i'—i)—
COS. («.(n'<

—

nt-^i'—i) — n't—r^i-f s+'i); therefore, if we concinnate the terms of this ex-

pression, we shall obtain by observing that cos. i.{n't—nt-\-i—t)-{-n't^ n<+t'+ i) = cos.

(i+1) n't—nt + f'—s)+ 2)1/4- Se), and' also that cos. i.{n't—nt-^i—i) f «';—«<+ I'—i)

—

COS. (j-|- !).(«'«

—

r>t-\-i'— i), the expression given in the text.
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+ ^^-T^- m'.fla'.2Bc\(sin.[(?+ l).(n7—w^+f—0]+sin. («+l).

(n'i—nt-^ «'— + 2n^+ 2i]).

The value ^" z: — 1 gives in the expression of —^ , the constant

quantity-^

—

^.m'.aa'.B^~^\ all the other terms of the expression of

—^ are periodic, if P represents their sum, we shall have by N°. 48,

at 4c

(£('> being equal to 5'-'0.

By the same method, we shall find, that if we denote by Q the

sum of all the periodic terms of the expression of -^, we shall have

at 4c

If the squares of the excentricities and of the inclinations of the orbits,

be neglected, we shall have by N°. 64, c=:\/[*a. If then /x be sup-

posed = 1, we have n*a^ = 1, which gives c = ; the quantity

, thus becomes -, which by N . 5\) is equal to

(0, l); hence we shall have

|- = (0. l).{q'-qHP ;

-g--(0, l).(^-p) + Q.

It follows from this, that if (P) and (Q) denote the sum of all the

functions P and Q, relative to the action of the different bodies

PART I.—BOOK II. 3 G
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m', m\ &c., on m^, and if in like manner (P), (Q), [P'), (Q), &c.,

denote what (P) and (Q) become, when the quantities relative to m
are changed into those which refer to m', m", &c., and conversely ; we

shall have for the determination of the variables p, q, p', q, j/, q", &c.,

the following system of differential equations,

^ =-((0, l)+ (0,2)+&c.)5'+(O, \).q' + (0, 2)./^-&c.-^-(P);

-^=((0, l)-i-(0, 2)+&c.;.p—(0, \).p—(0, 2)./"—&c.+(Q)
;

^=z—((1, 0) + (l, 2)+&c.).?'+(l, 0).9 + (l, S^Z+Scc+lP-)

^zr r(l, 0)+(l, 2)+ &c.).y-(l, 0).p-(l, 2).|/-&c.+ (Q'),

&c.

From the analysis of N°. 68, it appears that the periodic parts of

p, q, p', q, &c., are

p=f(P).dti q=f(Q).dt

p^z=f(P').dt; q'=f(Q'-).dt,

we shall afterwards obtain the secular parts of the same quantities,

by integrating the preceding differential equations, deprived of their

last terms (P), (Q), (P'), &c. ; and then we shall light on the equa-

tions (C) of 1S°. 59, which have been already discussed with sufficient

detail to dispense with our reverting to this object.

71. Let the equations of N°. 64 be resumed, namely,

\/?*+ C^ (/''

tan. c= ; tan. 6zz—7-;
c c

from them may be deduced

(/ c'— =. tan. (p. cos. 6 ; — = tan. a». sin. d :

c c-
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differentiating, we shall have

d. tan. (p=.—. (dc'. cos. 9 + dc'\ sin. 9— dc. tan. <p)
;*

1

dL tan. (pzz — . {dc*. cos. G

—

dc/. sin. 0).

,„. , . , . . , . dc dc' d(f . .

Ifm these equations, we substitute in place of ~j7'~;jr'~^f their va-

, - fdR^ (dR\ (dK\ cdR^ (dR\ (dR\

and in place of these last quantities, their values furnished in N". 67,

and if moreover, we observe that s zz tan. (p. sin. (y—9) ; we shall have

, , ^ dt. tan. 0. COS. (v-^) f d.dR') . , .n
,
(dR^ , .>!

\d. tan.^= ^ -^^ r. ^^5. sin. (t;-9)+ 1-^j. cos. M)|

_0±^'.e«.(.-.,{f}>

3g2

fi/ c" &'.c'+t;c".c"
* Hence cos. « = - sin. <=— •/ d. tan. ip= 7^- „

" — o'^'

= by substituting cos. 6, sin. i, for their respective values, the expression which is given

in the text.

di dc".c'—dc'c" d6V(^+if') dc" /_^L_._
'^•'^- ' = -^E^i=

—
7-
— ''•

—

7— =-r-U?M=^
dd.c" \

c'Vif'+ c"'''

•j- Multiplying the value of rfc', given in page 385, by cos. 6, and that of rfc" by sin. 6, we

shall obtain by adding them together (1 +«*). cos. ("—
*)-(-;|j)

— ''*• ^°^- (*'~*^(^) "^

s. sin.(v—«).^—W—. tan. a =d tan. qi, hence by substituting for s its value, we shall

\dv/ dv
_

obtain the expression given in the text.



412 CELESTIAL MECHANICS,

These two differential equations will determine directly the inclination

of the orbit and the motion of the nodes. They give

sin. (v—9). d. tan. p

—

dL cos. (v—9). tan. (p=0 ;*

this equation may be also deduced from the equation 5=tan. (p. sin.(t'-6);

in fact, as this last equation is finite, we may by N". 63, difference it,

either by considering (p and 9 as constant, or by treating them as if

they were variable ; so that its differential, taken by making p and 6

the sole variables, vanishes ; hence results the preceding differential

equation.

Suppose now, that the inclination of the fixed plane to that of the

orbit should be extremely small ; so that the square of s and of the

tan. p, may be neglected, we shall have

dt , ,. CdR^
a. tan. (p=: . cos. (v—6). -j -7-

f 5

,« dt . , ,,. (dill
«9. tan. (p=: . sin. (v—9).

-J

-3- r 5

by making, as before,

p ^ tan. (p. sin. 0.
; y zi tan. (p. cos. 9

;

we shall have, in place of the two preceding differential equations, the

following

dt CdRldg=--. COS. v.^-^j;

* By multiplying the first equation by sin. {v—[6), and the second by cos. {v— 6),

their second members become indentically equal to each other, therefore the first members

will be also equal to each other.
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, dt . CdR^

but s z= q. sin. v— p, cos. v, hence

\ds )~ sin. v'Xdq) ' \ds )~ cos. v'\dp)'

therefore

, dt {dRi

dt ^dR)
'^P=-^-ld^\'

We have seen in N". 48, that the function R is independent of the

fixed plane of x and of j/ ; supposing, tlierefore, that all the angles

of this function are referred to the orbit of m, it is evident that R will

be a function of these angles, and of the respective inclination of these

two orbits, which inclination we shall denote by (pf. Let 6/ be the

longitude of the node of the orbit of m' on the orbit of m, and let us

suppose that m'k tan. ((p'y. cos. (i'7i't—int+ A—^'.G/) is a term in the

value of R, depending on the angle i'?i't—int : by N°. 60 we shall have

tan. (p/. sin. 6/ zz j/— p ; tan. ip/. cos. ^'=q'—q,

hence we deduce

(ta„. ,>. »in. gr= w-<,)+(p--pW='i-w-,y(P'-^W=ry.
2.v/—

1

* dq =z COS. t.d. tan. <p—di. sin. t. tan. (p = . (cos. v. cos. S-|-sin. v. sin. 6). cos. (.

c

/dR\ dt , . . V . fdR\ dt /dR\ /dR\

\i'g/ \as/ as sin.u \(/s/ dq sin. u
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If we only consider the preceding term of the value of iJ, we shall

have

1^1=—^. (tan. <?;>-'. rdh. %va.{j!n't—int-\-k—[g—\\ fi)/)
;

I^ I
=—^.(tan. <fiy-^. m'k. cos. (i'n't—int+A—(^—1 ).9/).

If these, values be substituted in the preceding expressions of dp and

_ I*

obtain

of dq, and if we observe that we have very nearly, c ^ — ; we shall

and if these values be substituted in the equation sz=.q. sin. v—p. cos. v,

\ye shall have

s =- 4#|r^ • (t^"- ^/>-'- sin- (i'«'^-^«^+ A-(5^-l).6;).

* sin. ^; = '
' , COS. 6; = ^^^^^ • •

COS. «;+ V_l. sin. «A«= COS. gi',.+ -/= 1 . sin. -«=\-;j^^^^^^) >
'^e°«=^

we obtain by multiplying by tan. ?>;, and its values, the expressions for tan. (p,«. sin. g«;,

tan. ip;s. COS. g«/, which are given' in the text ; now m'h (tan. ip/)e. cos. (t'n'i—»«/+A—

^<;) = m'i. (tan. ip/)«. (cos. .^«. cos.(f'n7 — inl + A) + sin. gL sin. [in't — mt + A), if

we substitute for (tan. <p/)e. cos. g«;, (tan. 0;>. sin. gf, and their difference with respect to

;, and q, we will obtain the expressions for— , -^, which are given in the text.
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This expression of s, is the variation of the latitude corresponding to the

preceding term of R, it is evident that it is the same whatever may be

the fixed plane to which the motions of m and of m' may be referred,

provided that its inclination to the plane of the orbits be inconsiderable
;

therefore we shall by this means obtain that part of the expression for

the latitude, which becomes sensible from the smallness of the divisor

i'n'—in. Indeed this inequality of the latitude involves only the first

power of this divisor, and in this respect it is less sensible than the

corresponding inequality of the mean longitude, which contains the

square of this divisor ; but on the other hand, tan. (p' occurs affected

with a power which is less by unity ; which remark corresponds to

that made in 69, on the corresponding inequality of the excentricities

of the orbits. It thus appears that all these inequalities are connected

with each other, and the corresponding part of R, by very simple

expressions.

If the preceding expressions of p and of q be differenced, and if in

the value of —~ and of —7^ , which result, the angles nt and ?i't be in-

creased by the inequalities of the mean motions, depending on the angle

i'71't—hit ; there will result in these differentials
;

quantities which are

solely functions of the elements of the orbits, and which may sensibly

influence the secular variations of the inclinations and of the nodes,

although being of the order of the squares of the disturbing masses
;

which is analogous to what has been stated in N°. (>9, relative to the

secular variations of the excentricities and aphelias.

72. It remains for us to consider the variation of the longitude i of

the epoch. By N". 64, we have

di =zae.j< —-— C V. sin. (v—w^-j-^. j —^— V . sin. 2.(y—u) + &c.

—d'sr.({E''K cos. (u—T!r)-f£®. cos. 2.(t;—5r)+&c.);

If for £'", E^'\ &c. be substituted their values in series arranged ac-
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cording to the powers of e, which series it is easy to infer from the

general expression for £''', given in N". l6, we shall have

</«=:— 2c?e. sin, (y
—Ts)-\-'ie.dzT. cos. (v—ra-)

-j- ec?e.(f+^e* + &c.). sin. 2.(5y-5r)-e*.rf'5r.(f-|-|;e*+&c.)cos. 2(?>-sr)*

—e''</e.(l+&c.). sin. 3.(1;—73-) + e'. c?w,(J+&c.). cos. S.{v—ar)

+ &C.

If for de, and edsr, their values, given in N". 67, be substituted,

we shall find, when the approximation is carried as far as quantities of

the order e* inclusively,

, a^.ndt /, T- ,^ -T , s , i „ , \ ( dR'\
de = >/ 1

—

e . (2—fe. cos. [v-w)-\-e*. cos. 2.(v--sr).< -^— >

e. sm. {v—s:).{\ + -. cos. (i;—lir)).

J

—
^.

The general expression for di contains terms of the form m'.k.ndt.

cos. (i'«7

—

int-[-A'), and consequently the expression for £ contains

terms of the form ., / '
. . sin. (i'n't—int+A.) ; but it is easy to be as-

t'n—m
sured that the coeflScient k in these terms is of the order i'—i, and

that consequently, these terms are of the same order as those of the

mean longitude which depend on the same angle. The latter have

for divisor the square of i'n—in ; we have seen that we can neglect in

respect to them, the corresponding terms of i when i'?i'—in is a very

small quantity.

If in the terms of the expressions of di, which are solely functions

* ByNo.ie, £(')=:± ^e'.(\+eVl—£)^ • • log. £("=2/. log. e+log. (l+eVlH?)
(1 + V^l—e)'

_i.log. (l + ^^r^T), then by differentiating and substituting for £i*' its value, we can

obtain the expression which is given in the text.
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of the elements of the orbits, we substitute in place of these elements

the secular parts of their values, it is evident that there will result in

them constant terms, and other terms affected with the sines and

cosines of the angles on which the secular variations of the ex-

centricities and of the inclinations of the orbits depend. The constant

terras will produce in the expression of c, terms proportional to the

time, which will be confounded with the mean motion of m. As

to the terms aflFected by the sine and cosine, they will acquire by

integration, in the expression of t, very small divisors of the same

order as the disturbing forces ; so that these terms being at once

multiplied and divided by these disturbing forces, they may be-

come sensible, although of the order of the squares and products of the

excentricities and inclinations. We shall see in the theory of the

planets that these terms are insensible, but they are extremely sensible

in the theory of the moon and of the satellites of Jupiter, indeed it

is on these terms that their secular equations depend.

We have seen in N". 65, that the mean motion of m has for

3
expression — Jfandt. di?, and that if we only consider the first

power of the disturbing masses, di2 involves only periodic quantities

;

but if we take into account the squares and products of these masses,

this differential may contain terms which are solely functions of the

elements of the orbits. By substituting in place of these elements

the secular parts of their values, there will result terms affected with

the sines and cosines of angles, on which the secular variations of

the orbits depend. These terms will acquire in the expression of

the mean motion, by the double integration, very small divisors,

which will be of the order of the squares and products of the

disturbing masses ; so that being simultaneously multiplied and di-

vided by the squares and products of these masses, they may be-

come sensible, although being of the order of the squares and

PART I. BOOK II. 3 H
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products of the excentricities and inclinations of the orbits. "We

shall see that these terras are likewise insensible in the theory of the

planets.

73. The elements of the orbit of m, being determined by what

precedes, they should be substituted in the expressions for the radius

vector, for the longitude, and latitude, which have been given in

N°. 22 ; the values of these three variables will thus be obtained

by means of which astronomers determine the position of the hea-

venly bodies. By reducing these values into a series 'of sines and

cosines, we shall obtain a series of inequalities, from which ta-

bles may be formed, and thus the position of m at any instant

may be computed with great facility. This method, founded on the

variation of parameters, is extremely useful in the investigation of

those inequalities, which from their relations with the mean motions

of the bodies of the system, acquire great divisors, and by this means

become very sensible. This species of inequalities affects principally

the elliptic elements of the orbits ; therefore by determining the va-

riations which result from them in these elements, and by substituting

them in the expressions of elliptic motion, we shall obtain in the

simplest manner possible, all the inequalities which those divisors

render sensible.

The preceding method is likewise useful in the theory of comets ;

these stars are only perceived for a very small part of their course,

and observations solely make known the part of the ellipse, which

may be confounded with the arc of the orbit which they describe

during their apparition. Therefore, if the nature of the orbit, consi-

dered as a variable ellipse, be determined, we shall have the changes

which this ellipse undergoes in the interval between two conse-

cutive appearances of the same comet ; we can therefore, an-

nounce its return, and when it reappears, compare the theory with ob-

servations.

After having given the methods and formulae for determining by

successive approximations, the motions of the centres of gravity of
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the heavenly bodies, it remains for us to apply them to the dif-

ferent bodies of' the solar system ; but as the ellipticity of these

bodies influences in a sensible manner, the motions of several of

them among each other, it is requisite, previously to proceeding to

the numerical applications, to treat of the figure of the heavenly

bodies, of which the investigation is equally interesting, on its own

account, as that of their motions.

END OF THE SECOND BOOK.












